А.А. Вартанян
ФГБУ «Российский онкологический центр им Н.Н. Блохина» РАМН, Москва, Российская Федерация
РЕФЕРАТ
Концепция о том, что VEGF-индуцируемый ангиогенез — фактор, лимитирующий рост солидных опухолей, сегодня считается общепринятой. Исследования последних лет показывают, что ангиогенез также необходимое условие прогрессии онкогематологических заболеваний. Процесс ветвления близлежащих сосудов в костном мозге начинается с выброса опухолевыми клетками растворимых активаторов ангиогенеза. Основным медиатором, стимулирующим формирование микрососудов в костном мозге, считается VEGF. С другой стороны, повышенная секреция VEGF приводит к высвобождению клетками микроокружения GM-CSF, G-CSF, IL-6, PlGF, HGF, IGF, цитокинов, способствующих выживанию и пролиферации злокачественных миелоидных и лимфоидных клеток. Увеличение уровня VEGF в плазме онкогематологических больных считается неблагоприятным прогностическим фактором течения болезни.
В настоящем обзоре обсуждаются основные закономерности формирования аутокринного и паракринного пула VЕGF, ангиогенез-зависимая и -независимая функции VEGF, а также результаты клинического изучения антиангиогенных препаратов в онкогематологии.
Ключевые слова: онкогематология, костный мозг, ангиогенез, антиангиогенная терапия.
Литература
- Folkman J. Fundamental concepts of the angiogenic process. Curr. Mol. Med. 2003; 3: 643–51.
- Bouck N., Stellmach V., Hsu S.C. How tumors become angiogenic. Adv. Cancer Res. 1996; 69: 135–74.
- Eiken H.M., Adams R.M. Dynamics of endothelial cell behaviour in sprouting angiogenesis. Curr. Opin. Cell Biol. 2010; 22(5): 617–25.
- Feige J.J. Tumour angiogenesis: recent progress and remaining challenges. Bull. Cancer 2010; 97(11): 1305–10.
- Tischer E., Mitchell R., Hartman T. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 1991; 266(18): 11947–54.
- Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol. 2006; 39: 469–78.
- Hauser S., Weich H.A. A heparin-binding form of placenta growth factor (PlGF-2) is expressed in human umbilical vein EC and in placenta. Growth Factors 1993; 9(4): 259–68.
- Straume O., Akslen L.A. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and Ephrin-A1/EphA2 on melanoma progression. Am. J. Pathol. 2002; 160: 1009–19.
- Maisonpierre P.C., Suri C., Jones P.F. et al. Angiopoietin-2, a natural antagonist for Tie-2 that disrupts in vivo angiogenesis. Science (London) 1997; 277: 55–60.
- Sharma P.S., Sharma R., Tyagi T. VEGF/VEGFR pathway inhibitors as anti-angiogenic agents: Present and Future. Curr. Cancer Drug Targets 2011; 11(5): 624–33.
- Fliedner T.M., Feinendegen L.E., Hopewell J.W. et al. Chronic irradiation: tolerance and failure in complex biological system. Br. J. Radiol. 2002; Supp. 126: 21–6.
- Podar K., Andersen K. Emerging therapies targeting tumor vasculature in multiple myeloma and other haematological malignancies. Curr. Cancer Drug Targets 2011; 11(9): 1005–24.
- Bradford G.B., Williams B., Rossi R. et al. Quiescence, cycling and turnover in the hematopoietic stem cell compartment. Exp. Hematol. 1997; 25(5): 445–53.
- Cuiffo B.G., Karnoub A.E. Mesenchimal stem cells in tumor development: emerging roles and concepts. Cell Adh. Migr. 2012; 6(3): 220–30.
- Schofield R. The relationship between the spleen colony-forming cell and the hematopoietic stem cell: A hypothesis. Blood Cells 1978; 4(1–2): 7–25.
- Vila L., Thomas X., Campos L. et al. Expression of VLA molecules on acute leukemia cells: relationship with disease characteristics. Exp. Hematol. 1995; 23: 514–8.
- Gong J.K. Endosteal marrow: a rich source of hematopoietic stem cells. Science 1978; 199: 1443–5.
- Taichman R.S., Reil W.J., Emerson S.G. Human osteoblasts support human hematopoietic progenitor stem cell in vitro bone marrow cultures. Blood 1996; 87: 518–24.
- Calvi L.M., Adams G.B., Weibrecht K.W. et al. Osteoblast cells regulate the hematopoietic stem cell niche. Nature 2003; 425: 841–6.
- Zhang J., Niu C., Ye L. et al. Identification of the hematopoietic stem cell niches and control of the niche size. Nature 2003; 425: 836–41.
- Yin T., Li L. The stem cell niches in bone. J. Clin. Invest. 2006; 116(5): 1195–201.
- Doan P.L., Chute J.P. The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 2012; 26: 54–62.
- Raffi S., Shapiro F., Pettengell R. et al. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 1995; 86: 3753–63.
- Davis T.A., Robinson D.N., Lee K.P. et al. Porcine microvascular endothelial cells support the in vitro expansion of the human primitive hematopoietic bone marrow progenitor cells with a high replanting potential: requirement for cell-to-cell interaction and colony-stimulating factors. Blood 1995; 85: 1751–61.
- Chute J.P., Muramoto G.G., Fung J. et al. Soluble factors elaborated by human brain endothelial cells induce the concomitant expansion of purified human BM CD34+CD38-cells and SCID-repopulating cells. Blood 2005; 105: 576–83.
- Kaplan R.N., Psaila B., Lyden C. Niche-to-niche migration of bone marrow-derived cells. Trends Mol. Med. 2007; 13(2): 72–81.
- Gerber H.P., Ferrara N. The role of VEGF in normal and neoplastic hematopoiesis. J. Mol. Med. (Berlin) 2003; 81: 20–31.
- Grandage V.L., Gale R.E., Linch D.C. et al. PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, MAPK and p53 pathways. Leukemia 2005; 19: 586–94.
- Lewis T.S., Shapiro P.S., Ahn N.G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 1998; 74: 49–139.
- Weber-Nordt R.M., Mertelsmann R., Finke J. The JAK-STAT pathway: signal transduction involved in proliferation, differentiation and transformation. Leuk. Lymphoma 1998; 28: 459–67.
- Dias S., Hattori K., Zhu Z. et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J. Clin. Invest. 2000; 106: 511–21.
- Glenjen N.I., Hatfield K., Bruserud O. et al. Coculture of native human acute myelogenous leukemia blasts with fibroblasts and osteoblasts results in an increase of vascular endothelial growth factor levels. Eur. J. Haematol. 2005; 74: 24–34.
- Podar K., Anderson K.C. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 2005; 105: 1383–95.
- Paesler J., Gehrke I., Poll-Wolbeck S.J., Kreuzer K.A. Targeting the vascular endothelial growth factor in hematologic malignancies. Eur. J. Hematol. 2012; 89: 373–84.
- Wegiel B., Ekberg J., Talasila K.M. et al. The role of VEGF and a functional link between VEGF and p27Kip1 in acute myeloid leukemia. Leukemia 2009; 23: 251–61.
- Ramakrishnan V., Timm M., Haug J.L. et al. Sorafenib, a dual Raf kinase/ vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 2010; 29: 1190–202.
- Podar K., Catley L.P., Tai Y.T. et al. GW654652, the paninhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood 2004; 103: 3474–9.
- Kovacs M.J., Reece D.E., Marcellus D. et al. A phase II study of ZD6474 (Zactima, a selective inhibitor of VEGFR and EGFR tyrosine kinase) in patients with relapsed multiple myeloma–NCIC CTG IND. Invest. New Drugs 2006; 24: 529–35.
- Karp J.E., Gojo I., Pili R. et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-darabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin. Cancer Res. 2004; 10: 3577–85.
- Barbarroja N., Torres L.A., Luque M.J. et al. Additive effect of PTK787/ ZK 222584, a potent inhibitor of VEGFR phosphorylation, with Idarubicin in the treatment of acute myeloid leukemia. Exp. Hematol. 2009; 37: 679–91.
- Smolich B.D., Yuen H.A., West K.A. et al. The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemia blasts. Blood 2001; 97: 1413–21.
- Paesler J., Gehrke I., Gandhirajan R.K. et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitors vatalanib and pazopanib potently induce apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Clin. Cancer Res. 2010; 16: 3390–8.
- Huber S., Oelsner M., Decker T. et al. Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia 2011; 25: 838–47.
- Shanafelt T., Zent C., Byrd J. et al. Phase II trials of single agent anti-VEGF therapy for patients with chronic lymphocytic leukemia. Leuk. Lymphoma 2010; 51: 2222–9.
- Lee Y.K., Shanafelt T.D., Bone N.D. et al. VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia 2005; 19: 513–23.
- Li F.F., Zheng G.H., Xu Y.H. et al. Effect of siRNA targeting VEGF on cell apoptosis and the expression of surviving in K562 cells. Zhonghua Xue Ye Xue Za Zhi. 2009; 30: 825–8.
- Reiners K.S., Gossmann A., von Strandmann E.P. et al. Effects of the antiVEGF monoclonal antibody bevacizumab in a preclinical model and in patients with refractory and multiple relapsed Hodgkin lymphoma. J. Immunother. 2009; 32: 508–12.
- Moehler T.M., Ho A.D., Goldschmidt H. et al. Angiogenesis in hematologic malignancies. Crit. Rev. Oncol. Hematol. 2003; 45: 227–44.
- Aguayo A., Kantarjian H., Manshouri T. et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000; 96: 2240–5.
- Flater J.L., Kay M.E., Goolsby C.L. et al. Dysregulated angiogenesis in B-chronic lymphocytic leukemia: morphologic, immunohistochemical and cytometric evidence. Diagn. Pathol. 2008; 3: 1–16.
- Lee C.Y., Tien H.F., Hu C.Y. et al. Marrow angiogenesis-associated factors as prognosric biomarkers in patients with acute myelogenous leukemia. Br. J. Cancer 2007; 97(7): 877–82.
- Lin N.I., Lin D.T., Chang C.J. et al. Marrow matrix metalloptoteinases (MMPs) and tissue inhibitor of MMP in acute leukemia: potential role of MMP-9 as surrogate marker to monitor leukemic status in patients with acute myelogenous leukemia. Br. J. Leuk. 2002; 117: 835–41.
- Hattori K., Heissig B., Wu Y. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat. Med. 2002; 8: 841–9.
- Fragoso R., Pereira T., Wu Y. et al. VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood 2006; 107: 1608–16.
- Van de Veire S., Stalmans I., Heindryckx F. et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 2010; 141: 178–90.
- Schmidt T., Kharabi Masouleh B., Loges S. et al. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1+ leukemia. Cancer Cell 2011; 19(6): 740–53.
- Yetgin S., Yenicesu I., Cetin M. et al. Clinical importance of serum vascular endothelial and basic fibroblast growth factors in children with acute lymphoblastic leukemia. Leuk. Lymphoma 2001; 42(1–2): 83–8.
- De Raeve H., Van Mark E., Van Camp B. et al. Angiogenesis and the role of bone marrow endothelial cells in hematologic malignancies. Histol. Histopathol. 2004; 19: 935–50.
- Arai H., Hirao A., Suda T. Regulation of hematopoietic stem cells by the niche. Trends Cardiovasc. Med. 2005; 15: 75–9.
- Rabitsch W., Sperr W.R., Lechner K. et al. Bone marrow microvessel density and its prognostic significance in AML. Leuk. Lymphoma 2004; 45(7): 1369–73.
- Pule M.A., Gulmann C., Derris D. et al. Increased angiogenesis in bone marrow of children with acute lymphoblastic leukemia has no prognostic significance. Br. J. Haematol. 2002; 118(4): 991–8.
- Kasparova P., Smolei L. Angiogenesis in the bone marrow of patients with chronic lymphocytic leukemia. Cesk. Patol. 2007; 43(2): 50–8.
- Zhelvazkova A.G., Tochev A.B., Kolova P. et al. Prognostic significance of hepatocyte growth factor and microvessel bone marrow density in patients with chronic myeloid leukemia. Scand. J. Clin. Lab. Invest. 2008; 68(6): 492–500.
- Zhao S., Zhang Q.Y., Ma W.J. et al. Analysis of 31 cases of primary breast lymphoma: the effect of nodal involvement and microvascular density. Clin. Lymphoma Myeloma Leuk. 2011; 11(1): 33–7.
- De Raeve H., Van Marck E., Van Camp B. et al. Angiogenesis and the role of bone marrow endothelial cells in haematological malignancies. Histol. Histopathol. 2004; 19(3): 935–50.
- Kvasnicka H.M., Thiele J. Bone marrow angiogenesis: methods of quantification and changes evolving in chronic myeloproliferative disorders. Histol. Histopathol. 2004; 19(4): 1245–60.
- Shih T.T., Hou H.A., Liu C.Y. et al. Bone marrow angiogenesis magnetic resonance imaging in patients with acute myeloid leukemia: peak enhancement ratio is an independent predictor for overall survival. Blood 2009; 113(14): 3161–7.
- Chen B.-B., Hsu C.-Y., Yu C.-W. et al. Dynamic contrast-enhanced MR imaging measurement of vertebral bone marrow perfusion may be indicator of outcome of acute leukemia patients in remission. Radiology 2011; 258(3): 821–31.
- Singhal S., Mehta J., Desikan R. et al. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 1999; 341(21): 1565–71.
- Rehman W., Arfons L.M., Lazarus H.M. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther. Adv. Hematol. 2011; 2(5): 291–308.
- Maiolino A., Hungria V.T., Garnica M. et al. Multiple Myeloma Study Group (BMMSG/GEMOH). Thalidomide plus dexamethasone as a maintenance therapy after autologous hematopoietic stem cell transplantation improves progressionfree survival in multiple myeloma. Am. J. Hematol. 2012; 87(10): 948–52.
- Sher T., Ailawadhi S., Miller K.C. et al. A steroid-independent regimen of bortezomib, liposomal doxorubicin and thalidomide demonstrate high response rates in newly diagnosed multiple myeloma patients. Br. J. Haematol. 2011; 154(1): 104–10.
- Fayers P.M., Palumbo A., Hulin C. et al. Thalidomide for previously untreated elderly patients with multiple myeloma: meta-analysis of 1685 individual patients from 6 randomized clinical trials. Blood 2011; 118: 1239–47.
- Kotla V., Goel S., Nischal S. et al. Mechanism of action of thalidomide in hematological malignancies. J. Hematol. Oncol. 2009; 2: 36–46.
- Li S., Gill N., Lentzsch S. Recent advances of IMiDs in cancer therapy. Curr. Opin. Oncol. 2010; 22(6): 579–85.
- Shortt J., Hsu A.K., Johnstone R.W. Thalidomide-analogue biology: immunological, molecular and epigenetic targets in cancer therapy. Oncogene 2013; 32(1): 1–18.
- Wang M., Dimopoulos M.A., Chen C. et al. Lenalidomide plus dexamethasone is more effective than dexamethasone alone in patients with relapsed or refractory multiple myeloma regardless of prior thalidomide exposure. Blood 2008; 112(12): 4445–51.
- Dimopoulos M.A., Kastritis E., Christoulas D. et al. Treatment of patients with relapsed/refractory multiple myeloma with lenalidomide and dexamethasone with or without bortezomib: prospective evaluation of the impact of cytogenic abnormalities and of previous therapies. Leukemia 2010; 24 (10): 1769–78.
- Williams S., Pettaway C., Song R. et al. Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol. Cancer Ther. 2003; 2(9): 835–43.
- Chen Y., Borthakur G. Lenalidomide as a novel treatment of acute myeloid leukemia. Exp. Opin. Invest. Drugs 2013; 22(3): 389–97.
- Wiernik P.H. Lenalidomide in lymphomas and chronic lymphocytic leukemia. Exp. Opin. Pharmacother. 2013; 14(4): 475–88.
- Blum W., Klisovic R.B., Becker H. et al. Dose escalation of lenalidomide in relapsed or refractory acute leukemias. J. Clin. Oncol. 2010; 28: 4919–25.
- Tageja N. Lenalidomide — current understanding of mechanistic properties. Anticancer Agents Med. Chem. 2011; 11(3): 315–26.
- Davies F., Baz R. Lenalidomide mode of action: linking bench and clinical findings. Blood Rev. 2010; Suppl. 1: S13–9.
- San-Miguel J.F. Long-term disease control in multiple myeloma: the impact of the dual mechanism of action of lenalidomide. Introduction and overview. Blood Rev. 2010; Suppl. 1: S1–3.
- Li Z.W., Chen H., Campbell R.A. et al. NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr. Opin. Hematol. 2008; 15(4): 391–9.
- Bartlett J.B., Tozer A., Stirling D. et al. Recent clinical studies of the immunomodulatory drug (IMiD) lenalidomide. Br. J. Cancer 2005; 93(6): 613–9.
- Ribatti D., Mangialaedi G., Vacca A. Antiangiogenic therapeutic approaches in multiple myeloma. Curr. Cancer Drug Targets 2012; 12: 768–75.
- Lin B., Podar K., Gupta D. et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2002; 62(17): 5019–26.
- Zangari M., Anaissie E., Stopeck A. et al. Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin. Cancer Res. 2004; 10(1 Pt. 1): 88–9.
- Podar K., Catley L.P., Tai Y.T. et al. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood 2004; 103 (9): 3474–9.
- Ramakrishnan V., Timm M., Haug J.L. et al. Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant antimyeloma activity and synergizes with common anti-myeloma drugs. Oncogene 2010; 29(8): 1190–202.
- Breccia M., Salaroli A., Molica M. et al. Systematic review of dasatinib in chronic myeloid leukemia. Oncol. Targets Ther. 2013; 6: 257–65.
- Wiernik P.H. FLT3 inhibitors for the treatment of acute myeloid leukemia. Clin. Adv. Hematol. Oncol. 2010; 8(6): 429–36.
- Roboz G.J., Giles F.J., List A.F. et al. Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia 2006; 20(6): 952–7.
- Macdonald D.A., Assouline S.E., Brandwein J. et al. A phase I/II study of sorafenib in combination with low dose cytarabine in elderly patients with acute myeloid leukemia or high-risk myelodysplastic syndrome from the National Cancer Institute of Canada Clinical Trials Group: trial IND.186. Leuk. Lymphoma 2013; 54(4): 760–6.
- Nishioka C., Ikezoe T., Yang J. et al. Sunitinib, an orally available receptor tyrosine kinase inhibitor, induces monocytic differentiation of acute myelogenous leukemia cells that is enhanced by 1,25-dihydroxyvitamin D(3). Leukemia 2009; 23(11): 2171–3.
- Stopeck A., Sheldon M., Vanedian M. et al. Results of a Phase I Dose-escalating Study of the Antiangiogenic Agent, SU5416, in Patients with Advanced Malignancies. Clin. Cancer Res. 2002; 8: 2798–3011.
- Fiedler W., Mesters R., Heuser M. et al. An open-label, Phase I study of cediranib (RECENTIN) in patients with acute myeloid leukemia. Leuk. Res. 2010; 34(2): 196–202.
- Thomas X. Acute lymphoblastic leukemia with Philadelphia chromosome: treatment with kinase inhibitors. Bull. Cancer 2007; 94(10): 871–80.
- Mirshahi P., Raffi A., Vincent I. et al. Vasculogenic mimicry of acute leukemic bone marrow stromal cells. Leukemia 2009; 23: 1039–48.
- Scavelli C., Nico B., Cirulli T. et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 2008; 27(5): 663–74.
- Nico B., Margieri D., Crivellato E. et al. Mast cells contribute to vasculogenic mimicry in multiple myeloma. Stem Cell Dev. 2008; 17(1): 19–22.