Получение специфичных к антигену CD87 CAR T-лимфоцитов и оценка их функциональной активности in vitro

М.В. Неклесова, С.В. Смирнов, А.А. Шатилова, К.А. Левчук, А.Е. Ершова, С.А. Силонов

НЦМУ «Центр персонализированной медицины», ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

Для переписки: Сергей Владимирович Смирнов, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; тел.: +7(964)612-57-14; e-mail: sergeiismirnoff@gmail.com

Для цитирования: Неклесова М.В., Смирнов С.В., Шатилова А.А. и др. Получение специфичных к антигену CD87 CAR T-лимфоцитов и оценка их функциональной активности in vitro. Клиническая онкогематология. 2022;15(4):340–8.

DOI: 10.21320/2500-2139-2022-15-4-340-348


РЕФЕРАТ

Цель. Создание анти-CD87 CAR T-лимфоцитов и оценка их функциональной активности in vitro.

Материалы и методы. Выделенные из периферической крови здорового донора Т-лимфоциты трансдуцировали лентивирусным вектором, кодирующим гены анти-CD87-CAR, T2A и FusionRed. Эффективность трансдукции, оцениваемая по уровню сигнала репортерного белка FusionRed, субпопуляционный состав и функциональное состояние CAR T-лимфоцитов определены методом проточной цитометрии. Экспрессия интерферона-γ (IFN-γ) CAR T-лимфоцитами изучалась с помощью иммуноферментного анализа. Оценка цитотоксической активности CAR T-лимфоцитов выполнялась при сокультивировании с клетками-мишенями HeLa с помощью системы анализа клеток в реальном времени xCELLigence.

Результаты. Эффективность трансдукции Т-лимфоцитов составила 8,4 %. Полученные CAR T-клетки содержали как маркеры активации CD27 и/или CD28 (92,91 % случаев), так и маркер истощения PD1 (20,66 %). В популяции CAR T-лимфоцитов фенотип Т-клеток центральной памяти составил 98,51 %, а соотношение CD4/CD8 — 1:7. Концентрация IFN-γ в среде после сокультивирования CAR T-лимфоцитов с клетками-мишенями оказалась значимо выше, чем в контрольных образцах. Показано, что полученные СAR T-лимфоциты проявляют специфическую цитотоксичность по отношению к клеткам-мишеням как немодифицированной, так и повышенной экспрессии антигена CD87 клеточных линий HeLa. Цитотоксичность оказалась более выраженной в отношении линии клеток с повышенной экспрессией антигена CD87.

Заключение. Несмотря на повышенную экспрессию маркера истощения PD1, CAR Т-лимфоциты продемонстрировали специфическую секрецию IFN-γ и выраженную цитотоксическую активность при взаимодействии с антигеном CD87 на мембране клеток-мишеней. Следовательно, анти-CD87 CAR Т-лимфоциты могут использоваться для лечения как гематологических, так и солидных опухолей. Поскольку наблюдаемая разница в цитотоксичности не коррелирует линейно с плотностью антигена CD87 на поверхности атакуемых клеток, при применении CAR T-клеточного препарата in vivo необходимо исключить вероятность цитотоксического воздействия на здоровые клетки, экспрессирующие CD87.

Ключевые слова: CD87, uPAR, CAR T-лимфоциты, острые миелоидные лейкозы.

Получено: 27 июня 2022 г.

Принято в печать: 10 сентября 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Stoppelli MP, Corti A, Soffientini A, et al. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA. 1985;82(15):4939–43. doi: 10.1073/pnas.82.15.4939.
  2. Behrendt N, Ronne E, Dano K. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe Seyler. 1995;376(5):269–79.
  3. Кугаевская Е.В., Гуреева Т.А., Тимошенко О.С., Соловьева Н.И. Система активатора плазминогена урокиназного типа в норме и при жизнеугрожающих процессах (обзор). Общая реаниматология. 2018;14(6):61–79. doi: 10.15360/1813-9779-2018-6-61-79.
    [Kugaevskaya EV, Gureeva TA, Timoshenko OS, Solovyeva NI. Urokinase-type plasminogen activator system in norm and in life-threatening processes (Review). General Reanimatology. 2018;14(6):61–79. doi: 10.15360/1813-9779-2018-6-61-79. (In Russ)]
  4. Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front Oncol. 2018;8(2):8–24. doi: 10.3389/fonc.2018.00024.
  5. Alfano D, Gorrasi A, Li Santi A, et al. Urokinase receptor and CXCR4 are regulated by common microRNAs in leukaemia cells. J Cell Mol Med. 2015;19(9):2262–72. doi: 10.1111/jcmm.12617.
  6. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11(1):23–36. doi: 10.1038/nrm2821.
  7. Gorantla B, Asuthkar S, Rao JS, et al. Suppression of the uPAR-uPA system retards angiogenesis, invasion, and in vivo tumor development in pancreatic cancer cells. Mol Cancer Res. 2011;9(4):377–89. doi: 10.1158/1541-7786.MCR-10-0452.
  8. Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127–32. doi: 10.1038/s41586-020-2403-9.
  9. Kusch A, Gulba D. Die Bedeutung des uPA/uPAR-Systems fur die Entwicklung von Arteriosklerose und Restenose. Z Kardiol. 2001;90(1):307–18. doi: 10.1007/s003920170160.
  10. Laurenzana A, Chilla A, Luciani C, et al. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells. Int J Cancer. 2017;141(6):1190–200. doi: 10.1002/ijc.30817.
  11. Ahmad A, Kong D, Sarkar SH, et al. Inactivation of uPA and its receptor uPAR by 3,3’-diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. J Cell Biochem. 2009;107(3):516–27. doi: 10.1002/jcb.22152.
  12. Fox SB, Taylor M, Grondahl-Hansen J, et al. Plasminogen activator inhibitor-1 as a measure of vascular remodelling in breast cancer. J Pathol. 2001;195(2):236–43. doi: 10.1002/path.931.
  13. Fisher JL, Field CL, Zhou H, et al. Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases – a comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Res Treat. 2000;61(1):1–12. doi: 10.1007/s10549-004-6659-9.
  14. Pierga JY, Bonneton C, Magdelenat H, et al. Real-time quantitative PCR determination of urokinase-type plasminogen activator receptor (uPAR) expression of isolated micrometastatic cells from bone marrow of breast cancer patients. Int J Cancer. 2005;114(2):291–8. doi: 10.1002/ijc.20698.
  15. Hildenbrand R, Schaaf A, Dorn-Beineke A, et al. Tumor stroma is the predominant uPA-, uPAR-, PAI-1-expressing tissue in human breast cancer: prognostic impact. Histol Histopathol. 2009;24(7):869–77. doi: 10.14670/HH-24.869.
  16. Boonstra MC, Verbeek FP, Mazar AP, et al. Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study. BMC Cancer. 2014;14:269. doi: 10.1186/1471-2407-14-269.
  17. Graf M, Reif S, Hecht K, et al. High expression of urokinase plasminogen activator receptor (UPA-R) in acute myeloid leukemia (AML) is associated with worse prognosis. Am J Hematol. 2005;79(1):26–35. doi: 10.1002/ajh.20337.
  18. Plesner T, Ralfkiaer E, Wittrup M, et al. Expression of the receptor for urokinase-type plasminogen activator in normal and neoplastic blood cells and hematopoietic tissue. Am J Clin Pathol. 1994;102(6):835–41. doi: 10.1093/ajcp/102.6.835.
  19. Bene MC, Castoldi G, Knapp W, et al. CD87 (urokinase-type plasminogen activator receptor), function and pathology in hematological disorders: a review. Leukemia. 2004;18(3):394–400. doi: 10.1038/sj.leu.2403250.
  20. Cummins KD, Gill S. Will CAR T cell therapy have a role in AML? Promises and pitfalls. Semin Hematol. 2019;56(2):155–63. doi: 10.1053/j.seminhematol.2018.08.008.
  21. Kramer MD, Spring H, Todd RF, et al. Urokinase-type plasminogen activator enhances invasion of human T cells (Jurkat) into a fibrin matrix. J Leukoc Biol. 1994;56(2):110–6. doi: 10.1002/jlb.56.2.110.
  22. Bianchi E, Ferrero E, Fazioli F, et al. Integrin-dependent induction of functional urokinase receptors in primary T lymphocytes. J Clin Invest. 1996;98(5):1133–41. doi: 10.1172/JCI118896.
  23. Xu Y, Zhang M, Ramos CA, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9. doi: 10.1182/blood-2014-01-552174.
  24. Sommermeyer D, Hudecek M, Kosasih PL, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500. doi: 10.1038/leu.2015.247.
  25. Baumeister SH, Murad J, Werner L, et al. Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunol Res. 2019;7(1):100–12. doi: 10.1158/2326-6066.CIR-18-0307.
  26. Barber A, Meehan KR, Sentman CL. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther. 2011;18(5):509–16. doi: 10.1038/gt.2010.174.
  27. Roybal KT, Rupp LJ, Morsut L, et al. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell. 2016;164(4):770–9. doi: 10.1016/j.cell.2016.01.011.
  28. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–47. doi: 10.1038/nrc1367.
  29. Kosti P, Larios-Martinez KI, Maher J, Arnold JN. Generation of hypoxia-sensing chimeric antigen receptor T cells. STAR Protoc. 2021;2(3):100723. doi: 10.1016/j.xpro.2021.100723.