Получение CAR T-лимфоцитов, специфичных к CD19, и оценка их функциональной активности in vitro

А.В. Петухов1, В.А. Маркова2, Д.В. Моторин1, А.К. Титов1, Н.С. Белозерова2, П.М. Гершович2, А.В. Карабельский2, Р.А. Иванов2, Е.К. Зайкова1, Е.Ю. Смирнов2, П.А. Бутылин1, А.Ю. Зарицкий1

1 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

2 Биотехнологическая компания «Биокад», ул. Связи, д. 34-А, п. Стрельна, Санкт-Петербург, Российская Федерация, 198515

Для переписки: Зарицкий Андрей Юрьевич, д-р мед. наук, профессор, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; тел.: +7(812)702-68-28, факс: +7(812)702-37-65; e-mail: zaritskey@gmail.com

Для цитирования: Петухов А.В., Маркова В.А., Моторин Д.В. и др. Получение CAR T-лимфоцитов, специфичных к CD19, и оценка их функциональной активности in vitro. Клиническая онкогематология. 2018;11(1):1–9.

DOI: 10.21320/2500-2139-2018-11-1-1-9


РЕФЕРАТ

Актуальность. При В-линейных онкогематологических заболеваниях наиболее перспективный вариант адоптивной иммунотерапии предполагает применение клеток с химерным антигенным рецептором (CAR T-лимфоцитов), которые, по данным клинических исследований, продемонстрировали непревзойденные результаты.

Цель. Создание CAR T-лимфоцитов для применения в клинике и исследование их цитотоксичности in vitro.

Методы. Т-лимфоциты человека подвергались трансдукции лентивирусным вектором, содержащим гены анти-CD19-CAR, RIAD и GFP. Эффективность трансдукции Т-лимфоцитов оценивалась по уровню сигнала репортерного белка GFP методом проточной цитометрии. Для анализа жизнеспособности клеток применялся пропидия йодид. Цитотоксическая активность полученных CAR T-лимфоцитов в присутствии клеток-мишеней изучалась при их прямом сокультивировании. Анализ количества CAR T-клеток, экспрессии цитокинов проводился методом проточной цитометрии.

Результаты. Жизнеспособность трансдуцированных Т-лимфоцитов и экспрессия GFP достигали 91,87 и 50,87 % соответственно. При культивировании в присутствии IL-2 и рекомбинантного CD19 (целевой антиген) количество CAR T-лимфоцитов увеличивается в 1,4 раза через 120 ч относительно 48 ч. В цитотоксическом тесте при сокультивирования CAR-T с клетками K562-CD19+ доля CAR T-лимфоцитов увеличивается до 57 и 84,5 % после 48 и 120 ч экспозиции соответственно. В случае культивирования CAR T-лимфоцитов с клетками K562 (контрольная линия, не экспрессирующая CD19) через 48 ч их число снижалось до 36,2 %, а число K562 возрастало до 58,3 %. Жизнеспособность клеток-мишеней в экспериментальной и контрольной группах составила 3,5 и 36,74 % соответственно. Различия в концентрации IL-6 между контрольной и экспериментальной группами заметно меньше, чем при исследовании других цитокинов (IFN-γ, IL-2, TNF) в этих же группах.

Заключение. В настоящей работе были получены анти-CD19 CAR T-лимфоциты с достаточной жизнеспособностью. На модели in vitro продемонстрирована их цитотоксичность. Создание CAR T-лимфоцитов для клинического применения является первым шагом в развитии технологии адоптивной иммунотерапии в Российской Федерации.

Ключевые слова: CAR T-лимфоциты, иммуноадоптивная терапия, острый лимфобластный лейкоз, неходжкинские лимфомы, лентивирусная трансдукция, реакция «трансплантат против хозяина», синдром «цитокинового шторма».

Получено: 15 сентября 2017 г.

Принято в печать: 7 декабря 2017 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2015;13(1):10–24. doi: 10.1038/nrclinonc.2015.128.
  2. Podhorecka M, Markowicz J, Szymczyk A, Pawlowski J. Target therapy in hematological malignances: new monoclonal antibodies. Int Sch Res Not. 2014;2014(3):1–16. doi: 10.1155/2014/701493.
  3. Hussaini M. Biomarkers in Hematological Malignancies: A Review of Molecular Testing in Hematopathology. Cancer Control. 2015;22(2):158–66. doi: 10.1177/107327481502200206.
  4. Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult. Blood. 2013;121(7):1077–82. doi: 10.1182/blood-2012-08-234492.
  5. Im A, Pavletic SZ. Immunotherapy in hematologic malignancies: past, present, and future. J Hematol Oncol. 2017;10(1):94. doi: 10.1186/s13045-017-0453-8.
  6. Luskin MR, DeAngelo DJ. Chimeric Antigen Receptor Therapy in Acute Lymphoblastic Leukemia Clinical Practice. Curr Hematol Malig Rep. 2017;12(4):370–9. doi: 10.1007/s11899-017-0394-x.
  7. Fesnak A, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81. doi: 10.1038/nrc.2016.97.
  8. Lim W, June C. The Principles of Engineering Immune Cells to Treat Cancer. Cell. 2017;168(4):724–40. doi: 10.1016/j.cell.2017.01.016.
  9. Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98. doi: 10.1158/2159-8290.CD-12-0548.
  10. Brentjens RJ, Davila ML, Riviere I, et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci Transl Med. 2013;5(177):177ra38. doi: 10.1126/scitranslmed.3005930.
  11. Maude SL, Frey N, Shaw P, et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222.
  12. Turtle CJ, Hanafi L-A, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. doi: 10.1172/JCI85309.
  13. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi: 10.1016/S0140-6736(14)61403-3.
  14. Onea AS, Jazirehi AR. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas. Am J Cancer Res. 2016;6(2):403–24.
  15. Kebriaei P, Singh H, Huls MH, et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126(9):3363–76. doi: 10.1172/JCI86721.
  16. ICML 2017: Data From the TRANSCEND Trial of JCAR017 in Relapsed and Refractory Aggressive B-Cell Non-Hodgkin Lymphoma — The ASCO Post. Available from: http://www.ascopost.com/News/57764 (accessed 7.10.2017).
  17. Locke FL, Neelapu SS, Bartlett NL, et al. Abstract CT019: Primary results from ZUMA-1: a pivotal trial of axicabtagene ciloleucel (axicel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL). Cancer Res. 2017;77(13 Suppl):CT019. doi: 10.1158/1538-7445.AM2017-CT019.
  18. Kalos M, Levine BL, Porter DL, et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842.
  19. Porter DL, Hwang W-T, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
  20. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15. doi: 10.1016/j.coi.2015.01.002.
  21. Павлова А.А., Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. [Pavlova AА, Maschan MА, Ponomarev VB. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors. Oncohematology. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. (In Russ)]
  22. Dai H, Wang Y, Lu X, Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J Natl Cancer Inst. 2016;108(7):1–15. doi: 10.1093/jnci/djv439.
  23. Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics. 2016;3:16014. doi: 10.1038/mto.2016.14.
  24. Holzinger A, Barden M, Abken H. The growing world of CAR T cell trials: a systematic review. Cancer Immunol Immunother. 2016;65(12):1433–50. doi: 10.1007/s00262-016-1895-5.
  25. Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010;16(9):1245–56. doi: 10.1016/j.bbmt.2010.03.014.
  26. Gong MC, Latouche JB, Krause A, et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia. 1999;1(2):123–7.
  27. Davila ML, Sadelain M. Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. 2016;104(1):6–17. doi: 10.1007/s12185-016-2039-6.
  28. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016;127(26):3312–20. doi: 10.1182/blood-2016-02-629063.
  29. Grupp S, Kalos M, Barrett D, et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N Engl J Med. 2013;368(16):1509–18. doi: 10.1056/NEJMoa1215134.
  30. Yu H, Sotillo E, Harrington C, et al. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. Am J Hematol. 2017;92(1):E11–E13. doi: 10.1002/ajh.24594.
  31. Sotillo E, Barrett DM, Black KL, et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015;5(12):1282–95. doi: 10.1158/2159-8290.CD-15-1020.
  32. Fischer J, Paret C, El Malki K, et al. CD19 Isoforms Enabling Resistance to CART-19 Immunotherapy Are Expressed in B-ALL Patients at Initial Diagnosis. J Immunother. 2017;40(5):187–95. doi: 10.1097/CJI.0000000000000169.
  33. Jacoby E, Nguyen SM, Fountaine TJ, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320. doi: 10.1038/ncomms12320.
  34. Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–10. doi: 10.1182/blood-2015-08-665547.
  35. Zah E, Lin M-Y, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res. 2016;4(6):498–508. doi: 10.1158/2326-6066.CIR-15-0231.
  36. Shah NN, Stetler-Stevenson M, Yuan CM, et al. Minimal Residual Disease Negative Complete Remissions Following Anti-CD22 Chimeric Antigen Receptor (CAR) in Children and Young Adults with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Blood. 2016;128(22):650.
  37. Davila ML, Riviere I, Wang X, et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci Transl Med. 2014;6(224):224ra25. doi: 10.1126/scitranslmed.3008226.
  38. Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90. doi: 10.1038/nm.3838.
  39. Hay KA, Turtle CJ. Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies. Drugs. 2017;77(3):237–45. doi: 10.1007/s40265-017-0690-8.
  40. Wehbi VL, Tasken K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells – role of anchored protein kinase a signaling units. Front Immunol. 2016;7:1–19. doi: 10.3389/fimmu.2016.00222.
  41. Newick K, O’Brien S, Sun J, et al. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunol Res. 2016;4(6):541–51. doi: 10.1158/2326-6066.CIR-15-0263.
  42. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–4. doi: 10.1038/nmeth.3047.
  43. Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and Preclinical Evaluation of an Anti-CD19 Chimeric Antigen Receptor. J Immunother. 2009;32(7):689–702. doi: 10.1097/CJI.0b013e3181ac6138.
  44. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi: 10.1186/2162-3619-1-36.
  45. Uckun FFM, Jaszcz W, Ambrus JJL, et al. Detailed Studies on Expression and Function of CD19 Surface Determinant by Using B43 Monoclonal Antibody and the Clinical Potential of Anti-CD19 Immunotoxins. Blood. 1988;71(1):13–29.
  46. Wei G, Ding L, Wang J, et al. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6(1):10. doi: 10.1186/s40164-017-0070-9.
  47. Barrett DM, Singh N, Hofmann TJ, et al. Interleukin 6 Is Not Made By Chimeric Antigen Receptor T Cells and Does Not Impact Their Function. Blood. 2016;128(22):2016–7.
  48. Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017;19(7):867–80. doi: 10.1016/j.jcyt.2017.04.001.
  49. Hartmann J, Schussler‐Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97. doi: 10.15252/emmm.201607485.
  50. Hagen T. Novartis Sets a Price of $475,000 for CAR T-Cell Therapy. Available from: http://www.onclive.com/web-exclusives/novartis-sets-a-price-of-475000-for-car-tcell-therapy (accessed 31.10.2017).
  51. Yang Y, Jacoby E, Fry TJ. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr Opin Hematol. 2015;22(6):509–15. doi: 10.1097/MOH.0000000000000181.
  52. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8(8):573–89. doi: 10.1007/s13238-017-0411-9.