Стратификация пациентов cо множественной миеломой: современное состояние вопроса и дальнейшие перспективы

А.Ю. Аксенова1, А.С. Жук2, Е.И. Степченкова1,3, С.В. Грицаев4

1 ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

2 ФГАОУ ВО «Национальный исследовательский университет ИТМО», Кронверкский пр-т, д. 49, лит. А, Санкт-Петербург, Российская Федерация, 197101

3 ФГБУН «Институт общей генетики им. Н.И. Вавилова РАН», Санкт-Петербургский филиал, Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

4 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Анна Юрьевна Аксенова, канд. биол. наук, ул. Ботаническая, д. 17, Санкт-Петербург, Российская Федерация, 198504; тел.: +7(812)428-40-09; e-mail: a.aksenova@spbu.ru; Сергей Васильевич Грицаев, д-р мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(812)717-54-68; e-mail: gritsaevsv@mail.ru

Для цитирования: Аксенова А.Ю., Жук А.С., Степченкова Е.И., Грицаев С.В. Стратификация пациентов cо множественной миеломой: современное состояние вопроса и дальнейшие перспективы. Клиническая онкогематология. 2022;15(3):259–70.

DOI: 10.21320/2500-2139-2022-15-3-259-270


РЕФЕРАТ

В последние годы наблюдается существенный прогресс в улучшении выживаемости без прогрессирования (ВБП) и качества жизни пациентов со множественной миеломой (ММ). Это стало возможным благодаря внедрению в клиническую практику новых препаратов, разработанных с учетом данных мультиомиксных молекулярно-генетических исследований при ММ. Результаты этих исследований позволили также оценить уровень генетической гетерогенности опухолевых клеток при ММ. Так, были выявлены типы и частота однонуклеотидных вариаций, структурных изменений хромосом и нарушений копийности хромосом, встречающихся в геноме злокачественных плазматических клеток. Показано, что у разных пациентов с ММ существенно отличается спектр выявляемых генетических нарушений в опухоли. Высокая генетическая гетерогенность заболевания служит одной из главных причин различной эффективности лекарственных препаратов и различий в ВБП. В настоящем обзоре подробно рассматривается вопрос о значении ряда хромосомных аберраций для распределения больных ММ по группам риска. Представлено описание наиболее частых аберраций, в т. ч. с высоким и низким риском раннего прогрессирования ММ, уже включенных в различные международные прогностические шкалы. Кроме того, определены дополнительные аберрации, которые обладают потенциалом для применения в клинической практике. Особое внимание уделяется проблеме оценки риска при обнаружении нескольких различных хромосомных перестроек у одного пациента. В обзоре описаны трудности и перспективы использования информации о хромосомных перестройках для выбора наиболее оптимальных схем лечения и оценки их эффективности. В этом контексте важное значение придается проблемам интеграции генетических данных и таких клинических показателей, как возраст больного, сопутствующие заболевания, почечная дисфункция, степень поражения костей, показания к трансплантации аутологичных гемопоэтических стволовых клеток и др.

Ключевые слова: множественная миелома, международные системы стадирования, хромосомные перестройки, R-ISS, R2-ISS, mSMART, MASS.

Получено: 28 марта 2022 г.

Принято в печать: 5 июня 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Бессмельцев C.C. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть I. Онкогематология. 2013;3(6):237–57.
    [Bessmeltsev SS. Multiple myeloma (pathogenesis, clinical features, diagnosis, differential diagnosis). Part I. Onkogematologiya. 2013;3(6):237–57. (In Russ)]
  2. Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95(5):548–67. doi: 10.1002/ajh.25791.
  3. Binder M, Nandakumar B, Rajkumar SV, et al. Mortality trends in multiple myeloma after the introduction of novel therapies in the United States. Leukemia. 2021;36(3):801–8. doi: 10.1038/s41375-021-01453-5.
  4. Chalopin T, Vallet N, Theisen O, et al. No survival improvement in patients with high-risk multiple myeloma harbouring del(17p) and/or t(4;14) over the two past decades. Br J Haematol. 2021;194(3):635–8. doi: 10.1111/bjh.17488.
  5. Aksenova AY, Zhuk AS, Lada AG, et al. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers. 2021;13(23):5949. doi: 10.3390/cancers13235949.
  6. Rasillo A, Tabernero MD, Sanchez ML, et al. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia. Cancer. 2003;97(3):601–9. doi: 10.1002/cncr.11100.
  7. Rajkumar SV, Kumar S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020;10(9):94. doi: 10.1038/s41408-020-00359-2.
  8. Walker BA, Wardell CP, Murison A, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997. doi: 10.1038/ncomms7997.
  9. Rustad EH, Yellapantula V, Leongamornlert D, et al. Timing the initiation of multiple myeloma. Nat Commun. 2020;11(1):1–14. doi: 10.1038/s41467-020-15740-9.
  10. Plowright EE, Li Z, Bergsagel PL, et al. Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood. 2000;95(3):992–8.
  11. Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 2004;3(11):1045–50. doi: 10.4161/cbt.3.11.1172.
  12. Ramlee MK, Wang J, Toh WX, Li S. Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene. Genes. 2016;7(8):50. doi: 10.3390/genes7080050.
  13. Marango J, Shimoyama M, Nishio H, et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood. 2008;111(6):3145–54. doi: 10.1182/blood-2007-06-092122.
  14. Xie Z, Chng WJ. MMSET: Role and therapeutic opportunities in multiple myeloma. Biomed Res Int. 2014;2014:636514. doi: 10.1155/2014/636514.
  15. Dutta AK, Fink JL, Grady JP, et al. Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia. 2019;33(2):457–68. doi: 10.1038/s41375-018-0206-x.
  16. Maura F, Bolli N, Rustad EH, et al. Moving from Cancer Burden to Cancer Genomics for Smoldering Myeloma: A Review. JAMA Oncol. 2020;6(3):425–32. doi: 10.1001/jamaoncol.2019.4659.
  17. Maura F, Bolli N, Angelopoulos N, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun. 2019;10(1):1–12. doi: 10.1038/s41467-019-11680-1.
  18. Konigsberg R, Ackermann J, Kaufmann H, et al. Deletions of chromosome 13q in monoclonal gammopathy of undetermined significance. Leukemia. 2000;14(11):1975–9. doi: 10.1038/sj.leu.2401909.
  19. Avet-Loiseau H, Li JY, Morineau N, et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood. 1999;94(8):2583–9.
  20. Shaughnessy J, Tian E, Sawyer J, et al. High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood. 2000;96(4):1505–11. doi: 10.1182/blood.v96.4.1505.
  21. Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15). doi: 10.1182/blood-2010-04-279596.
  22. Chavan SS, He J, Tytarenko R, et al. Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker. Blood Cancer J. 2017;7(2):e535. doi: 10.1038/bcj.2017.12.
  23. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132(6):587–97. doi: 10.1182/blood-2018-03-840132.
  24. Manier S, Salem KZ, Park J, et al. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100–13. doi: 10.1038/nrclinonc.2016.122.
  25. Lode L, Eveillard M, Trichet V, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95(11):1973–6. doi: 10.3324/haematol.2010.023697.
  26. Oliva S, De Paoli L, Ruggeri M, et al. A longitudinal analysis of chromosomal abnormalities in disease progression from MGUS/SMM to newly diagnosed and relapsed multiple myeloma. Ann Hematol. 2021;100(2):437–43. doi: 10.1007/s00277-020-04384-w.
  27. Lopez-Corral L, Gutierrez NC, Vidriales MB, et al. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin Cancer Res. 2011;17(7):1692–700. doi: 10.1158/1078-0432.CCR-10-1066.
  28. Mikulasova A, Smetana J, Wayhelova M, et al. Genomewide profiling of copy-number alteration in monoclonal gammopathy of undetermined significance. Eur J Haematol. 2016;97(6):568–75. doi: 10.1111/EJH.12774.
  29. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5(1):1–13. doi: 10.1038/ncomms3997.
  30. Walker BA, Boyle EM, Wardell CP, et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20. doi: 10.1200/JCO.2014.59.1503.
  31. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  32. Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myelome. Blood. 2007;109(8):3489–95. doi: 10.1182/blood-2006-08-040410.
  33. Jovanovic KK, Escure G, Demonchy J, et al. Deregulation and targeting of TP53 pathway in multiple myeloma. Front Oncol. 2019;8:665. doi: 10.3389/fonc.2018.00665.
  34. Walker BA, Mavrommatis K, Wardell CP, et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33(1):159–70. doi: 10.1038/s41375-018-0196-8.
  35. Chin M, Sive JI, Allen C, et al. Prevalence and timing of TP53 mutations in del(17p) myeloma and effect on survival. Blood Cancer J. 2017;7(9):e610. doi: 10.1038/bcj.2017.76.
  36. Corre J, Perrot A, Caillot D, et al. del(17p) without TP53 mutation confers a poor prognosis in intensively treated newly diagnosed patients with multiple myeloma. Blood. 2021;137(9):1192–5. doi: 10.1182/blood.2020008346.
  37. Martello M, Poletti A, Borsi E, et al. Clonal and subclonal TP53 molecular impairment is associated with prognosis and progression in multiple myeloma. Blood Cancer J. 2022;12(1):15. doi: 10.1038/S41408-022-00610-Y.
  38. Абрамова Т.В., Обухова Т.Н., Грибанова Е.О. и др. Структура и значение цитогенетических перестроек у больных множественной миеломой. Гематология и трансфузиология. 2021;66(1):54–67. doi: 10.35754/0234-5730-2021-66-1-54-67.
    [Abramova TV, Obukhova TN, Gribanova EO, et al. Structure and significance of cytogenetic abnormalities in patients with multiple myeloma. Russian journal of hematology and transfusiology. 2021;66(1):54–67. doi: 10.35754/0234-5730-2021-66-1-54-67. (In Russ)]
  39. Schmidt TM, Fonseca R, Usmani SZ. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 2021;11(4):1–11. doi: 10.1038/s41408-021-00474-8.
  40. Shi L, Wang S, Zangari M, et al. Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget. 2010;1(1):22–33. doi: 10.18632/ONCOTARGET.105.
  41. Schmidt TM, Barwick BG, Joseph N, et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 2019;9(12):94. doi: 10.1038/s41408-019-0254-0.
  42. Neben K, Lokhorst HM, Jauch A, et al. Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood. 2012;119(4):940–8. doi: 10.1182/blood-2011-09-379164.
  43. Minguela A, Vasco-Mogorron MA, Campillo JA, et al. Predictive value of 1q21 gain in multiple myeloma is strongly dependent on concurrent cytogenetic abnormalities and first-line treatment. Am J Cancer Res. 2021;11(9):4438.
  44. Giri S, Huntington SF, Wang R, et al. Chromosome 1 abnormalities and survival of patients with multiple myeloma in the era of novel agents. Blood Adv. 2020;4(10):2245–53. doi: 10.1182/bloodadvances.2019001425.
  45. Weinhold N, Salwender HJ, Cairns DA, et al. Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma – a meta-analysis of 2,596 trial patients. Haematologica. 2021;106(10):2754–8. doi: 10.3324/HAEMATOL.2021.278888.
  46. Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27 Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 2005;10(Suppl 1):117–26. doi: 10.1080/10245330512331390140.
  47. Hanamura I. Gain/amplification of chromosome arm 1q21 in multiple myeloma. Cancers. 2021;13(2):1–16. doi: 10.3390/cancers13020256.
  48. Mikulasova A, Wardell CP, Murison A, et al. The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma. Haematologica. 2017;102(9):1617–25. doi: 10.3324/haematol.2017.163766.
  49. Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: Incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108(5):1724–32. doi: 10.1182/blood-2006-03-009910.
  50. Greipp PR, Miguel JS, Dune BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20. doi: 10.1200/JCO.2005.04.242.
  51. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med. 1991;115(12):931–5. doi: 10.7326/0003-4819-115-12-931.
  52. Terpos E, Katodritou E, Roussou M, et al. High serum lactate dehydrogenase adds prognostic value to the international myeloma staging system even in the era of novel agents. Eur J Haematol. 2010;85(2):114–9. doi: 10.1111/J.1600-0609.2010.01466.X.
  53. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–21. doi: 10.1038/LEU.2009.174.
  54. Chng WJ, Dispenzieri A, Chim CS, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28(2):269–77. doi: 10.1038/LEU.2013.247.
  55. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: A report from international myeloma working group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267.
  56. Boyd KD, Ross FM, Chiecchio L, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26(2):349–55. doi: 10.1038/LEU.2011.204.
  57. Ravi G, Gonsalves WI. Current diagnosis, risk stratification and treatment paradigms in newly diagnosed multiple myeloma. Cancer Treat Res Commun. 2021;29:100444. doi: 10.1016/J.CTARC.2021.100444.
  58. Wallington-Beddoe CT, Mynott RL. Prognostic and predictive biomarker developments in multiple myeloma. J Hematol Oncol. 2021;14(1):1–15. doi: 10.1186/S13045-021-01162-7.
  59. Mikhael JR, Dingli D, Roy V, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo stratification of myeloma and risk-adapted therapy (mSMART) consensus guidelines 2013. Mayo Clin Proc. 2013;88(4):360–76. doi: 10.1016/J.MAYOCP.2013.01.019.
  60. Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc. 2007;82(3):323–41. doi: 10.4065/82.3.323.
  61. Cho HJ, Jung SH, Jo JC, et al. Development of a new risk stratification system for patients with newly diagnosed multiple myeloma using R-ISS and 18F-FDG PET/CT. Blood Cancer J. 2021;11(12):190. doi: 10.1038/S41408-021-00577-2.
  62. Galieni P, Travaglini F, Vagnoni D, et al. The detection of circulating plasma cells may improve the Revised International Staging System (R-ISS) risk stratification of patients with newly diagnosed multiple myeloma. Br J Haematol. 2021;193(3):542–50. doi: 10.1111/BJH.17118.
  63. Mellors PW, Binder M, Ketterling RP, et al. Metaphase cytogenetics and plasma cell proliferation index for risk stratification in newly diagnosed multiple myeloma. Blood Adv. 2020;4(10):2236. doi: 10.1182/BLOODADVANCES.2019001275.
  64. Terpos E, Katodritou E, Tsiftsakis E, et al. Cystatin-C is an independent prognostic factor for survival in multiple myeloma and is reduced by bortezomib administration. Haematologica. 2009;94(3):372–9. doi: 10.3324/HAEMATOL.2008.000638.
  65. Zhang J, Jiang Y, Guo D, et al. The role of cystatin C in multiple myeloma. Int J Lab Hematol. 2022;44(1):135–41. doi: 10.1111/IJLH.13695.
  66. Chen X, Liu L, Chen M, et al. A Five-Gene Risk Score Model for Predicting the Prognosis of Multiple Myeloma Patients Based on Gene Expression Profiles. Front Genet. 2021;12:785330. doi: 10.3389/FGENE.2021.785330/BIBTEX.
  67. Rangel-Pozzo A, Yu PLI, Lal S, et al. Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers. 2021;13(8):1969. doi: 10.3390/CANCERS13081969.
  68. D’Agostino M, Lahuerta J-J, Wester R, et al. A New Risk Stratification Model (R2-ISS) in Newly Diagnosed Multiple Myeloma: Analysis of Mature Data from 7077 Patients Collected By European Myeloma Network within Harmony Big Data Platform. Blood. 2020;136(Suppl 1):34–7. doi: 10.1182/blood-2020-137021.
  69. Abdallah NH, Binder M, Rajkumar SV, et al. A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer J. 2022;12(1):21. doi: 10.1038/S41408-022-00611-X.
  70. Dimopoulos MA, Moreau P, Terpos E, et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. HemaSphere. 2021;5(2):e528. doi: 10.1097/HS9.0000000000000528.
  71. Touzeau C, Maciag P, Amiot M, Moreau P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia. 2018;32(9):1899–907. doi: 10.1038/s41375-018-0223-9.
  72. Paner A, Patel P, Dhakal B. The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma. Blood Rev. 2020;41:100643. doi: 10.1016/j.blre.2019.100643.
  73. Greenberg AJ, Rajkumar S V, Therneau TM, et al. Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia. 2014;28(2):398–403. doi: 10.1038/LEU.2013.258.
  74. Abdallah N, Rajkumar SV, Greipp P, et al. Cytogenetic abnormalities in multiple myeloma: association with disease characteristics and treatment response. Blood Cancer J. 2020;10(8):1–9. doi: 10.1038/s41408-020-00348-5.
  75. Sato S, Kamata W, Okada S, Tamai Y. Clinical and prognostic significance of t(4;14) translocation in multiple myeloma in the era of novel agents. Int J Hematol. 2021;113(2):207–13. doi: 10.1007/S12185-020-03005-6.
  76. Shah MY, Martinez-Garcia E, Phillip JM, et al. MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents. Oncogene. 2016;35(45):5905–15. doi: 10.1038/onc.2016.116.
  77. Jaksic W, Trudel S, Chang H, et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol. 2005;23(28):7069–73. doi: 10.1200/JCO.2005.17.129.
  78. Avet-Loiseau H, Leleu X, Roussel M, et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol. 2010;28(30):4630–4. doi: 10.1200/JCO.2010.28.3945.
  79. An G, Xu Y, Shi L, et al. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica. 2014;99(2):353–9. doi: 10.3324/haematol.2013.088211.
  80. Caro J, Al Hadidi S, Usmani S, et al. How to Treat High-Risk Myeloma at Diagnosis and Relapse. Am Soc Clin Oncol Educ Book. 2021;41(41):291–309. doi: 10.1200/edbk_320105.
  81. Marneni N, Chakraborty R. Current Approach to Managing Patients with Newly Diagnosed High-Risk Multiple Myeloma. Curr Hematol Malig Rep. 2021;16(2):148–61. doi: 10.1007/S11899-021-00631-7.
  82. Rajkumar SV. Sequencing of myeloma therapy: Finding the right path among many standards. Hematol Oncol. 2021;39(Suppl 1):68–72. doi: 10.1002/HON.2848.
  83. Bal S, Giri S, Godby KN, Costa LJ. New regimens and directions in the management of newly diagnosed multiple myeloma. Am J Hematol. 2021;96(3):367–78. doi: 10.1002/AJH.26080.
  84. Ntanasis-Stathopoulos I, Gavriatopoulou M, Kastritis E, et al. Multiple myeloma: Role of autologous transplantation. Cancer Treat Rev. 2020;82:101929. doi: 10.1016/j.ctrv.2019.101929.
  85. Cavo M, Gay F, Beksac M, et al. Autologous haematopoietic stem-cell transplantation versus bortezomib–melphalan–prednisone, with or without bortezomib–lenalidomide–dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020;7(6):e456–e468. doi: 10.1016/S2352-3026(20)30099-5.
  86. Vaxman I, Visram A, Kapoor P, et al. Outcomes of multiple myeloma patients with del 17p undergoing autologous stem cell transplantation. Am J Hematol. 2021;96(1):E35–E38. doi: 10.1002/AJH.26023.
  87. Gagelmann N, Eikema DJ, de Wreede LC, et al. Upfront stem cell transplantation for newly diagnosed multiple myeloma with del(17p) and t(4;14): a study from the CMWP-EBMT. Bone Marrow Transplant. 2021;56(1):210–7. doi: 10.1038/S41409-020-01007-W.
  88. Srour SA, Saliba RM, Bashir Q, et al. Influence of Overlapping Genetic Abnormalities on Treatment Outcomes of Multiple Myeloma. Transplant Cell Ther. 2021;27(3):243.e1–243.e6. doi: 10.1016/j.jtct.2020.10.021.
  89. Croft J, Ellis S, Sherborne AL, et al. Copy number evolution and its relationship with patient outcome—an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial. Leukemia. 2021;35(7):2043–53. doi: 10.1038/s41375-020-01096-y.
  90. Perrot A, Lauwers-Cances V, Tournay E, et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 2019;37(19):1657–65. doi: 10.1200/JCO.18.00776.
  91. Shah V, Sherborne AL, Walker BA, et al. Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia. 2018;32(1):102–10. doi: 10.1038/LEU.2017.179.
  92. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5. doi: 10.1182/BLOOD-2011-11-390658.
  93. Chretien ML, Corre J, Lauwers-Cances V, et al. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood. 2015;126(25):2713–9. doi: 10.1182/blood-2015-06-650242.
  94. Hebraud B, Magrangeas F, Cleynen A, et al. Role of additional chromosomal changes in the prognostic value of t(4;14) and del(17p) in multiple myeloma: the IFM experience. Blood. 2015;125(13):2095–100. doi: 10.1182/BLOOD-2014-07-587964.
  95. Takamatsu H, Yamashita T, Kurahashi S, et al. Clinical Implications of t(11;14) in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant. 2019;25(3):474–9. doi: 10.1016/J.BBMT.2018.11.003.
  96. John L, Krauth MT, Podar K, Raab MS. Pathway-directed therapy in multiple myeloma. Cancers. 2021;13(7):1668. doi: 10.3390/cancers13071668.
  97. Leow CCY, Low MSY. Targeted therapies for multiple myeloma. J Pers Med. 2021;11(5):334. doi: 10.3390/jpm11050334.
  98. Goldman-Mazur S, Vesole DH, Jurczyszyn A. Clinical implications of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 2021;52(1):18–28. doi: 10.5603/AHP.2021.0004.
  99. Cardona-Benavides IJ, de Ramon C, Gutierrez NC. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells. 2021;10(2):336. doi: 10.3390/cells10020336.
  100. Mao XH, Zhuang JL, Zhao DD, et al. IgH translocation with undefined partners is associated with superior outcome in multiple myeloma patients. Eur J Haematol. 2020;105(3):326–34. doi: 10.1111/ejh.13440.
  101. Hassan H, Szalat R. Genetic predictors of mortality in patients with multiple myeloma. Appl Clin Genet. 2021;14:241–54. doi: 10.2147/TACG.S262866.
  102. Sessa M, Cavazzini F, Cavallari M, et al. Tangle of genomic aberrations drives multiple myeloma and correlates with clinical aggressiveness of the disease: a comprehensive review from a biological perspective to clinical trial results. Genes. 2020;11(12):1–24. doi: 10.3390/GENES11121453.
  103. Jackson GH, Pawlyn C, Cairns DA, et al. Carfilzomib, lenalidomide, dexamethasone, and cyclophosphamide (KRdc) as induction therapy for transplant-eligible, newly diagnosed multiple myeloma patients (Myeloma XI+): Interim analysis of an open-label randomised controlled trial. PLOS Med. 2021;18(1):e1003454. doi: 10.1371/JOURNAL.PMED.1003454.
  104. Qiang YW, Ye S, Chen Y, et al. MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood. 2016;128(25):2919–30. doi: 10.1182/BLOOD-2016-03-706077.
  105. Rajkumar VS. Multiple myeloma: selection of initial chemotherapy for symptomatic disease. Available from: https://www.uptodate.com/contents/multiple-myeloma-selection-of-initial-chemotherapy-for-symptomatic-disease (accessed 23.03.2022).
  106. Qiang YW, Ye S, Huang Y, et al. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma. BMC Cancer. 2018;18(1):1–13. doi: 10.1186/S12885-018-4602-4/FIGURES/6.
  107. Mateos MV, Martinez BP, Gonzalez-Calle V. High-risk multiple myeloma: how to treat at diagnosis and relapse? Hematology. 2021;2021(1):30–6. doi: 10.1182/HEMATOLOGY.2021000229.
  108. Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood. 2016;127(24):2955–62. doi: 10.1182/blood-2016-01-631200.
  109. Costa LJ, Usmani SZ. Defining and Managing High-Risk Multiple Myeloma: Current Concepts. J Natl Compr Canc Netw. 2020;18(12):1730–7. doi: 10.6004/JNCCN.2020.7673.
  110. Jurczyszyn A, Charlinski G, Suska A, Vesole DH. The importance of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 2021;52(4):361–70. doi: 10.5603/AHP.2021.0069.
  111. Garifullin A, Voloshin S, Shuvaev V, et al. Significance of Modified Risk Stratification Msmart 3.0 and Autologous Stem Cell Transplantation for Patients with Newly Diagnosed Multiple Myeloma. Blood. 2019;134(Suppl_1):5593. doi: 10.1182/BLOOD-2019-130092.

Фармакоэкономический анализ терапии CAR Т-клетками при диффузной В-крупноклеточной лимфоме и В-линейных острых лимфобластных лейкозах

И.В. Грибкова, А.А. Завьялов

ГБУ «НИИ организации здравоохранения и медицинского менеджмента ДЗМ», ул. Шарикоподшипниковская, д. 9, Москва, Российская Федерация, 115088

Для переписки: Ирина Владимировна Грибкова, канд. биол. наук, ул. Шарикоподшипниковская, д. 9, Москва, Российская Федерация, 115088; тел.: +7(916)078-73-90; e-mail: igribkova@yandex.ru

Для цитирования: Грибкова И.В., Завьялов А.А. Фармакоэкономический анализ терапии CAR Т-клетками при диффузной В-крупноклеточной лимфоме и В-линейных острых лимфобластных лейкозах. Клиническая онкогематология. 2022;15(2):205–12.

DOI: 10.21320/2500-2139-2022-15-2-205-212


РЕФЕРАТ

Генетически модифицированные Т-лимфоциты с химерными антигенными рецепторами (CAR T-клетки) представляют собой новую стратегию лечения пациентов с рецидивами или рефрактерным течением В-клеточных злокачественных новообразований. В 2017–2018 гг. два препарата CAR T-клеточной терапии: тисагенлеклейсел и аксикабтаген силолейсел — были одобрены Управлением по контролю за качеством пищевых продуктов и лекарственных средств США (FDA) и Европейским агентством по лекарственным средствам (EMA) для клинического применения у пациентов с рефрактерным острым лимфобластным лейкозом и рецидивами/рефрактерными В-клеточными лимфомами. К настоящему времени CAR Т-клеточная терапия все более становится неотъемлемой частью клинической практики благодаря своей высокой эффективности. Однако стоимость этого метода противоопухолевого воздействия чрезвычайно высока. Средняя стоимость тисагенлеклейсела составляет 475 000 долларов США ($), а аксикабтагена силолейсела — 373 000 $. Следует отметить, что это только цены на лекарственные препараты без учета других затрат, связанных с данным методом терапии. В работах 2018–2020 гг. группы исследователей предприняли попытки оценить затраты, связанные с CAR T-клеточной терапией. Цель настоящего обзора — анализ этих исследований, оценка общей стоимости терапии и структуры затрат, рассмотрение факторов, ведущих к увеличению затрат, обсуждение возможности повышения доступности технологии CAR-T в целом. Результаты показали, что в среднем общая стоимость терапии тисагенлеклейселом при В-клеточной лимфоме составила 515 150 $, аксикабтагеном силолейселом — 503 955 $. Стоимость терапии острого лимфобластного лейкоза составила 580 459 $. Основными факторами, влияющими на общую стоимость лечения, были цены на препараты CAR T-клеток, высокая степень тяжести нежелательных явлений и большая опухолевая нагрузка до инфузии CAR T-клеточного продукта. Признается, что в качестве основных возможностей повышения доступности терапии CAR T-клетками может служить понижение цены на препараты (например, за счет собственного производства на базе медицинского учреждения), дальнейшее совершенствование терапии с целью снизить ее токсичность, а также применение на ранних стадиях опухолевого заболевания.

Ключевые слова: В-клеточная лимфома, острый лимфобластный лейкоз, CAR T-клеточная терапия, химерный антигенный рецептор, тисагенлеклейсел, аксикабтаген силолейсел, затраты, обзор.

Получено: 29 октября 2021 г.

Принято в печать: 15 февраля 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.
  2. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/S1470-2045(14)71170-2.
  3. Roex G, Feys T, Beguin Y, et al. Chimeric Antigen Receptor-T-Cell Therapy for B-Cell Hematological Malignancies: An Update of the Pivotal Clinical Trial Data. Pharmaceutics. 2020;12(2):194. doi: 10.3390/pharmaceutics12020194.
  4. Zheng XH, Zhang XY, Dong QQ, et al. Efficacy and safety of chimeric antigen receptor-T cells in the treatment of B cell lymphoma: a systematic review and meta-analysis. Chin Med J (Engl). 2020;133(1):74–85. doi: 10.1097/CM9.0000000000000568.
  5. Ершов А.В., Демьянов Г.В., Насруллаева Д.А. и др. Новейшие тенденции в совершенствовании CAR-T-клеточной терапии: от лейкозов к солидным злокачественным новообразованиям. Российский журнал детской гематологии и онкологии. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95.
    [Ershov AV, Demyanov GV, Nasrullaeva DA, et al. The latest trends in improving CAR-T cell therapy: from leukemias to solid malignant neoplasms. Russian Journal of Pediatric Hematology and Oncology. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95. (In Russ)]
  6. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза: обзор литературы. Клиническая онкогематология. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230.
    [Gribkova IV, Zavyalov CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review. Clinical oncohematology. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230. (In Russ)]
  7. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360.
    [Gribkova IV, Zavyalov AA. Chimeric Antigen Receptor T-Cell Therapy for B-Cell Non-Hodgkin Lymphoma: Opportunities And Challenges. Voprosy onkologii. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360. (In Russ)]
  8. Orlowski RJ, Porter DL, Frey NV. The promise of chimeric antigen receptor T cells (CARTs) in leukaemia. Br J Haematol. 2017;177(1):13–26. doi: 10.1111/bjh.14475.
  9. Park JH, Riviere I, Gonen M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):449–59. doi: 10.1056/NEJMoa1709919.
  10. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48. doi: 10.1056/NEJMoa1709866.
  11. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017;377(26):2531–44. doi: 10.1056/NEJMoa1707447.
  12. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980.
  13. Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:31–42. doi: 10.1016/S1470-2045(18)30864-7.
  14. Bach PB, Giralt SA, Saltz LB. FDA Approval of Tisagenlecleucel: Promise and Complexities of a $475 000 Cancer Drug. JAMA. 2017;318(19):1861–2. doi: 10.1001/jama.2017.15218.
  15. Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119–28. doi: 10.1200/JCO.19.02104.
  16. de Lima Lopes G, Nahas GR. Chimeric antigen receptor T cells, a savior with a high price. Chin Clin Oncol. 2018;7(2):21. doi: 10.21037/cco.2018.04.02.
  17. Makita S, Imaizumi K, Kurosawa S, Tobinai K. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs Context. 2019;8:212567. doi: 10.7573/dic.212567.
  18. Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. doi: 10.3324/haematol.2019.229781.
  19. Lyman GH, Nguyen A, Snyder S, et al. Economic Evaluation of Chimeric Antigen Receptor T-Cell Therapy by Site of Care Among Patients With Relapsed or Refractory Large B-Cell Lymphoma. JAMA Netw Open. 2020;3(4):e202072. doi: 10.1001/jamanetworkopen.2020.2072.
  20. Lin JK, Muffly LS, Spinner MA, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Multiply Relapsed or Refractory Adult Large B-Cell Lymphoma. J Clin Oncol. 2019;37(24):2105–19. doi: 10.1200/JCO.18.02079.
  21. Harris AH, Hohmann S, Dolan C. Real-World Quality and Cost Burden of Cytokine Release Syndrome Requiring Tocilizumab or Steroids during CAR-T Infusion Encounter. Biol Blood Marrow Transplant. 2020;26(3):S312. doi: 10.1016/j.bbmt.2019.12.389.
  22. Hernandez I, Prasad V, Gellad WF. Total Costs of Chimeric Antigen Receptor T-Cell Immunotherapy. JAMA Oncol. 2018;4(7):994–6. doi: 10.1001/jamaoncol.2018.0977.
  23. Roth JA, Sullivan SD, Lin VW, et al. Cost-effectiveness of axicabtagene ciloleucel for adult patients with relapsed or refractory large B-cell lymphoma in the United States. J Med Econ. 2018;21(12):1238–45. doi: 10.1080/13696998.2018.1529674.
  24. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Cost-effectiveness Associated With Axicabtagene Ciloleucel vs Chemotherapy for Treatment of B-Cell Lymphoma. JAMA Netw Open. 2019;2(2):e190035. doi: 10.1001/jamanetworkopen.2019.0035.
  25. Sarkar RR, Gloude NJ, Schiff D, Murphy JD. Cost-Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Pediatric Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia. J Natl Cancer Inst. 2019;111(7):719–26. doi: 10.1093/jnci/djy193.
  26. Thielen FW, van Dongen-Leunis A, Arons AMM, et al. Cost-effectiveness of anti-CD19 chimeric antigen receptor T-cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. A societal view. Eur J Haematol. 2020;105(2):203–15. doi: 10.1111/ejh.13427.
  27. Yang H, Hao Y, Qi CZ, et al. Estimation of Total Costs in Pediatric and Young Adult Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia Receiving Tisagenlecleucel from a U.S. Hospital’s Perspective. J Manag Care Spec Pharm. 2020;26(8):971–80. doi: 10.18553/jmcp.2020.20052.
  28. Lin JK, Lerman BJ, Barnes JI, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Relapsed or Refractory Pediatric B-Cell Acute Lymphoblastic Leukemia. J Clin Oncol. 2018;36(32):3192–202. doi: 10.1200/JCO.2018.79.0642.
  29. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Value of Chimeric Antigen Receptor T-Cell Therapy for Pediatric Patients With Relapsed or Refractory Leukemia. JAMA Pediatr. 2018;172(12):1161–8. doi: 10.1001/jamapediatrics.2018.2530.
  30. Furzer J, Gupta S, Nathan PC, et al. Cost-effectiveness of Tisagenlecleucel vs Standard Care in High-risk Relapsed Pediatric Acute Lymphoblastic Leukemia in Canada. JAMA Oncol. 2020;6(3):393–401. doi: 10.1001/jamaoncol.2019.5909.
  31. Zhu F, Wei G, Zhang M, et al. Factors Associated with Costs in Chimeric Antigen Receptor T-Cell Therapy for Patients with Relapsed/Refractory B-Cell Malignancies. Cell Transplant. 2020;29:963689720919434. doi: 10.1177/0963689720919434.
  32. Heine R, Thielen FW, Koopmanschap M, et al. Health Economic Aspects of Chimeric Antigen Receptor T-cell Therapies for Hematological Cancers: Present and Future. Hemasphere. 2021;5(2):e524. doi: 10.1097/HS9.0000000000000524.
  33. Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11(1):41. doi: 10.1186/s13045-018-0593-5.
  34. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30. doi: 10.1182/blood-2016-04-703751.
  35. Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017;35(16):1803–13. doi: 10.1200/JCO.2016.71.3024.
  36. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95. doi: 10.1182/blood-2014-05-552729.
  37. Ran T, Eichmuller SB, Schmidt P, Schlander M. Cost of decentralized CAR T-cell production in an academic nonprofit setting. Int J Cancer. 2020;147(12):3438–45. doi: 10.1002/ijc.33156.
  38. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. doi: 10.1016/S0140-6736(20)31366-0.
  39. Benjamin R, Graham C, Yallop D, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet. 2020;396(10266):1885–94. doi: 10.1016/S0140-6736(20)32334-5.
  40. Pfeiffer A, Thalheimer FB, Hartmann S, et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol Med. 2018;10(11):e9158. doi: 10.15252/emmm.201809158.
  41. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5:254. doi: 10.3389/fphar.2014.00254.
  42. Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350(6258):aab4077. doi: 10.1126/science.aab4077.
  43. Mikkilineni L, Kochenderfer JN. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol. 2021;18(2):71–84. doi: 10.1038/s41571-020-0427-6.
  44. Strati P, Ahmed S, Furqan F, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–6. doi: 10.1182/blood.2020008865.
  45. Gauthier J, Hirayama AV, Hay KA, et al. Comparison of efficacy and toxicity of CD19-specific chimeric antigen receptor T-cells alone or in combination with ibrutinib for relapsed and/or refractory CLL. Blood. 2018;132(Suppl 1):299. doi: 10.1182/blood-2018-99-111061.
  46. Gill SI, Vides V, Frey NV, et al. Prospective clinical trial of anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia shows a high response rate. Blood. 2018;132(Suppl 1):298. doi: 10.1182/blood-2018-99-115418.

Искусственный интеллект в гематологии

Искусственный интеллект не заменит врача, однако врачи, использующие искусственный

интеллект, заменят тех, кто его не использует.

Dr. Bertalan Mesko, медицинский футурист


А.С. Лучинин

ФГБУН «Кировский НИИ гематологии и переливания крови ФМБА», ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027

Для переписки: Александр Сергеевич Лучинин, канд. мед. наук, ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027; тел.: +7(919)506-87-86; e-mail: glivec@mail.ru

Для цитирования: Лучинин А.С. Искусственный интеллект в гематологии. Клиническая онкогематология. 2022;15(1):16–27.

DOI: 10.21320/2500-2139-2022-15-1-16-27


РЕФЕРАТ

«Искусственный интеллект» — это общий термин, описывающий компьютерные технологии для решения задач, которые требуют применения интеллекта человека, например распознавание человеческого голоса или изображений. Большинство продуктов с использованием искусственного интеллекта, применяемых в здравоохранении, связано с машинным обучением — отраслью информатики и статистики, которая генерирует предсказательные или описательные модели путем обучения на основе данных, а не путем программирования четких правил. Машинное обучение получило широкое распространение в патоморфологии, радиологии, геномике и анализе данных электронных медицинских карт. С учетом имеющейся тенденции технологии искусственного интеллекта, вероятно, будут все больше интегрироваться в исследовательскую и практическую медицину, включая гематологию. Таким образом, искусственный интеллект и машинное обучение заслуживают внимания и понимания со стороны исследователей и клиницистов. В данном обзоре описываются важные терминологические понятия и основные концепции обозначенных технологий, а также приводятся примеры их практического использования в научной и практической работе врача-гематолога.

Ключевые слова: искусственный интеллект, машинное обучение, нейронная сеть.

Получено: 23 сентября 2021 г.

Принято в печать: 15 декабря 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Muhsen IN, Shyr D, Sung AD, Hashmi SK. Machine Learning Applications in the Diagnosis of Benign and Malignant Hematological Diseases. Clin Hematol Intern. 2021;3(1):13–20. doi: 10.2991/chi.k.201130.001.
  2. Radakovich N, Nagy M, Nazha A. Machine learning in haematological malignancies. Lancet Haematol. 2020;7(7):e541–e550. doi: 10.1016/S2352-3026(20)30121-6.
  3. Deo RC. Machine Learning in Medicine. Circulation. 2015;132(20):1920–30. doi: 10.1161/CIRCULATIONAHA.115.001593.
  4. Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236–46. doi: 10.1093/bib/bbx044.
  5. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. doi: 10.1038/s41591-018-0316-z.
  6. Komura D, Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Arch. 2019;475(2):131–8. doi: 10.1007/s00428-019-02594-w.
  7. Sha L, Osinski BL, Ho IY, et al. Multi-Field-of-View Deep Learning Model Predicts Nonsmall Cell Lung Cancer Programmed Death-Ligand 1 Status from Whole-Slide Hematoxylin and Eosin Images. J Pathol Inform. 2019;10(1):24. doi: 10.4103/jpi.jpi_24_19.
  8. Abramoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1(1):39. doi: 10.1038/s41746-018-0040-6.
  9. Benjamens S, Dhunnoo P, Mesko B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3(1):118. doi: 10.1038/s41746-020-00324-0.
  10. Shouval R, Fein JA, Savani B, et al. Machine learning and artificial intelligence in haematology. Br J Haematol. 2021;192(2):239–50. doi: 10.1111/bjh.16915.
  11. Shahid AH, Singh MP. Computational intelligence techniques for medical diagnosis and prognosis: problems and current developments. Biocybern Biomed Eng. 2019;39(3):638–72. doi: 10.1016/j.bbe.2019.05.010.
  12. Морозов С.П., Владзимирский А.В., Кляшторный В.Г. и др. Клинические испытания программного обеспечения на основе интеллектуальных технологий (лучевая диагностика). Лучшие практики лучевой и инструментальной диагностики. Препринт № ЦДТ-2019-1. М., 2019. 34 с.
    [Morozov SP, Vladzimirskii AV, Klyashtornyi VG, et al. Clinical acceptance of software based on artificial intelligence technologies (radiology). Preprint No. CDT-2019-1. Luchshie praktiki luchevoi i instrumental’noi diagnostiki. (Best practices in medical imaging.) Moscow; 2019. 34 (In Russ)]
  13. Shekelle PG, Shetty K, Newberry S, et al. Machine Learning Versus Standard Techniques for Updating Searches for Systematic Reviews: A Diagnostic Accuracy Study. Ann Intern Med. 2017;167(3):213–5. doi: 10.7326/L17-0124.
  14. Kimura K, Tabe Y, Ai T, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA. Sci Rep. 2019;9(1):13385. doi: 10.1038/s41598-019-49942-z.
  15. Wang Q, Bi S, Sun M, et al. Deep learning approach to peripheral leukocyte recognition. PLoS One. 2019;14(6):e0218808. doi: 10.1371/journal.pone.0218808.
  16. Hegde RB, Prasad K, Hebbar H, Singh BMK. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern Biomed Eng. 2019;39(2):382–92. doi: 10.1016/j.bbe.2019.01.005.
  17. Syrykh C, Abreu A, Amara N, et al. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. NPJ Digit Med. 2020;3(1):63. doi: 10.1038/s41746-020-0272-0.
  18. Achi HE, Belousova T, Chen L, et al. Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning. Ann Clin Lab Sci. 2019;49(2):153–60.
  19. Sheng B, Zhou M, Hua M, et al. A blood cell dataset for lymphoma classification using faster R-CNN. Biotechnol Biotechnol Equip. 2020;34(1):413–20. doi: 10.1080/13102818.2020.1765871.
  20. Xu L, Tetteh G, Lipkova J, et al. Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on (68)Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods. Contrast Media Mol Imaging. 2018;2018:1–11. doi: 10.1155/2018/2391925.
  21. Martinez-Martinez F, Kybic J, Lambert L, Meckova Z. Fully automated classification of bone marrow infiltration in low-dose CT of patients with multiple myeloma based on probabilistic density model and supervised learning. Comput Biol Med. 2016;71:57–66. doi: 10.1016/j.compbiomed.2016.02.001.
  22. Wang L, Zhao Z, Luo Y, et al. Classifying 2-year recurrence in patients with DLBCL using clinical variables with imbalanced data and machine learning methods. Comput Meth Program Biomed. 2020;196:105567. doi: 10.1016/j.cmpb.2020.105567.
  23. Biccler JL, Eloranta S, de Nully Brown P, et al. Optimizing Outcome Prediction in Diffuse Large B-Cell Lymphoma by Use of Machine Learning and Nationwide Lymphoma Registries: A Nordic Lymphoma Group Study. JCO Clin Cancer Inform. 2018;2:1–13. doi: 10.1200/CCI.18.00025.
  24. Guncar G, Kukar M, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):411. doi: 10.1038/s41598-017-18564-8.
  25. Breiman L. Random forests. Machine Learning. 2001;45:5–32. doi: 1023/A:1010933404324.
  26. Nazha A, Komrokji RS, Meggendorfer M, et al. A Personalized Prediction Model to Risk Stratify Patients with Myelodysplastic Syndromes. Blood. 2018;132(Suppl 1):793. doi: 10.1182/blood-2018-99-114774.
  27. Hu SB, Wong DJ, Correa A, et al. Prediction of Clinical Deterioration in Hospitalized Adult Patients with Hematologic Malignancies Using a Neural Network Model. PLoS One. 2016;11(8):e0161401. doi: 10.1371/journal.pone.0161401.
  28. Prochazka VK, Matustikova S, Furst T, et al. Bayesian Network Modelling As a New Tool in Predicting of the Early Progression of Disease in Follicular Lymphoma Patients. Blood. 2020;136(Suppl 1):20–1. doi: 10.1182/blood-2020-139830.
  29. Mahmood N, Shahid S, Bakhshi T, et al. Identification of significant risks in pediatric acute lymphoblastic leukemia (ALL) through machine learning (ML) approach. Med Biol Eng Comput. 2020;58(11):2631–40. doi: 10.1007/s11517-020-02245-2.
  30. Gandelman JS, Byrne MT, Mistry AM, et al. Machine learning reveals chronic graft-versus-host disease phenotypes and stratifies survival after stem cell transplant for hematologic malignancies. Haematologica. 2019;104(1):189–96. doi: 10.3324/haematol.2018.193441.
  31. Chen D, Goyal G, Go RS, et al. Improved Interpretability of Machine Learning Model Using Unsupervised Clustering: Predicting Time to First Treatment in Chronic Lymphocytic Leukemia. JCO Clin Cancer Inform. 2019;3:1–11. doi: 10.1200/CCI.18.00137.
  32. Coombes CE, Abrams ZB, Li S, et al. Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia. J Am Med Inform Assoc. 2020;27(7):1019–27. doi: 10.1093/jamia/ocaa060.
  33. Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2(1):69. doi: 10.1038/s41746-019-0148-3.
  34. Shouval R, Labopin M, Bondi O, et al. Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study. J Clin Oncol. 2015;33(28):3144–51. doi: 10.1200/JCO.2014.59.1339.
  35. Nazha A, Hu ZH, Wang T, et al. A Personalized Prediction Model for Outcomes after Allogeneic Hematopoietic Cell Transplant in Patients with Myelodysplastic Syndromes. Biol Blood Marrow Transplant. 2020;26(11):2139–46. doi: 10.1016/j.bbmt.2020.08.003.
  36. Bigorra L, Larriba I, Gutierrez-Gallego R. Machine learning algorithms for accurate differential diagnosis of lymphocytosis based on cell population data. Br J Haematol. 2019;184(6):1035–7. doi: 10.1111/bjh.15230.
  37. Nazha A, Sekeres MA, Bejar R, et al. Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients with Myelodysplastic Syndromes Using Artificial Intelligence. JCO Precis Oncol. 2019;3:1–11. doi: 10.1200/po.19.00119.
  38. Milgrom SA, Elhalawani H, Lee J, et al. A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma. Sci Rep. 2019;9(1):1322. doi: 10.1038/s41598-018-37197-z.
  39. Moraes LO, Pedreira CE, Barrena S, et al. A decision-tree approach for the differential diagnosis of chronic lymphoid leukemias and peripheral B-cell lymphomas. Comput Meth Program Biomed. 2019;178:85–90. doi: 10.1016/j.cmpb.2019.06.014.
  40. Ni W, Hu B, Zheng C, et al. Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine. Oncotarget. 2016;7(44):71915–21. doi: 10.18632/oncotarget.12430.
  41. Fuse K, Uemura S, Tamura S, et al. Patient-based prediction algorithm of relapse after allo-HSCT for acute Leukemia and its usefulness in the decision-making process using a machine learning approach. Cancer Med. 2019;8(11):5058–67. doi: 10.1002/cam4.2401.
  42. Goswami C, Poonia S, Kumar L, Sengupta D. Staging System to Predict the Risk of Relapse in Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation. Front Oncol. 2019;9:633. doi: 10.3389/fonc.2019.00633.
  43. Gal O, Auslander N, Fan Y, Meerzaman D. Predicting Complete Remission of Acute Myeloid Leukemia: Machine Learning Applied to Gene Expression. Cancer Inform. 2019;18:1–5. doi: 10.1177/1176935119835544.
  44. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020;471:61–71. doi: 10.1016/j.canlet.2019.12.007.
  45. Ubels J, Sonneveld P, van Beers EH, et al. Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects. Nat Commun. 2018;9(1):2943. doi: 10.1038/s41467-018-05348-5.
  46. Shain KH, Hart D, Silva AS, et al. Reinforcement Learning to Optimize the Treatment of Multiple Myeloma. Blood. 2019;134(Suppl_1):5511. doi: 10.1182/blood-2019-132234.
  47. Mateos MV, Blacklock H, Schjesvold F, et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e459–e469. doi: 10.1016/S2352-3026(19)30110-3.
  48. Liao JJZ, Farooqui MZH, Marinello P, et al. Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience. Contemp Clin Trials. 2020;99:106179. doi: 10.1016/j.cct.2020.106179.
  49. Третье мнение. AI для клинической лабораторной диагностики (электронный документ). Доступно по: https://thirdopinion.ai/ru#rec Ссылка активна на 06.10.2021.
    [Third Opinion. AI for clinical laboratory diagnostics (Internet). Available from: https://thirdopinion.ai/ru#rec354556522 (accessed 06.10.2021). (In Russ)]

Гистиоцитоз из клеток Лангерганса у взрослых: современные возможности терапии

В.Д. Латышев, Е.А. Лукина

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Виталий Дмитриевич Латышев, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: LatyshevVD@gmail.com

Для цитирования: Латышев В.Д., Лукина Е.А. Гистиоцитоз из клеток Лангерганса у взрослых: современные возможности терапии. Клиническая онкогематология. 2021;14(4):444–54.

DOI: 10.21320/2500-2139-2021-14-4-444-454


РЕФЕРАТ

Гистиоцитоз из клеток Лангерганса (ГКЛ) — крайне редкое заболевание, обусловленное тканевой инфильтрацией патологическими клетками, имеющими фенотипическое сходство с нормальными клетками Лангерганса. Стандартная терапия ГКЛ у взрослых до настоящего времени не разработана ввиду отсутствия достаточной доказательной базы для тех или иных методов лечения. В клинической практике находит применение как цитостатическое лечение, так и новые подходы с использованием ингибиторов сигнальных путей, вовлеченных в патогенез ГКЛ. Настоящий литературный обзор посвящен существующим на текущий момент методам терапии ГКЛ у взрослых пациентов и возможностям их применения в клинической практике.

Ключевые слова: гистиоцитоз из клеток Лангерганса, терапия гистиоцитозов, мутация BRAFV600E, MAPK.

Получено: 20 июля 2021 г.

Принято в печать: 23 сентября 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Лукина Е.А., Козловская А.С., Капланская И.Б., Мокеева Р.А. Гистиоцитоз X — Гистиоцитоз из клеток Лангерганса. Гематология и трансфузиология. 1990;35(9):10–5.
    [Lukina EA, Kozlovskaya AS, Kaplanskaya IB, Mokeeva RA. Histiocytosis X — Langerhans cell histiocytosis. Gematologiya i transfuziologiya. 1990;35(9):10–5. (In Russ)]
  2. Yu RC, Chu AC, Chu C, et al. Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet. 1994;343(8900):767–8. doi: 10.1016/S0140-6736(94)91842-2.
  3. Willman CL, Busque L, Griffith BB, et al. Langerhans’-Cell Histiocytosis (Histiocytosis X) — A Clonal Proliferative Disease. N Engl J Med. 1994;331(3):154–60. doi: 10.1056/NEJM199407213310303.
  4. Badalian-Very G, Vergilio J-A, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23. doi: 10.1182/blood-2010-04-279083.
  5. Braier J. Is Langerhans cell histiocytosis a neoplasia? Pediatr Blood Cancer. 2017;64(3):e26267. doi: 10.1002/pbc.26267.
  6. Egeler RM, Katewa S, Leenen PJM, et al. Langerhans cell histiocytosis is a neoplasm and consequently its recurrence is a relapse: In memory of Bob Arceci. Pediatr Blood Cancer. 2016;63(10):1704–12. doi: 10.1002/pbc.26104.
  7. Collin M, Bigley V, McClain KL, et al. Cell(s) of Origin of Langerhans Cell Histiocytosis. Hematol Oncol Clin North Am. 2015;29(5):825–38. doi: 10.1016/j.hoc.2015.06.003.
  8. Allen CE, Beverley PCL, Collin M, et al. The coming of age of Langerhans cell histiocytosis. Nat Immunol. 2020;21(1):1–7. doi: 10.1038/s41590-019-0558-z.
  9. Allen CE, Merad M, McClain KL. Langerhans-Cell Histiocytosis. N Engl J Med. 2018;379(9):856–68. doi: 10.1056/NEJMra1607548.
  10. Girschikofsky M, Arico M, Castillo D, et al. Management of adult patients with Langerhans cell histiocytosis: recommendations from an expert panel on behalf of Euro-Histio-Net. Orphanet J Rare Dis. 2013;8(1):72. doi: 10.1186/1750-1172-8-72.
  11. Key SJ, O’Brien CJ, Silvester KC, et al. Eosinophilic granuloma: resolution of maxillofacial bony lesions following minimal intervention. Report of three cases and a review of the literature. J Cranio-Maxillofac Surg. 2004;32(3):170–5. doi: 10.1016/j.jcms.2004.01.004.
  12. Namai T, Yusa H, Yoshida H. Spontaneous remission of a solitary eosinophilic granuloma of the mandible after biopsy: A case report. J Oral Maxillofac Surg. 2001;59(12):1485–7. doi: 10.1053/joms.2001.28290.
  13. Esen A, Dolanmaz D, Kalayci A, et al. Treatment of localized Langerhans’ cell histiocytosis of the mandible with intralesional steroid injection: report of a case. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2010;109(2):e53–8. doi: 10.1016/j.tripleo.2009.10.015.
  14. Watzke IM, Millesi W, Kermer C, et al. Multifocal eosinophilic granuloma of the jaw: Long-term follow-up of a novel intraosseous corticoid treatment for recalcitrant lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2000;90(3):317–22. doi: 10.1067/moe.2000.107535.
  15. Almuzayyen A, Elhassan W, Alabbadi M. Intralesional triamcinolone for treating mandibular Langerhans cell histiocytosis: A case report and literature review. Saudi J Med Med Sci. 2019;7(1):47. doi: 10.4103/sjmms.sjmms_84_17.
  16. Gadner H, Minkov M, Grois N, et al. Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis. Blood. 2013;121(25):5006–14. doi: 10.1182/blood-2012-09-455774.
  17. Minkov M. Multisystem Langerhans Cell Histiocytosis in Children. Pediatr Drugs. 2011;13(2):75–86. doi: 10.2165/11538540-000000000-00000.
  18. Cantu MA, Lupo PJ, Bilgi M, et al. Optimal Therapy for Adults with Langerhans Cell Histiocytosis Bone Lesions. PLoS One. 2012;7(8):e43257. doi: 10.1371/journal.pone.0043257.
  19. Tazi A, Lorillon G, Haroche J, et al. Vinblastine chemotherapy in adult patients with langerhans cell histiocytosis: a multicenter retrospective study. Orphanet J Rare Dis. 2017;12(1):95. doi: 10.1186/s13023-017-0651-z.
  20. Donadieu J, Bernard F, van Noesel M, et al. Cladribine and cytarabine in refractory multisystem Langerhans cell histiocytosis: results of an international phase 2 study. Blood. 2015;126(12):1415–23. doi: 10.1182/blood-2015-03-635151.
  21. Saven A, Figueroa ML, Piro LD, et al. 2-Chlorodeoxyadenosine to Treat Refractory Histiocytosis X. N Engl J Med. 1993;329(10):734–5. doi: 10.1056/NEJM199309023291013.
  22. Saven A, Burian C. Cladribine Activity in Adult Langerhans-Cell Histiocytosis. Blood. 1999;93(12):4125–30. doi: 10.1182/blood.V93.12.4125.
  23. Adam Z, Szturz P, Vanicek J, et al. Cladribine (2-chlorodeoxyadenosine) in frontline chemotherapy for adult Langerhans cell histiocytosis: A single-center study of seven cases. Acta Oncol (Madr). 2013;52(5):994–1001. doi: 10.3109/0284186X.2012.716164.
  24. Allen CE, Ladisch S, McClain KL. How I treat Langerhans cell histiocytosis. Blood. 2015;126(1):26–35. doi: 10.1182/blood-2014-12-569301.
  25. Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Jt Bone Spine. 2019;86(3):301–7. doi: 10.1016/j.jbspin.2018.07.004.
  26. Steen AE, Steen KH, Bauer R, et al. Successful treatment of cutaneous Langerhans cell histiocytosis with low-dose methotrexate. Br J Dermatol. 2001;145(1):137–40. doi: 10.1046/j.1365-2133.2001.04298.x.
  27. Cao X, Li J, Zhao A, et al. Methotrexate and Cytarabine for Adult Patients with Newly Diagnosed Langerhans Cell Histiocytosis: A Single Arm, Single Center, Prospective Phase 2 Study. Blood. 2019;134(Suppl_1):294. doi: 10.1182/blood-2019-122220.
  28. Derenzini E, Stefoni V, Pellegrini C, et al. High efficacy of the MACOP-B regimen in the treatment of adult Langerhans cell histiocytosis, a 20 year experience. BMC Cancer. 2015;15(1):879. doi: 10.1186/s12885-015-1903-8.
  29. Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem. 2017;162(3):145–54. doi: 10.1093/jb/mvx048.
  30. Ducreux M, Chamseddine A, Laurent-Puig P, et al. Molecular targeted therapy of BRAF-mutant colorectal cancer. Ther Adv Med Oncol. 2019;11:175883591985649. doi: 10.1177/1758835919856494.
  31. Falini B, Martelli MP, Tiacci E. BRAF V600E mutation in hairy cell leukemia: from bench to bedside. Blood. 2016;128(15):1918–27. doi: 10.1182/blood-2016-07-418434.
  32. Emile J-F, Abla O, Fraitag S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127(22):2672–81. doi: 10.1182/blood-2016-01-690636.
  33. Крылов А.С., Долгушин М.Б., Рыжков А.Д. и др. Болезнь Эрдгейма–Честера. Обзор литературы и клинический случай. Онкогематология. 2020;15(2):61–75. doi: 10.17650/1818-8346-2020-15-2-61-75.
    [Krylov AS, Dolgushin MB, Ryzhkov AD, et al. Erdheim-Chester disease. Literature review and clinical case. Oncohematology. 2020;15(2):61–75. doi: 10.17650/1818-8346-2020-15-2-61-75. (In Russ)]
  34. Chakraborty R, Burke TM, Hampton OA, et al. Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood. 2016;128(21):2533–7. doi: 10.1182/blood-2016-08-733790.
  35. Diamond EL, Subbiah V, Lockhart AC, et al. Vemurafenib for BRAF V600–Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis. JAMA Oncol. 2018;4(3):384. doi: 10.1001/jamaoncol.2017.5029.
  36. Haroche J, Cohen-Aubart F, Emile J-F, et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood. 2013;121(9):1495–500. doi: 10.1182/blood-2012-07-446286.
  37. Ruan G, Goyal G, Abeykoon JP, et al. Low-Dose BRAF-Inhibitors in the Treatment of Histiocytic Disorders with the BRAF-V600E Mutation. Blood. 2019;134(Suppl_1):5895. doi: 10.1182/blood-2019-124891.
  38. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N Engl J Med. 2012;367(18):1694–703. doi: 10.1056/NEJMoa1210093.
  39. Papapanagiotou M, Griewank KG, Hillen U, et al. Trametinib-Induced Remission of an MEK1-Mutated Langerhans Cell Histiocytosis. JCO Precis Oncol. 2017;1:1–5. doi: 10.1200/PO.16.00070.
  40. Lorillon G, Jouenne F, Baroudjian B, et al. Response to Trametinib of a Pulmonary Langerhans Cell Histiocytosis Harboring a MAP2K1 Deletion. Am J Respir Crit Care Med. 2018;198(5):675–8. doi: 10.1164/rccm.201802-0275LE.
  41. Sullivan RJ, Infante JR, Janku F, et al. First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discov. 2018;8(2):184–95. doi: 10.1158/2159-8290.CD-17-1119.
  42. Smalley I, Smalley KSM. ERK Inhibition: A New Front in the War against MAPK Pathway–Driven Cancers? Cancer Discov. 2018;8(2):140–2. doi: 10.1158/2159-8290.CD-17-1355.
  43. Sosman MC. Xanthomatosis. J Am Med Assoc. 1932;98(2):110. doi: 10.1001/jama.1932.02730280018005.
  44. Kriz J, Eich H, Bruns F, et al. Radiotherapy in Langerhans cell histiocytosis – a rare indication in a rare disease. Radiat Oncol. 2013;8(1):233. doi: 10.1186/1748-717X-8-233.
  45. Olschewski T, Seegenschmiedt MH. Radiotherapy of Langerhans’ Cell Histiocytosis. Strahlenther Onkol. 2006;182(11):629–34. doi: 10.1007/s00066-006-1630-9.
  46. Greenberger JS, Crocker AC, Vawter G, et al. Results of Treatment of 127 Patients with Systemic Histiocytosis (Letterer-Siwe Syndrome, Schuller-Christian Syndrome and Multifocal Eosinophilic Granuloma). Medicine (Baltimore). 1981;60(5):311–38. doi: 10.1097/00005792-198109000-00001.
  47. Furudate S, Fujimura T, Kambayashi Y, et al. Successful Treatment of Adult Onset Langerhans Cell Histiocytosis with Bi-weekly Administration of Pegylated Interferon-α. Acta Derm Venereol. 2014;94(5):611–2. doi: 10.2340/00015555-1807.
  48. El-Safadi S, Dreyer T, Oehmke F, et al. Management of adult primary vulvar Langerhans cell histiocytosis: review of the literature and a case history. Eur J Obstet Gynecol Reprod Biol. 2012;163(2):123–8. doi: 10.1016/j.ejogrb.2012.03.010.
  49. Ibrahim IF, Naina HVK. Treatment of recurrent Langerhans cell histiocytosis of the vulva with lenalidomide. J Clin Oncol. 2013;31(15_suppl):e16555. doi: 10.1200/jco.2013.31.15_suppl.e16555.
  50. Лукина Е.А., Кузнецов В.П., Беляев Д.Л. и др. Лечение гистиоцитоза Х (гистиоцитоз из клеток Лангерганса) препаратами α-интерферона. Терапевтический архив. 1993;11(65):67–70.
    [Lukina EA, Kuznetsov VP, Belyaev DL, et al. The treatment of histiocytosis X (Langerhans-cell histiocytosis) with alpha-interferon preparations. Terapevticheskii arkhiv. 1993;11(65):67–70. (In Russ)]
  51. Szturz P, Adam Z, Rehak Z, et al. Lenalidomide proved effective in multisystem Langerhans cell histiocytosis. Acta Oncol (Madr). 2012;51(3):412–5. doi: 10.3109/0284186X.2011.631581.
  52. Zinn DJ, Grimes AB, Lin H, et al. Hydroxyurea: a new old therapy for Langerhans cell histiocytosis. Blood. 2016;128(20):2462–5. doi: 10.1182/blood-2016-06-721993.
  53. Fleisch H. Bisphosphonates: Mechanisms of Action. Endocr Rev. 1998;19(1):80–100. doi: 10.1210/edrv.19.1.0325.
  54. Sivendran S, Harvey H, Lipton A, et al. Treatment of Langerhans cell histiocytosis bone lesions with zoledronic acid: a case series. Int J Hematol. 2011;93(6):782–6. doi: 10.1007/s12185-011-0839-2.
  55. Lebret T, Casas A, Cavo M, et al. The use of bisphosphonates in the management of bone involvement from solid tumours and haematological malignancies – a European survey. Eur J Cancer Care (Engl). 2017;26(4):e12490. doi: 10.1111/ecc.12490.
  56. Montella L, Merola C, Merola G, et al. Zoledronic acid in treatment of bone lesions by Langerhans cell histiocytosis. J Bone Miner Metab. 2009;27(1):110–3. doi: 10.1007/s00774-008-0001-2.
  57. Elomaa I, Blomqvist C, Porkka L, et al. Experiences of clodronate treatment of multifocal eosinophilic granuloma of bone. J Intern Med. 1989;225(1):59–61. doi: 10.1111/j.1365-2796.1989.tb00038.x.
  58. Arzoo K, Sadeghi S, Pullarkat V. Pamidronate for Bone Pain from Osteolytic Lesions in Langerhans’-Cell Histiocytosis. N Engl J Med. 2001;345(3):225. doi: 10.1056/NEJM200107193450318.
  59. Weitzman R, Sauter N, Eriksen EF, et al. Critical review: Updated recommendations for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in cancer patients—May 2006. Crit Rev Oncol Hematol. 2007;62(2):148–52. doi: 10.1016/j.critrevonc.2006.12.005.
  60. Makras P, Tsoli M, Anastasilakis AD, et al. Denosumab for the treatment of adult multisystem Langerhans cell histiocytosis. Metabolism. 2017;69:107–11. doi: 10.1016/j.metabol.2017.01.004.
  61. Pan Y, Xi R, Wang C, et al. Autologous hematopoietic stem cell transplantation for efficient treatment of multisystem, high-risk, BRAF V600E-negative Langerhans cell histiocytosis. J Int Med Res. 2019;47(9):4522–9. doi: 10.1177/0300060519864807.
  62. Braier J, Rosso D, Pollono D, et al. Symptomatic Bone Langerhans Cell Histiocytosis Treated at Diagnosis or After Reactivation With Indomethacin Alone. J Pediatr Hematol Oncol. 2014;36(5):e280–е284. doi: 10.1097/MPH.0000000000000165001.
  63. gov [Internet]. LCH-IV, International Collaborative Treatment Protocol for Children and Adolescents With Langerhans Cell Histiocytosis. Identifier NCT02205762. Available from: https://clinicaltrials.gov/ct2/show/NCT02205762 (accessed 21.07.2021).
  64. Kurtulmus N, Mert M, Tanakol R, et al. The pituitary gland in patients with Langerhans cell histiocytosis: a clinical and radiological evaluation. Endocrine. 2015;48(3):949–56. doi: 10.1007/s12020-014-0408-6.
  65. Kaltsas GA, Powles TB, Evanson J, et al. Hypothalamo-Pituitary Abnormalities in Adult Patients with Langerhans Cell Histiocytosis: Clinical, Endocrinological, and Radiological Features and Response to Treatment. J Clin Endocrinol Metab. 2000;85(4):1370–6. doi: 10.1210/jcem.85.4.6501.
  66. Abla O, Janka G, eds. Histiocytic Disorders. Cham: Springer International Publishing; 2018. doi: 10.1007/978-3-319-59632-7.
  67. Hutter C, Minkov M. Insights into the pathogenesis of Langerhans cell histiocytosis: the development of targeted therapies. ImmunoTarg Ther. 2016;5:81–91. doi: 10.2147/itt.s91058.

 

 

Молекулярное профилирование и мониторинг минимальной остаточной болезни у больных множественной миеломой: обзор литературы

А.В. Семьянихина1,2, Е.Э. Толстых1

1 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

2 ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова», ул. Москворечье, д. 1, Москва, Российская Федерация, 115522

Для переписки: Александра Владимировна Семьянихина, канд. мед. наук, Каширское ш., д. 23, Moсква, Российская Федерация, 115478; тел.: +7(926)371-21-56; e-mail: alexandra_silina@mail.ru

Для цитирования: Семьянихина А.В., Толстых Е.Э. Молекулярное профилирование и мониторинг минимальной остаточной болезни у больных множественной миеломой: обзор литературы. Клиническая онкогематология. 2021;14(4):436–43.

DOI: 10.21320/2500-2139-2021-14-4-436-443


РЕФЕРАТ

Персонализированный подход выступает многообещающим инструментом в терапии злокачественных новообразований (ЗНО). Достижение успехов и оценка преимуществ такого подхода были значительно форсированы внедрением технологий секвенирования нового поколения, позволяющих получать полную информацию о состоянии генома и транскриптома опухоли с выявлением потенциальных биомаркеров и мишеней для направленного лекарственного воздействия. Несмотря на экспоненциальный рост секвенированных опухолевых геномов, ряд ЗНО остается вне активной фазы клинических исследований при очевидных и растущих потребностях в оптимизации существующих схем лечения. Одной из таких патологий является множественная миелома (ММ). Значительные достижения в диагностике и лечении ММ позволили существенно повысить показатели выживаемости при этой злокачественной опухоли. Однако исключить ММ из списка неизлечимых заболеваний пока не удается. ММ остается неоплазией, требующей разработки и внедрения новых лечебных подходов, большинство из которых будет базироваться на фено- и генотипических особенностях опухолевых клеток. Настоящий обзор посвящен современному состоянию изучения молекулярно-генетического профиля ММ, мониторинга минимальной остаточной болезни (МОБ), а также возможностей секвенирования нового поколения для диагностики, прогноза, оценки МОБ и поиска предикторов с целью оптимизации противоопухолевого лечения.

Ключевые слова: множественная миелома, секвенирование нового поколения, минимальная остаточная болезнь.

Получено: 21 мая 2021 г.

Принято в печать: 29 августа 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition. Lyon: IARC Press; 2017. 592 p.
  2. Brigle K, Rogers B. Pathobiology and Diagnosis of Multiple Myeloma. Semin Oncol Nurs. 2017;33(3):225–36. doi: 10.1016/j.soncn.2017.05.012.
  3. Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol Oncol. 2016;9(1):52. doi: 10.1186/s13045-016-0282-1.
  4. Castaneda O, Baz R. Multiple Myeloma Genomics – A Concise Review. Acta Med Acad. 2019;48(1):57–67. doi: 10.5644/ama2006-124.242.
  5. Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3(1):17046. doi: 10.1038/nrdp.2017.46.
  6. Поддубная И.В., Савченко В.Г., Каприн А.Д. Клинические рекомендации. Множественная миелома. М., 2020. 222 с.
    [Poddubnaya IV, Savchenko VG, Kaprin AD. Klinicheskie rekomendatsii. Mnozhestvennaya mieloma. (Clinical guidelines. Multiple myeloma.) Moscow; 2020. 222 p. (In Russ)]
  7. Bolli N, Genuardi E, Ziccheddu B, et al. Next-Generation Sequencing for Clinical Management of Multiple Myeloma: Ready for Prime Time? Front Oncol. 2020;25(10):a189. doi: 10.3389/fonc.2020.00189.
  8. Chng WJ, Van Wier SA, Ahmann GJ, et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood. 2005;106(6):2156–61. doi: 10.1182/blood-2005-02-0761.
  9. Lai JL, Zandecki M, Mary JY, et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood. 1995;85(9):2490–7. doi: 10.1182/blood.v85.9.2490.bloodjournal8592490.
  10. Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–48. doi: 10.1038/nrc3257.
  11. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5. doi: 10.1182/blood-2011-11-390658.
  12. Kumar SK, Rajkumar SV. The multiple myelomas – current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15(7):409–21. doi: 10.1038/s41571-018-0018-y.
  13. Binder M, Rajkumar SV, Ketterling RP, et al. Prognostic implications of abnormalities of chromosome 13 and the presence of multiple cytogenetic high-risk abnormalities in newly diagnosed multiple myeloma. Blood Cancer J. 2017;7(9):e600. doi: 10.1038/bcj.2017.83.
  14. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–21. doi: 10.1038/leu.2009.174.
  15. Bergsagel PL, Kuehl WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106(1):296–303. doi: 10.1182/blood-2005-01-0034.
  16. Kuiper R, van Duin M, van Vliet MH, et al. Prediction of high- and low-risk multiple myeloma based on gene expression and the International Staging System. Blood. 2015;126(17):1996–2004. doi: 10.1182/blood-2015-05-644039.
  17. Shaughnessy JD Jr, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6):2276–84. doi: 10.1182/blood-2006-07-038430.
  18. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–72. doi: 10.1038/nature09837.
  19. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33. doi: 10.1056/NEJMoa1200710.
  20. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  21. Raab MS, Lehners N, Xu J, et al. Spatially divergent clonal evolution in multiple myeloma: overcoming resistance to BRAF inhibition. Blood. 2016;127(17):2155–7. doi: 10.1182/blood-2015-12-686782.
  22. Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120(5):1067–76. doi: 10.1182/blood-2012-01-405985.
  23. Zhao S, Choi M, Heuck C, et al. Serial exome analysis of disease progression in premalignant gammopathies. Leukemia. 2014;28(7):1548–52. doi: 10.1038/leu.2014.59.
  24. Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28(2):384–90. doi: 10.1038/leu.2013.199.
  25. Miller A, Asmann Y, Cattaneo L, et al. High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple myeloma. Blood Cancer J. 2017;7(9):e612. doi: 10.1038/bcj.2017.94.
  26. Benson DM Jr. Checkpoint inhibition in myeloma. Hematology Am Soc Hematol Educ Program. 2016;2016(1):528–33. doi: 10.1182/asheducation-2016.1.528.
  27. Walker BA, Boyle EM, Wardell CP, et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20. doi: 10.1200/JCO.2014.59.1503.
  28. Mailankody S, Kazandjian D, Korde N, et al. Baseline mutational patterns and sustained MRD negativity in patients with high-risk smoldering myeloma. Blood Adv. 2017;1(22):1911–8. doi: 10.1182/bloodadvances.2017005934.
  29. Manier S, Sacco A, Leleu X, et al. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012;2012:1–5. doi: 10.1155/2012/157496.
  30. Misund K, Keane N, Stein CK, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34(1):322–6. doi: 10.1038/s41375-019-0543-4.
  31. Sive JI, Feber A, Smith D, et al. Global hypomethylation in myeloma is associated with poor prognosis. Br J Haematol. 2016;172(3):473–5. doi: 10.1111/bjh.13506.
  32. Bollati V, Fabris S, Pegoraro V, et al. Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis. 2009;30(8):1330–5. doi: 10.1093/carcin/bgp149.
  33. Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. doi: 10.1038/nrc1840.
  34. Van Beers EH, van Vliet MH, Kuiper R, et al. Prognostic Validation of SKY92 and Its Combination With ISS in an Independent Cohort of Patients With Multiple Myeloma. Clin Lymphoma Myel Leuk. 2017;17(9):555–62. doi: 10.1016/j.clml.2017.06.020.
  35. Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. 2008;112(10):4017–23. doi: 10.1182/blood-2008-05-159624.
  36. Paiva B, Martinez-Lopez J, Vidriales MB, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol. 2011;29(12):1627–33. doi: 10.1200/JCO.2010.33.1967.
  37. Paiva B, Gutierrez NC, Rosinol L, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. 2012;119(3):687–91. doi: 10.1182/blood-2011-07-370460.
  38. Munshi NC, Avet-Loiseau H, Rawstron AC, et al. Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis. JAMA Oncol. 2017;3(1):28–35. doi: 10.1001/jamaoncol.2016.3160.
  39. Gambella M, Omede P, Spada S, et al. Minimal residual disease by flow cytometry and allelic-specific oligonucleotide real-time quantitative polymerase chain reaction in patients with myeloma receiving lenalidomide maintenance: A pooled analysis. Cancer. 2019;125(5):750–60. doi: 10.1002/cncr.31854.
  40. Perrot A, Lauwers-Cances V, Corre J, et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood. 2018;132(23):2456–64. doi: 10.1182/blood-2018-06-858613.
  41. Mateos MV, Dimopoulos MA, Cavo M, et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N Engl J Med. 2018;378(6):518–28. doi: 10.1056/NEJMoa1714678.
  42. Langerak AW, Groenen PJ, Bruggemann M, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159–71. doi: 10.1038/leu.2012.246.
  43. Van der Velden VH, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604–11. doi: 10.1038/sj.leu.2404586.
  44. Corradini P, Voena C, Tarella C, et al. Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol. 1999;17(1):208–15. doi: 10.1200/JCO.1999.17.1.208.
  45. Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365–72.
  46. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9. doi: 10.1182/blood-2014-01-550020.
  47. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346. doi: 10.1016/S1470-2045(16)30206-6.
  48. Lohr JG, Kim S, Gould J, et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med. 2016;8(363):363ra147. doi: 10.1126/scitranslmed.aac7037.
  49. Mishima Y, Paiva B, Shi J, et al. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Rep. 2017;19(1):218–24. doi: 10.1016/j.celrep.2017.03.025.
  50. Manier S, Park J, Capelletti M, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691. doi: 10.1038/s41467-018-04001-5.
  51. Zamagni E, Nanni C, Mancuso K, et al. PET/CT Improves the Definition of Complete Response and Allows to Detect Otherwise Unidentifiable Skeletal Progression in Multiple Myeloma. Clin Cancer Res. 2015;21(19):4384–90. doi: 10.1158/1078-0432.CCR-15-0396.
  52. Паива Б., Видриалес М.Б., Алмейда Х. и др. Оценка эффекта лечения при множественной миеломе: клиническое значение мониторинга МОЗ. Иммунология гемопоэза. 2012;10(1):34–77.
    [Paiva B, Vidriales MB, Almeida J, et al. Treatment response assessment in multiple myeloma: clinical significance of MRD monitoring. Immunologiya gemopoeza. 2012;10(1):34–77. (In Russ)]
  53. Kumar SK. Targeted Management Strategies in Multiple Myeloma. Cancer J. 2019;25(1):59–64. doi: 10.1097/PPO.0000000000000353.
  54. Multiple Myeloma Research Consortium. Myeloma-Developing Regimens Using Genomics (MyDRUG). Available from: https://clinicaltrials.gov/ct2/show/NCT03732703 (accessed 2.06.2021).

Биологические механизмы сохранения глубокого молекулярного ответа при хроническом миелолейкозе после отмены ингибиторов тирозинкиназ

Е.Ю. Челышева, М.А. Гурьянова, А.Г. Туркина

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Екатерина Юрьевна Челышева, канд. мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: denve@bk.ru

Для цитирования: Челышева Е.Ю., Гурьянова М.А., Туркина А.Г. Биологические механизмы сохранения глубокого молекулярного ответа при хроническом миелолейкозе после отмены ингибиторов тирозинкиназ. Клиническая онкогематология. 2021;14(4):427–35.

DOI: 10.21320/2500-2139-2021-14-4-427-435


РЕФЕРАТ

Возможность наблюдения без лечения у пациентов с хроническим миелолейкозом (ХМЛ) в эру ингибиторов тирозинкиназ (ИТК) остается актуальным вопросом. В клинических исследованиях по отмене ИТК при стабильном глубоком молекулярном ответе показана вероятность сохранения молекулярной ремиссии у 40–60 % больных. Сохранение ремиссии без лечения (РБЛ) даже при персистировании остаточных лейкозных клеток свидетельствует о том, что существуют особые, биологически обусловленные механизмы контроля пролиферации опухолевых клеток, не зависящие от BCR-ABL-киназной активности. Поиск факторов, которые определяют различия кинетики остаточного лейкозного клона после отмены ИТК, — важная задача для понимания основ РБЛ как нового биологического явления. В обзоре представлены сведения мировой литературы, касающиеся изучения иммунных, генетических и других биологических механизмов, лежащих в основе контроля минимальной остаточной болезни после отмены ИТК у больных ХМЛ.

Ключевые слова: хронический миелолейкоз, ингибиторы тирозинкиназ, ремиссия без лечения, глубокий молекулярный ответ, минимальная остаточная болезнь.

Получено: 10 мая 2021 г.

Принято в печать: 23 августа 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Bower H, Bjorkholm M, Dickman PW, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016;34(24):2851–7. doi: 10.1200/JCO.2015.66.2866.
  2. Cross NCP, White HE, Colomer D, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29(5):999–1003. doi: 10.1038/leu.2015.29.
  3. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. doi: 10.1038/s41375-020-0776-2.
  4. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi: 10.1182/blood-2013-05-501569.
  5. Castagnetti F, Gugliotta G, Breccia M, et al. Long-term outcome of chronic myeloid leukemia patients treated frontline with imatinib. Leukemia. 2015;29(9):1823–31. doi: 10.1038/leu.2015.152.
  6. Claudiani S, Gatenby A, Szydlo R, et al. MR4 sustained for 12 months is associated with stable deep molecular responses in chronic myeloid leukemia. Haematologica. 2019;104(11):2206–14. doi: 10.3324/haematol.2018.214809.
  7. Hehlmann R, Muller MC, Lauseker M, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32(5):415–23. doi: 10.1200/JCO.2013.49.9020.
  8. Туркина А.Г., Новицкая Н.В., Голенков А.К. и др. Регистр больных хроническим миелолейкозом в Российской Федерации: от наблюдательного исследования к оценке эффективности терапии в клинической практике. Клиническая онкогематология. 2017;10(3):390–401. doi: 10.21320/2500-2139-2017-10-3-390-401.
    [Turkina AG, Novitskaya NV, Golenkov AK, et al. Chronic Myeloid Leukemia Patient Registry in the Russian Federation: From Observational Studies to the Efficacy Evaluation in Clinical Practice. Clinical oncohematology. 2017;10(3):390–401. doi: 10.21320/2500-2139-2017-10-3-390-401. (In Russ)]
  9. Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99(1):319–25. doi: 10.1182/blood.v99.1.319.
  10. Copland M, Hamilton A, Elrick LJ, et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood. 2006;107(11):4532–9. doi: 10.1182/blood-2005-07-2947.
  11. Goldman J, Gordon M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk Lymphoma. 2006;47(1):1–7. doi: 10.1080/10428190500407996.
  12. Goldman JM. Chronic myeloid leukemia: molecular targeting as a basis for therapy. Rev Clin Exp Hematol. 2004;7(1):64–72.
  13. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood. 2017;129(12):1595–606. doi: 10.1182/blood-2016-09-696013.
  14. Zhou H, Xu R. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell. 2015;6(6):403–12. doi: 10.1007/s13238-015-0143-7.
  15. Melo JV, Ross DM. Minimal residual disease and discontinuation of therapy in chronic myeloid leukemia: can we aim at a cure? Hematology Am Soc Hematol Educ Program. 2011;2011(1):136–42. doi: 10.1182/asheducation-2011.1.136.
  16. Tang M, Gonen M, Quintas-Cardama A, et al. Dynamics of chronic myeloid leukemia response to long-term targeted therapy reveal treatment effects on leukemic stem cells. Blood. 2011;118(6):1622–31. doi: 10.1182/blood-2011-02-339267.
  17. Roeder I, Horn M, Glauche I, et al. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med. 2006;12(10):1181–4. doi: 10.1038/nm1487.
  18. Branford S, Seymour JF, Grigg A, et al. BCR-ABL messenger RNA levels continue to decline in patients with chronic phase chronic myeloid leukemia treated with imatinib for more than 5 years and approximately half of all first-line treated patients have stable undetectable BCR-ABL using strict sensitivity criteria. Clin Cancer Res. 2007;13(23):7080–5. doi: 10.1158/1078-0432.CCR-07-0844.
  19. Mughal T, Goldman J. Chronic myeloid leukemia: current status and controversies. Oncology. 2004;18(7):837–44.
  20. Etienne G, Guilhot J, Rea D, et al. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J Clin Oncol. 2017;35(3):298–305. doi: 10.1200/JCO.2016.68.2914.
  21. Pagani IS, Shanmuganathan N, Kok CH, et al. Long-term treatment-free remission of chronic myeloid leukemia with falling levels of residual leukemic cells. Leukemia. 2018;32(12):2572–9. doi: 10.1038/s41375-018-0264-0.
  22. Петрова А.Н., Челышева Е.Ю., Туркина А.Г. Ремиссия без лечения у больных хроническим миелолейкозом: обзор литературы. Онкогематология. 2019;14(3):12–22. doi: 10.17650/1818-8346-2019-14-3-12-22.
    [Petrova AN, Chelysheva EYu, Turkina AG. Treatment-free remission in patients with chronic myeloid leukemia: literature review. Onkogematologiya. 2019;14(3):12–22. doi: 10.17650/1818-8346-2019-14-3-12-22. (In Russ)]
  23. Туркина А.Г., Петрова А.Н., Челышева Е.Ю. и др. Результаты проспективного исследования по наблюдению больных хроническим миелолейкозом после прекращения терапии ингибиторами тирозинкиназ. Гематология и трансфузиология. 2020;65(4):370–85. doi: 10.35754/0234-5730-2020-65-4-370-385.
    [Turkina AG, Petrova AN, Chelysheva EYu, et al. A prospective study of the monitoring of patients with chronic myeloid leukemia upon withdrawal of tyrosine kinase inhibitor therapy. Gematologiya i transfuziologiya. 2020;65(4):370–85. doi: 10.35754/0234-5730-2020-65-4-370-385. (In Russ)]
  24. Шухов О.А., Петрова А.Н., Челышева Е.Ю. и др. Факторы сохранения молекулярной ремиссии после прекращения терапии ингибиторами тирозинкиназ у пациентов с хроническим миелолейкозом: результаты нерандомизированного проспективного клинического исследования. Клиническая онкогематология. 2021;14(1):1–12. doi: 10.21320/2500-2139-2021-14-1-1-12.
    [Shukhov OA, Petrova AN, Chelysheva EYu, et al. Factors for Sustaining Molecular Remission after Discontinuation of Tyrosine Kinase Inhibitors Therapy in Chronic Myeloid Leukemia: Results of Non-Randomized Prospective Clinical Trial. Clinical oncohematology. 2021;14(1):1–12. doi: 10.21320/2500-2139-2021-14-1-1-12. (In Russ)]
  25. Rousselot P, Charbonnier A, Cony-Makhoul P, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32(5):424–30. doi: 10.1200/JCO.2012.48.5797.
  26. Ross DM, Branford S, Seymour JF, et al. Patients with chronic myeloid leukaemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukaemia by DNA PCR. Leukemia. 2010;24(10):1719–24. doi: 10.1038/leu.2010.185.
  27. Rousselot P, Loiseau C, Delord M, et al. A report on 114 patients who experienced treatment free remission in a single institution during a 15 years period: long term follow-up, late molecular relapses and second attempts. Blood. 2019;134(1):27. doi: 10.1182/blood-2019-129919.
  28. Imagawa J, Tanaka H, Okada M, et al. DADI Trial Group. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial. Lancet Haematol. 2015;2(12):528–35. doi: 10.1016/S2352-3026(15)00196-9.
  29. Takahashi N, Nishiwaki K, Nakaseko Ch, et al. Treatment-free remission after two-year consolidation therapy with nilotinib in patients with chronic myeloid leukemia: STAT2 trial in Japan. 2018;103(11):1835–42. doi: 10.3324/haematol.2018.194894.
  30. Ilander M, Olsson-Stromberg U, Schlums H, et al. Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia. Leukemia. 2017;31(5):1108–16. doi: 10.1038/leu.2016.360.
  31. Rea D, Henry G, Khaznadar Z, et al. Natural killer-cell counts are associated with molecular relapse-free survival after imatinib discontinuation in chronic myeloid leukemia: the IMMUNOSTIM study. Haematologica. 2017;102(8):1368–77. doi: 10.3324/haematol.2017.165001.
  32. Borg C, Terme M, Taieb J, et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest. 2004;114(4):379–88. doi: 10.1172/JCI21102.
  33. Yoshimoto T, Mizoguchi I, Katagiri S, et al. Immunosurveillance markers may predict patients who can discontinue imatinib therapy without relapse. OncoImmunology. 2014;3(5):28861. doi: 10.4161/onci.28861.
  34. Mizoguchi I, Yoshimoto T, Katagiri S, et al. Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib. Cancer Sci. 2013;201(104):1146–53. doi: 10.1111/cas.12216.
  35. Ohyashiki K, Katagiri S, Tauchi T, et al. Increased natural killer cells and decreased CD3+CD8 +CD62L+ T cells in CML patients who sustained complete molecular remission after discontinuation of imatinib. Br J Haematol. 2012;157(2):254–6. doi: 10.1111/j.1365-2141.2011.08939.x.
  36. Blake SJ, Lyons AB, Hughes TP. Nilotinib inhibits the Src-family kinase LCK and T-cell function in vitro. J Cell Mol Med. 2009;13(3):599–601. doi: 10.1111/j.1582-4934.2009.00500_1.x.
  37. Schade AE, Schieven GL, Townsend R, et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood. 2008;111(3):1366–77. doi: 10.1182/blood-2007-04-084814.
  38. Mustjoki S, Ekblom M, Arstila TP, et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23(8):1398–405. doi: 10.1038/leu.2009.46.
  39. Molldrem JJ, Lee PP, Wang C, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6(9):1018–23. doi: 10.1038/79526.
  40. Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22. doi: 10.1182/blood-2013-02-483750.
  41. Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19(6):747–57. doi: 10.1016/S1470-2045(18)30192-X.
  42. Burchert A, Wolfl S, Schmidt M, et al. Interferon-alpha, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia. Blood. 2003;101(1):259–64. PMID: 12393722.
  43. Essers MA, Offner S, Blanco-Bose WE, et al. IFN alpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7240):904–8. doi: 10.1038/nature07815.
  44. Burchert A, Muller MC, Kostrewa P, et al. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J Clin Oncol. 2010;28(8):1429–35. doi: 10.1200/JCO.2009.25.5075.
  45. Hochhaus A, Burchert A, Saussele S, et al. Nilotinib vs nilotinib plus pegylated interferon α (Peg-IFN) induction and nilotinib or Peg-IFN maintenance therapy for newly diagnosed BCR-ABL1 positive chronic myeloid leukemia patients in chronic phase (TIGER study): the addition of Peg-IFN is associated with higher rates of deep molecular response. Blood. 2019;134(1):495. doi: 10.1182/blood-2019-130043.
  46. Nicolini FE, Etienne G, Huguet F, et al. The combination of nilotinib + pegylated IFN alpha 2a provides somewhat higher cumulative incidence rates of MR4.5 at M36 versus nilotinib alone in newly diagnosed CP CML patients. Updated results of the Petals phase III national study. Blood. 2019;134(1):494. doi: 10.1182/blood-2019-123674.
  47. Schutz C, Inselmann S, Sausslele S, et al. Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML. Leukemia. 2017;31(4):829–36. doi: 10.1038/leu.2017.9.
  48. Ross DM, Hughes TP, Melo JV. Do we have to kill the last CML cell? Leukemia. 2011;25(2):193–200. doi: 10.1038/leu.2010.197.
  49. Ilaria S, Pagani IS, Dang P, et al. Lineage of measurable residual disease in patients with chronic myeloid leukemia in treatment-free remission. Leukemia. 2020;34(4):1052–61. doi: 10.1038/s41375-019-0647-x.
  50. Herrmann H, Sadovnik I, Cerny-Reiterer S, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014;123(25):3951–62. doi: 10.1182/blood-2013-10-536078.
  51. Raspadori D, Pacelli P, Sicuranza A, et al. Flow cytometry assessment of CD26+ leukemic stem cells in peripheral blood: a simple and rapid new diagnostic tool for chronic myeloid leukemia. Cytometry B Clin Cytom. 2019;96(4):294–9. doi: 10.1002/cyto.b.21764.
  52. Valent P, Sadovnik I, Racil Z, et al. DPPIV (CD26) as a novel stem cell marker in Ph+ chronic myeloid leukaemia. Eur J Clin Invest. 2014;44(12):1239–45. doi: 10.1111/eci.12368.
  53. Blatt K, Menzl I, Eisenwort G, et al. Phenotyping and target expression profiling of CD34+/CD38– and CD34+/CD38+ stem- and progenitor cells in acute lymphoblastic leukemia. Neoplazia. 2018;20(6):632–42. doi: 10.1016/j.neo.2018.04.004.
  54. Cui J, Zhu Z, Liu S, et al. Monitoring of leukemia stem cells in chronic myeloid leukemia patients. Leuk Lymphoma. 2018;59(9):2264–6. doi: 10.1080/10428194.2017.1421755.
  55. Bocchia M, Sicuranza A, Abruzzese E, et al. Residual peripheral blood CD26+ leukemic stem cells in chronic myeloid leukemia patients during TKI therapy and during treatment-free remission. Front Oncol. 2018;8:194. doi: 10.3389/fonc.2018.00194.
  56. Iwasaki M, Liedtke M, Gentles A, et al. Cleary. CD93 marks a non-quiescent human Leukemia Stem Cell population and is required for development of MLL-rearranged acute myeloid leukemia. Cell Stem Cell. 2015;17(4):412–21. doi: 10.1016/j.stem.2015.08.008.
  57. Kinstrie R, Horne GA, Morrison H, et al. CD93 is expressed on chronic myeloid leukemia stem cells and identifies a quiescent population, which persists after tyrosine kinase inhibitor therapy. Leukemia. 2020;34(6):1613–25. doi: 10.1038/s41375-019-0684-5.
  58. Agarwal P, Bhatia R. Influence of bone marrow microenvironment on leukemic stem cells: breaking up an intimate relationship. Adv Cancer Res. 2015;127:227–52. doi: 10.1016/bs.acr.2015.04.007.
  59. Park M, Park C.J, Cho YW, et al. Alterations in the bone marrow microenvironment may elicit defective hematopoiesis: a comparison of aplastic anemia, chronic myeloid leukemia, and normal bone marrow. Exp Hematol. 2017;45:56–63. doi: 10.1016/j.exphem.2016.09.009.
  60. Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285–99. doi: 10.1016/j.stem.2013.06.009.
  61. Schepers K, Campbell TB, Passegue E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell. 2015;16(3):254–67. doi: 10.1016/j.stem.2015.02.014.
  62. Петинати Н.А., Шипунова И.Н., Бигильдеев А.Е. и др. Изменения в клетках-предшественницах стромального микроокружения костного мозга больных хроническим миелолейкозом в дебюте заболевания и в ходе лечения. Гематология и трансфузиология. 2019;64(4):424–35. doi: 10.35754/0234-5730-2019-64-4-424-435.
    [Petinati NA, Shipunova IN, Bigildeev AE, et al. Changes in stromal progenitor cells derived from bone marrow in patients with chronic myelogenous leukaemia at the onset of the disease and during treatment. Gematologiya i transfuziologiya. 2019;64(4):424–35. doi: 10.35754/0234-5730-2019-64-4-424-435. (In Russ)]
  63. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 2019;6(7):e375–e383. doi: 10.1016/S2352-3026(19)30094-8.
  64. Claudiani S, Apperley JF, Gale RP, et al. E14a2 BCR-ABL1 transcript is associated with a higher rate of treatment-free remission in individuals with chronic myeloid leukemia after stopping tyrosine kinase inhibitor therapy. Haematologica. 2017;102(8):e297–e299. doi: 10.3324/haematol.2017.168740.
  65. D’Adda M, Farina M, Schieppati F, et al. The e13a2 BCR-ABL transcript negatively affects sustained deep molecular response and the achievement of treatment-free remission in patients with chronic myeloid leukemia who receive tyrosine kinase inhibitors. Cancer. 2019;125(10):1674–82. doi: 10.1002/cncr.31977.
  66. Lucas CM, Harris RJ, Giannoudis A, et al. Chronic myeloid leukemia patients with the e13a2 BCR-ABL fusion transcript have inferior responses to imatinib compared to patients with the e14a2 transcript. Haematologica. 2009;94(10):1362–7. doi: 10.3324/haematol.2009.009134.
  67. Lee SE, Choi SY, Song HY, et al. Imatinib withdrawal syndrome and longer duration of imatinib have a close association with a lower molecular relapse after treatment discontinuation: the KID study. Haematologica. 2016;101(6):717–23. doi: 10.3324/haematol.2015.139899.
  68. Schmidt M, Hochhaus A, Konig-Merediz SA, et al. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy. J Clin Oncol. 2000;18(19):3331–8. doi: 10.1200/JCO.2000.18.19.3331.
  69. Schmidt M, Hochhaus A, Nitsche A, et al. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-alpha. Blood. 2001;97(11):3648–50. doi: 10.1182/blood.v97.11.3648.
  70. La Nasa G, Caocci G, Littera R, et al. Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp Hematol. 2013;41(5):424–31. doi: 10.1016/j.exphem.2013.01.008.
  71. Caocci G, Martino B, Greco M, et al. Killer immunoglobulin-like receptors can predict TKI treatment-free remission in chronic myeloid leukemia patients. Exp Hematol. 2015;43(12):1015–8. doi: 10.1016/j.exphem.2015.08.004.
  72. Caocci G, Greco M, Delogu G, et al. Telomere length shortening is associated with treatment-free remission in chronic myeloid leukemia patients. J Hematol Oncol. 2016;9(1):63. doi: 10.1186/s13045-016-0293-y.
  73. Смирнихина С.А., Лавров А.В., Адильгереева Э.П. и др. Клиническое значение полноэкзомных исследований миелоидных опухолей методом секвенирования следующего поколения. Клиническая онкогематология. 2013;6(1):11–9.
    [Smirnikhina SA, Lavrov AV, Adilgereeva EP, et al. Clinical significance of the whole-exome studies in myeloid neoplasms using next­generation sequencing. Klinicheskaya onkogematologiya. 2013;6(1):11–9. (In Russ)]
  74. Smirnikhina S, Chelysheva E, Lavrov A, et al. Genetic markers of stable molecular remission in chronic myeloid leukemia after targeted therapy discontinuation. Leuk Lymphoma. 2018;59(10):2512–5. doi: 10.1080/10428194.2018.1434880.
  75. Mori S, Vagge E, le Coutre P, et al. Age and dPCR can predict relapse in CML patients who discontinued imatinib: the ISAV study. Am J Hematol. 2015;90(10):910–4. doi: 10.1002/ajh.24120.
  76. Nicolini FE, Dulucq S, Boureau P, et al. Evaluation of residual disease and TKI duration are critical predictive factors for molecular recurrence after stopping imatinib first-line in chronic phase CML patients. Clin Cancer Res. 2019;25(22):6606–13. doi: 10.1158/1078-0432.CCR-18-3373.
  77. Mahon FX, Boquimpani C, Kim DW, et al. Treatment-free remission after second-line nilotinib treatment in patients with chronic myeloid leukemia in chronic phase: results from a single-group, phase 2, open-label study. Ann Intern Med. 2018;168(7):461–70. doi: 10.7326/M17-1094.
  78. Ross DM, Masszi T, Gomez Casares TM, et al. Durable treatment-free remission in patients with chronic myeloid leukemia in chronic phase following frontline nilotinib: 96-week update of the ENESTfreedom study. J Cancer Res Clin Oncol. 2018;144(5):945–54. doi: 10.1007/s00432-018-2604-x.
  79. Kimura S, Imagawa J, Kazunori M, et al. Treatment-free remission after first-line dasatinib discontinuation in patients with chronic myeloid leukaemia (first-line DADI trial): a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2020;7(3):e218–e225. doi: 10.1016/S2352-3026(19)30235-2.
  80. Kumagai T, Nakaseko C, Nishiwaki K, et al. Dasatinib cessation after deep molecular response exceeding 2 years and natural killer cell transition during dasatinib consolidation. Cancer Sci. 2018;109(1):182–92. doi: 10.1111/cas.13430.
  81. Shah NP, Garcia-Gutierrez V, Jimenez-Velasco A, et al. Dasatinib discontinuation in patients with chronic-phase chronic myeloid leukemia and stable deep molecular response: the DASFREE study. Leuk Lymphoma. 2020;61(3):650–9. doi: 10.1080/10428194.2019.1675879.
  82. Rea D, Nicolini FE, Tulliez M, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood. 2017;129(7):846–54. doi: 10.1182/blood-2016-09-742205.
  83. Nagafuji K, Matsumura I, Shimose T, et al. Cessation of nilotinib in patients with chronic myelogenous leukemia who have maintained deep molecular responses for 2 years: a multicenter phase 2 trial, stop nilotinib (NILSt). Int J Hematol. 2019;110(6):675–82. doi: 10.1007/s12185-019-02736-5.

Инфекционные осложнения при множественной миеломе в условиях современной эпидемиологической обстановки: обзор литературы

И.Л. Давыдкин, Е.В. Мордвинова, Т.П. Кузьмина

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, ул. Чапаевская, д. 89, Самара, Российская Федерация, 443099

Для переписки: Елизавета Владимировна Мордвинова, ул. Чапаевская, д. 89, Самара, Российская Федерация, 443099; тел.: +7(917)037-52-10, e-mail: liza.mordvinova.94@mail.ru

Для цитирования: Давыдкин И.Л., Мордвинова Е.В., Кузьмина Т.П. Инфекционные осложнения при множественной миеломе в условиях современной эпидемиологической обстановки: обзор литературы. Клиническая онкогематология. 2021;14(3):386–90.

DOI: 10.21320/2500-2139-2021-14-3-386-390


РЕФЕРАТ

Обзор посвящен современным представлениям об иммунной системе при множественной миеломе (ММ) и основных патогенах, приводящих к инфекционным осложнениям в данной группе пациентов. Несмотря на то что за последние годы достигнут значительный прогресс в исследовании молекулярных механизмов становления и развития (патогенеза) ММ, методов ее диагностики, а также в прогнозировании исходов и лечении, одной из основных причин летальности у этой категории пациентов остаются инфекционные осложнения. В такой ситуации представляется актуальным дальнейшее изучение нарушений в иммунной системы и спектра инфекционных патогенов, распространенных в когорте пациентов с ММ. Исследование и коррекция иммунного статуса пациентов могут способствовать улучшению исхода ММ, что, в свою очередь, приведет к увеличению продолжительности жизни.

Ключевые слова: множественная миелома, иммунный статус, инфекционные осложнения, COVID-19.

Получено: 12 марта 2021 г.

Принято в печать: 8 июня 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Davydkin IL, Kuzmina TP, Naumova KV, et al. Endothelial dysfunction in patients with lymphoproliferative disorders and its changes in the course of polychemotherapy. Russ Open Med J. 2020;9(3):309–15. doi: 10.15275/rusomj.2020.0309.
  2. Joshua DE, Bryant C, Dix C, et al. Biology and therapy of multiple myeloma. Med J Aust. 2019;210(8):1–6. doi: 10.5694/mja2.50129.
  3. Smith L, McCourt O, Henrich M, et al. Multiple myeloma and physical activity: a scoping review. BMJ Open. 2015;5(11):1–10. doi: 10.1136/bmjopen-2015-009576.
  4. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018.
    [Kaprin AD, Starinskii VV, Petrova GV, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2017 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2017 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; (In Russ)]
  5. Alemu A, Richards JO, Oaks MK, Thompson MA. Vaccination in Multiple Myeloma: Review of Current Literature. Clin Lymphoma Myel Leuk. 2016;16(9):495–502. doi: 10.1016/j.clml.2016.06.006.
  6. Berlotti P, Pierre A, Rome S, Faiman B. Evidence-based guidelines for preventing and managing side effects of multiple myeloma. Semin Oncol Nurs. 2017;33(3):332–47. doi: 10.1016/j.soncn.2017.05.008.
  7. Teh BW, Slavin MA, Harrison SJ, Worth LJ. Prevention of viral infections in patients with multiple myeloma: the role of antiviral prophylaxis and immunization. Expert Rev Anti-Infect Ther. 2015;13(11):1325–36. doi: 10.1586/14787210.2015.1083858.
  8. Kastritis E, Zagouri F, Symeonidis A, et al. Preserved levels of uninvolved immunoglobulins are independently associated with favorable outcome in patients with symptomatic multiple myeloma. 2014;28(10):2075–9. doi: 10.1038/leu.2014.110.
  9. Mian H, Grant ShJ, Engelhardt M, et al. Caring for older adults with multiple myeloma during the COVID-19 pandemic: Perspective from the International Forum for Optimizing Care of Older Adults with Myeloma. J Geriatr Oncol. 2020;11(5):764–8. doi: 10.1016/j.jgo.2020.04.008.
  10. Brioli A, Klaus M, Sayer H, et al. The risk of infections in multiple myeloma before and after the advent of novel agents: a 12-year survey. Ann 2019;98(3):713–22. doi: 10.1007/s00277-019-03621-1.
  11. Guzdar A, Costello C. Supportive Care in Multiple Myeloma. Curr Hematol Malig Rep. 2020;15(2):56–61. doi: 10.1007/s11899-020-00570-9.
  12. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79. doi: 10.1111/j.1365-2141.2007.06705.x.
  13. Teh BW, Harrison SJ, Worth LJ, et al. Infection risk with immunomodulatory and proteasome inhibitor–based therapies across treatment phases for multiple myeloma: A systematic review and meta-analysis. Eur J Cancer. 2016;67:21–37. doi: 10.1016/j.ejca.2016.07.025.
  14. Dhakal B, D’Souza A, Chhabra S, Hari P. Multiple myeloma and COVID-19. Leukemia. 2020;34(7):1961–3. doi: 10.1038/s41375-020-0879-9.
  15. Girmenia C, Cavo M, Offidani M, et al. Management of infectious complications in multiple myeloma patients: Expert panel consensus-based recommendations. Blood Rev. 2019;34:84–94. doi: 10.1016/j.blre.2019.01.001.
  16. Nix EB, Hawdon N, Gravelle S, et al. Risk of invasive Haemophilus influenzae type b (Hib) disease in adults with secondary immunodeficiency in the post-Hib vaccine era. Clin Vacc Immunol. 2012;19(5):766–71. doi: 10.1128/CVI.05675-11.
  17. Blimark, C, Holmberg E, Mellqvist UH, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2014;100(1):107–13. doi: 10.3324/haematol.2014.107714.
  18. Truong Q, Veltri L, Kanate AS, et al. Impact of the duration of antiviral prophylaxis on rates of varicella-zoster virus reactivation disease in autologous hematopoietic cell transplantation recipients. Ann Hematol. 2013;93(4):677–82. doi: 10.1007/s00277-013-1913-z.
  19. Teh BW, Worth LJ, Harrison SJ, et al. The timing and clinical predictors of herpesvirus infections in patients with myeloma in the setting of antiviral prophylaxis. Available from: file:///Users/user/Downloads/EV0439.pdf (accessed 13.04.2021).
  20. Teh BW, Worth LJ, Harrison SJ, et al. Risks and burden of viral respiratory tract infections in patients with multiple myeloma in the era of immunomodulatory drugs and bortezomib: experience at an Australian Cancer Hospital. Supp Care Cancer. 2015;23(7):1901–6. doi: 10.1007/s00520-014-2550-3.
  21. Nahi H, Chrobok M, Gran C, et al. Infectious complications and NK cell depletion following daratumumab treatment of multiple myeloma. PLoS One. 2019;14(2):e0211927. doi: 10.1371/journal.pone.0211927.
  22. Bruno G, Saracino A, Monno L, Angarano G. The Revival of an “Old” Marker: CD4/CD8 Ratio. AIDS Rev. 2017;19(2):81–8.
  23. Tramontana AR, George B, Hurt AC, et al. Oseltamivir Resistance in Adult Oncology and Hematology Patients Infected with Pandemic (H1N1) 2009 Virus, Australia. Emerg Infect Dis. 2010;16(7):1068–75. doi: 10.3201/eid1607.091691.
  24. Hirsch HH, Martino R, Ward KN, et al. Fourth European Conference on Infections in Leukaemia (ECIL-4): Guidelines for Diagnosis and Treatment of Human Respiratory Syncytial Virus, Parainfluenza Virus, Metapneumovirus, Rhinovirus, and Coronavirus. Clin Infect Dis. 2012;56(2):258–66. doi: 10.1093/cid/cis844.
  25. Charil A, Samur MK, Martinez-Lopez J, et al. Clinical features associated with COVID-19 outcome in multiple myeloma: first results from the International Myeloma Society data set. 2020;136(26):3033–40. doi: 10.1182/blood.2020008150.
  26. Cook G, Ashcroft AJ, Pratt G, et al. Real-world assessment of the clinical impact of symptomatic infection with severe acute respiratory syndrome coronavirus (COVID-19 disease) in patients with multiple myeloma receiving systemic anti-cancer therapy. Br J Haematol. 2020;190(2):e83–e86. doi: 10.1111/bjh.16874.
  27. Hultcrantz M, Richter J, Rosenbaum C, et al. COVID-19 infections and outcomes in patients with multiple myeloma in New York City: a cohort study from five academic centers. Blood Cancer Discov. 2020;1(3):234–43. doi: 10.1158/2643-3230.bcd-20-0102.
  28. Wang B, Van Oekelen O, Mouhieddine TH, et al. A tertiary center experience of multiple myeloma patients with COVID-19: lessons learned and the path forward. J Hematol Oncol. 2020;13(1):94. doi: 10.1186/s13045-020-00934-x.

Воспалительный синдром восстановления иммунитета и лимфома Ходжкина

А.В. Пивник1, А.М. Вукович2, А.А. Петренко3,4

1 СМ-клиника, Волгоградский пр-т, д. 42, корп. 12, Москва, Российская Федерация, 109548

2 ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России, ул. Трубецкая, д. 8, стр. 2, Москва, Российская Федерация, 119991

3 ГБУЗ «Городская клиническая больница им. С.П. Боткина» ДЗМ, 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

4 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, ул. Баррикадная, д. 2/1, Москва, Российская Федерация, 125993

Для переписки: Александр Васильевич Пивник, д-р мед. наук, профессор, Волгоградский пр-т, д. 42, корп. 12, Москва, Российская Федерация, 109548; тел.: +7(906)065-99-32; e-mail: pivnikav@gmail.com

Для цитирования: Пивник А.В., Вукович А.М., Петренко А.А. Воспалительный синдром восстановления иммунитета и лимфома Ходжкина. Клиническая онкогематология. 2021;14(3):378–85.

DOI: 10.21320/2500-2139-2021-14-3-378-385


РЕФЕРАТ

Воспалительный синдром восстановления иммунитета (ВСВИ) определяется как клинически значимое обострение известных малосимптомных серьезных, чаще инфекционных, заболеваний в условиях значительного повышения уровня Т-лимфоцитов CD4+ в ответ на высокоактивную антиретровирусную терапию (ВААРТ) ВИЧ-инфекции. В обзоре подробно обсуждается проблема туберкулеза у ВИЧ-инфицированных пациентов, получающих ВААРТ. В рекомендациях на эту тему имеются строгие указания на обязательное первоначальное лечение туберкулеза и только затем назначение ВААРТ. Такие же рекомендации по этиотропной терапии, предшествующей ВААРТ, предусмотрены при других оппортунистических инфекциях (грибковых, криптококковой, паразитозах, контагиозном моллюске, токсоплазмозе, вирусе опоясывающего лишая, лейшманиозе, сифилисе, лепре). Без предшествующей этиотропной терапии оппортунистической инфекции ее обострение с выраженной клинической картиной в период проведения ВААРТ может иметь фатальные последствия для пациента. Лимфомы, включая лимфому Ходжкина (ЛХ), рассматриваются в рамках именно этой проблемы. Однако остаются открытыми вопросы специфичности направленного действия Т-лимфоцитов микроокружения к не выясненным до настоящего времени причинным антигенам опухоли. В отличие от других злокачественных лимфоидных опухолей, которые возникают при низком содержании Т-лимфоцитов CD4+, ЛХ развивается при повышенном уровне Т-лимфоцитов CD4+ в ответ на ВААРТ у ВИЧ-инфицированных пациентов в первые месяцы от начала антиретровирусного лечения. ЛХ диагностируется у 8 % ВИЧ-инфицированных лиц без ВААРТ. После назначения ВААРТ частота ЛХ возрастает до 17 %. Эти данные позволяют рассматривать ВСВИ в качестве основной проблемы при изучении этиологии и патогенеза ЛХ у ВИЧ-инфицированных пациентов. В такой ситуации необходимость продолжения исследований в этом направлении становится не только очевидной, но и практически востребованной.

Ключевые слова: воспалительный синдром восстановления иммунитета (ВСВИ), высокоактивная антиретровирусная терапия (ВААРТ), лимфома Ходжкина.

Получено: 19 января 2021 г.

Принято в печать: 22 апреля 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Fanales-Belasio E, Raimondo M, Suligoi B, Butto S. HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanita. 2010;46(1):5–14. doi: 10.4415/ANN_10_01_02.
  2. Turner BG, Summers MF. Structural biology of HIV1. J Mol Biol. 1999;285(1):1–32. doi: 10.1006/jmbi.1998.2354.
  3. Richman DD, Little SJ, Smith DM, et al. HIV evolution and escape. Trans Am Clin Climatol Assoc. 2004;115:289–303.
  4. Zhu T, Korber BT, Nahmias AJ, et al. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature. 1998;391(6667):594–7. doi: 10.1038/35400.
  5. Sophie G, Thomas DW, Kabongo J-M, et al. A near full-length HIV-1 genome from 1966 recovered from formalin-fixed paraffin-embedded tissue. Proc Nat Acad Sci USA. 2020;117(22):12222–9. doi: 10.1073/pnas.1913682117.
  6. Klatt NR, Silvestri G, Hirsch V. Non pathogenic simian immunodeficiency virus infections. Cold Spring Harb Perspect Med. 2012;2(1):a007153. doi: 10.1101/cshperspect.a007153.
  7. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841. doi: 10.1101/cshperspect.a006841.
  8. Chitnis A, Rawls D, Moore J. Origin of HIV Type 1 in Colonial French Equatorial Africa? AIDS Res Hum Retrovir. 2000;16(1):5–8. doi: 10.1089/088922200309548.
  9. Gao F, Bailes E, Robertson DL, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397(6718):436–41. doi: 10.1038/17130.
  10. Haverkos HW, Curran JW. The Current Outbreak of Kaposi’s Sarcoma and Opportunistic Infections. CA: Cancer J Clin. 1982;32(6):330–9. doi: 10.3322/canjclin.32.6.330.
  11. Gallo RC, Sarin PS, Gelmann EP, et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):865–7. doi: 10.1126/science.6601823.
  12. Barre-Sinoussi F, Chermann J, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–71. doi: 10.1126/science.6189183.
  13. Pincock S. HIV discoverers awarded Nobel Prize for medicine. Lancet. 2008;372(9647):1373. doi: 10.1016/s0140-6736(08)61571-8.
  14. The Nobel Prize. Available from: https://www.nobelprize.org/prizes/medicine/2008/press-release/ (accessed 13.04.2021).
  15. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593):722–5. doi: 10.1038/382722a0.
  16. Galvani AP, Novembre J. The evolutionary history of the CCR5-Delta32 HIV-resistance mutation. Microbes Infect. 2005;7(2):302–9. doi: 10.1016/j.micinf.2004.12.006.
  17. Ni J, Wang D, Wang S. The CCR5-Delta32 Genetic Polymorphism and HIV-1 Infection Susceptibility: a Meta-analysis. Open Med (Wars). 2018;13(1):467–74. doi: 10.1515/med-2018-0062.
  18. Stephens JC, Reich DE, Goldstein DB, et al. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet. 1998;62(6):1507–15. doi: 10.1086/301867.
  19. Hopkins Princes and Peasants: Smallpox in History. Chicago: University of Chicago Press; 1983. 380 p.
  20. Galvani AP, Slatkin M. Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. Proc Natl Acad Sci USA. 2003;100(25):15276–9. doi: 10.1073/pnas.2435085100.
  21. Brown TR. I am the Berlin patient: a personal reflection. AIDS Res Hum Retrovir. 2015;31(1):2–3. doi: 10.1089/AID.2014.0224.
  22. Gallagher J. Berlin patient: First person cured of HIV, Timothy Ray Brown, dies. Available from: https://www.bbc.com/news/health-54355673. (accessed 13.04.2021).
  23. Gupta RK, Peppa D, Hill AL, et al. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV. 2020;7(5):340–7. doi: 10.1016/S2352-3018(20)30069-2.
  24. Normile D. Shock greets claim of CRISPR-edited babies. Science. 2018;362(6418):978–9. doi: 10.1126/science.362.6418.978.
  25. ВИЧ-инфекция и СПИД: национальное руководство. Под ред. В.В. Покровского. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2020. 696 с. doi: 10.33029/9704-5421-3-2020-VIC-1-696.
    [Pokrovsky VV, ed. VICh-infektsiya i SPID: natsionalnoe rukovodstvo. (HIV infection and AIDS: national guidelines.) 2nd edition, revised and enlarged. Moscow: GEOTAR-Media Publ.; 2020. 696 p. doi: 10.33029/9704-5421-3-2020-VIC-1-696. (In Russ)]
  26. ЮНЭЙДС. COVID-19 и ВИЧ [электронный документ]. Доступно по: https://www.unaids.org/ru. Ссылка активна на 04.2021.
    [UNAIDS. COVID-19 and HIV. [Internet] Available from: https://www.unaids.org/ru. (accessed 13.04.2021) (In Russ)]
  27. Peterman TA, Drotman DP, Curran JW. Epidemiology of the acquired immunodeficiency syndrome (AIDS). Epidemiol Rev. 1985;7(1):1–21. doi: 10.1093/oxfordjournals.epirev.a036277.
  28. Aliouat-Denis CM, Chabe M, Demanche C, et al. Pneumocystis species, co-evolution and pathogenic power. Infect Genet Evol. 2008;8(5):708–26. doi: 10.1016/j.meegid.2008.05.001.
  29. Giffin L, Damania B. KSHV: pathways to tumorigenesis and persistent infection. Adv Vir Res. 2014;88:111–59. doi: 10.1016/B978-0-12-800098-4.00002-7.
  30. De Clercq E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents. 2009;33(4):307–20. doi: 10.1016/j.ijantimicag.2008.10.010.
  31. Леви Д.Э. ВИЧ и патогенез СПИДа. 3-е издание. Пер. с англ. Е.А. Монастырской. М.: Научный мир, 2010. 736 с.
    [Levy JA. HIV and the pathogenesis of AIDS, 3rd edition. Wiley; 2007. 752 p. (Russ. transl.: Monastyrskaya EA. VICh i patogenez SPIDa. 3-e izdanie. Moscow: Nauchnyi mir Publ.; 2010. 736 p.)]
  32. Pau AK, George JM. Antiretroviral therapy: current drugs. Infect Dis Clin North Am. 2014;28(3):371–402. doi: 10.1016/j.idc.2014.06.001.
  33. Lai RP, Meintjes G, Wilkinson RJ. HIV-1 tuberculosis-associated immune reconstitution inflammatory syndrome. Semin Immunopathol. 2016;38(2):185–98. doi: 10.1007/s00281-015-0532-2.
  34. Richter E, Wessling J, Lugering N, et al. Mycobacterium avium subsp. paratuberculosis infection in a patient with HIV, Germany. Emerg Infect Dis. 2002;8(7):729–31. doi: 10.3201/eid0807.010388.
  35. Amerson EH, Maurer TA. Immune Reconstitution Inflammatory Syndrome and Tropical Dermatoses. Dermatol Clin. 2011;29(1):39–43. doi: 10.1016/j.det.2010.09.007.
  36. Gupta A, Sharma YK, Ghogre M, et al. Giant molluscum contagiosum unmasked probably during an immune reconstitution inflammatory syndrome. Indian J Sex Transm Dis AIDS. 2018;39(2):139–40. doi: 10.4103/ijstd.IJSTD_60_16.
  37. Balasko A, Keynan Y. Shedding light on IRIS: from Pathophysiology to Treatment of Cryptococcal Meningitis and Immune Reconstitution Inflammatory Syndrome in HIV-Infected Individuals. HIV Med. 2019;20(1):1–10. doi: 10.1111/hiv.12676.
  38. Martin-Blondel G, Alvarez M, Delobel PV, et al. Toxoplasmic encephalitis IRIS in HIV-infected patients: a case series and review of the literature. J Neurol Neurosurg Psych. 2010;82(6):691–3. doi: 10.1136/jnnp.2009.199919.
  39. Karavellas MP, Lowder CY, Macdonald C, et al. Immune recovery vitritis associated with inactive cytomegalovirus retinitis: a new syndrome. Arch Ophthalmol. 1998;116(2):169–75. doi: 10.1001/archopht.116.2.169.
  40. Boulougoura A, Sereti I. HIV infection and immune activation: the role of coinfections. Curr Opin HIV AIDS. 2016;11(2):191–200. doi: 10.1097/COH.0000000000000241.
  41. Hosoda T, Uehara Y, Kasuga K, et al. An HIV-infected patient with acute retinal necrosis as immune reconstitution inflammatory syndrome due to varicella-zoster virus. AIDS. 2020;34(5):795–6. doi: 10.1097/QAD.0000000000002477.
  42. Auyeung P, French MA, Hollingsworth PN. Immune Restoration Disease Associated with Leishmania donovani Infection Following Antiretroviral Therapy for HIV Infection. J Microbiol Immunol Infect. 2010;43(1):74–6. doi: 10.1016/S1684-1182(10)60011-4.
  43. Alcedo S, Newby R, Montenegro J, et al. Immune reconstitution inflammatory syndrome associated with secondary syphilis: dermatologic, neurologic and ophthalmologic compromise in an HIV patient. Int J STD AIDS. 2019;30(5):509–11. doi: 10.1177/0956462418813045.
  44. Mathukumalli NL, Ali N, Kanikannan MA, Yareeda S. Worsening Guillain-Barre syndrome: harbinger of IRIS in HIV? BMJ Case Rep. 2017;2017:bcr-2017-221874. doi: 10.1136/bcr-2017-221874.
  45. Weetman A. Immune reconstitution syndrome and the thyroid. Best Pract Res Clin Endocrinol Metabol. 2009;23(6):693–702. doi: 10.1016/j.beem.2009.07.003.
  46. DeSimone JA, Pomerantz RJ, Babinchak TJ. Inflammatory Reactions in HIV-1–Infected Persons after Initiation of Highly Active Antiretroviral Therapy. Ann Intern Med. 2000;133(6):447–54. doi: 10.7326/0003-4819-133-6-200009190-00013.
  47. Meintjes G, Lawn SD, Scano F, et al. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis. 2008;8(8):516–23. doi: 10.1016/s1473-3099(08)70184-1.
  48. Shelburne SA, Montes M, Hamill RJ. Immune reconstitution inflammatory syndrome: more answers, more questions. J Antimicrob Chemother. 2005;57(2):167–70. doi: 10.1093/jac/dki444.
  49. French MA, Price P, Stone SF. Immune restoration disease after antiretroviral therapy. AIDS. 2004;18(12):1615–27. doi: 10.1097/01.aids.0000131375.21070.06.
  50. Lai RPJ, Nakiwala JK, Meintjes G, Wilkinson RJ. The immunopathogenesis of the HIV tuberculosis immune reconstitution inflammatory syndrome. Eur J Immunol. 2013;43(8):1995–2002. doi: 10.1002/eji.201343632.
  51. Improving the diagnosis and treatment of smear-negative pulmonary and extrapulmonary tuberculosis among adults and adolescents: recommendations for HIV-prevalent and resource-constrained settings. Geneva: Stop TB Department, Department of HIV/AIDS, World Health Organization; 2006.
  52. Manosuthi W, Kiertiburanakul S, Phoorisri T, Sungkanuparph S. Immune reconstitution inflammatory syndrome of tuberculosis among HIV-infected patients receiving antituberculous and antiretroviral therapy. J Infect. 2006;53(6):357–63. doi: 10.1016/j.jinf.2006.01.002.
  53. Lawn SD, Myer L, Bekker LG, Wood R. Tuberculosis-associated immune reconstitution disease: incidence, risk factors and impact in an antiretroviral treatment service in South Africa. AIDS. 2007;21(3):335–41. doi: 10.1097/QAD.0b013e328011efac.
  54. Narita M, Ashkin D, Hollender ES, Pitchenik AE. Paradoxical worsening of tuberculosis following antiretroviral therapy in patients with AIDS. Am J Respir Crit Care Med. 1998;158(1):157–61. doi: 10.1164/ajrccm.158.1.9712001.
  55. Breen RA, Smith CJ, Bettinson H, et al. Paradoxical reactions during tuberculosis treatment in patients with and without HIV co-infection. Thorax. 2004;59(8):704–7. doi: 10.1136/thx.2003.019224.
  56. Breton G, Duval X, Estellat C, et al. Determinants of Immune Reconstitution Inflammatory Syndrome in HIV Type 1-Infected Patients with Tuberculosis after Initiation of Antiretroviral Therapy. Clin Infect Dis. 2004;39(11):1709–12. doi: 10.1086/425742.
  57. Meintjes G, Wilkinson RJ, Morroni C, et al. Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS. 2010;24(15):2381–90. doi: 10.1097/QAD.0b013e32833dfc68.
  58. Michailidis C, Pozniak AL, Mandalia S, et al. Clinical characteristics of IRIS syndrome in patients with HIV and tuberculosis. Antivir Ther. 2005;10(3):417–22.
  59. Chang CC, Dorasamy AA, Gosnell BI, et al. Clinical and mycological predictors of cryptococcosis-associated immune reconstitution inflammatory syndrome. AIDS. 2013;27(13):2089–99. doi: 10.1097/qad.0b013e3283614a8d.
  60. Sereti Immune reconstruction inflammatory syndrome in HIV infection: beyond what meets the eye. Top Antivir Med. 2020;27(4):106–11.
  61. Jenny-Avital ER, Abadi Immune Reconstitution Cryptococcosis after Initiation of Successful Highly Active Antiretroviral Therapy. Clin Infect Dis. 2002;35(12):128–33. doi: 10.1086/344467.
  62. Somnuek S, Scott GF, Ploenchan C, et al. Cryptococcal Immune Reconstitution Inflammatory Syndrome after Antiretroviral Therapy in AIDS Patients with Cryptococcal Meningitis: A Prospective Multicenter Study. Clin Infect Dis. 2009;6(15):931–4. doi: 10.1086/605497.
  63. Meya DB, Okurut S, Zziwa G, et al. HIV-Associated Cryptococcal Immune Reconstitution Inflammatory Syndrome Is Associated with Aberrant T Cell Function and Increased Cytokine Responses. J Fungi. 2019;5(2):42. doi: 10.3390/jof5020042.
  64. Arevalo JF, Mendoza AJ, FerrettiI Y. Immune Recovery Uveitis In AIDS Patients With Cytomegalovirus Retinitis Treated With Highly Active Antiretroviral Therapy In Venezuela. Retina. 2003;23(4):495–502. doi: 10.1097/00006982-200308000-00009.
  65. Jabs DA. Cytomegalovirus retinitis and the acquired immunodeficiency syndrome—bench to bedside: LXVII Edward Jackson Memorial Lecture. Am J Ophthalmol. 2011;151(2):198–216. doi: 10.1016/j.ajo.2010.10.018.
  66. Kaplan JE, Benson C, Holmes KK, et al; Centers for Disease Control and Prevention (CDC). Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America, National Institutes of Health, HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm. 2009;58(RR-4):1–207. doi: 10.1037/e537722009-001.
  67. Jacobson MA, Zegans M, Pavan P. Cytomegalovirus retinitis after initiation of highly active antiretroviral therapy. Lancet. 1997;349(9063):1443–5. doi: 10.1016/s0140-6736(96)11431-8.
  68. Mitchell SM, Membrey WL, Youle MS, et al. Cytomegalovirus retinitis after the initiation of highly active antiretroviral therapy: a 2 year prospective study. Br J Ophthalmol. 1999;83(6):652–5. doi: 10.1136/bjo.83.6.652.
  69. Jabs DA, Ahuja A, Van Natta M, et al. Course of cytomegalovirus retinitis in the era of highly active antiretroviral therapy: five-year outcomes. Ophthalmology. 2010;117(11):2152–2161.е2. doi: 10.1016/j.ophtha.2010.03.031.
  70. Матиевская Н.В. Воспалительный синдром восстановления иммунитета у ВИЧ-инфицированных пациентов: факторы риска, клинические проявления, исходы, профилактика. Вестник Балтийского федерального университета им. И. Канта. 2012;7:44–51.
    [Matievskaya NV. Immune reconstitution inflammatory syndrome: risk factors, clinical manifestations, outcomes, prevention. Vestnik Baltiiskogo federal’nogo universiteta im. I. Kanta. 2012;7:44–51. (In Russ)]
  71. Пантелеев А.М. Патогенез, клиника, диагностика и лечение туберкулеза у больных ВИЧ-инфекцией: Дис.… д-ра мед. наук. СПб., 2012. 236 с.
    [Panteleev AM. Patogenez, klinika, diagnostika i lechenie tuberkuleza u bol’nykh VICh-infektsiei. (Pathogenesis, clinical features, diagnosis, and treatment of tuberculosis in patients with HIV infection.) [dissertation] Petersburg; 2012. 236 p. (In Russ)]
  72. Битнева А.М., Козлова Т.П., Савинцева Е.В. Особенности начала и течения синдрома восстановления иммунитета у больных туберкулезом легких. Проблемы науки. 2017;6(19):104–5.
    [Bitneva AM, Kozlova TP, Savintseva EV. Characteristics of the start and course of immune reconstitution inflammatory syndrome in pulmonary tuberculosis. Problemy nauki. 2017;6(19):104–5. (In Russ)]
  73. ТищенкоТ.В., Цыркунов В.М. Воспалительный синдром восстановления иммунитета у ВИЧ-инфицированных пациентов: клинико-морфологические аспекты. Здравоохранение (Минск). 2017;10:5–11.
    [Tishchenko TV, Tsyrkunov VM. Immune reconstitution inflammatory syndrome in HIV-positive patients: clinicopathologic Zdravookhranenie (Minsk). 2017;10:5–11. (In Russ)]
  74. Улюкин И.М. ВИЧ-инфекция: особенности восстановления иммунной системы на фоне специфической терапии туберкулеза. Клиническая патофизиология. 2017;23(2):29–33.
    [Ulyukin IM. HIV-infection: characteristics of immune reconstitution on specific therapy of tuberculosis. Klinicheskaya patofiziologiya. 2017;23(2):29–33. (In Russ)]
  75. Sun H-Y, Singh N. Immune reconstitution inflammatory syndrome in non-HIV immunocompromised patients. Curr Opin Infect Dis. 2009;22(4):394–402. doi: 10.1097/QCO.0b013e32832d7aff.
  76. Vishnu P, Dorer RP, Aboulafia DM. Immune reconstitution inflammatory syndrome-associated Burkitt lymphoma after combination antiretroviral therapy in HIV-infected patients. Clin Lymphoma Myel Leuk. 2015;15(1):23–9. doi: 10.1016/j.clml.2014.09.009.
  77. Serraino D, Boschini A, Carrieri P, et al. Cancer risk among men with, or at risk of, HIV infection in southern Europe. AIDS. 2000;14(5):553–9. doi: 10.1097/00002030-200003310-00011.
  78. Noy A. Update on HIV lymphoma. Curr Oncol Rep. 2007;9(5):384–90. doi: 10.1007/s11912-007-0052-x.
  79. Franceschi S, Dal Maso L, Pezzotti P, et al. Incidence of AIDS-defining cancers after AIDS diagnosis among people with AIDS in Italy, 1986–1998. J Acquir Immune Defic Syndr. 2003;34(1):84–90. doi: 10.1097/00126334-200309010-00013.
  80. Carbone A, Gloghini A, Larocca LM, et al. Human immunodeficiency virus associated Hodgkin’s disease derives from post-germinal center B cells. Blood. 1999;93(7):2319–26. doi: 10.1182/blood.V93.7.2319.
  81. Biggar RJ, Jaffe ES, Goedert JJ, et al. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood. 2006;108(12):3786–91. doi: 10.1182/blood-2006-05-024109.
  82. Engels EA, Pfeiffer RM, Goedert JJ, et al. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS. 2006;20(12):1645–54. doi: 10.1097/01.aids.0000238411.75324.59.
  83. Dauby N, De Wit S, Delforge M, et al. Characteristics of non-AIDS-defining malignancies in the HAART era: a clinico-epidemiological study. J Int AIDS Soc. 2011;14(1):16. doi: 10.1186/1758-2652-14-16.
  84. Stein H, Mann R, Delsol G, et al. Hodgkin lymphoma. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001. рр. 237–52.
  85. Lanoy E, Rosenberg PS, Fily F, et al. HIV-associated Hodgkin lymphoma during the first months on combination antiretroviral therapy. Blood. 2011;118(1):44–9. doi: 10.1182/blood-2011-02-339275.
  86. Bohlius J, Schmidlin K, Boue F, et al; Collaboration of Observational HIV Epidemiological Research Europe. HIV-1–related Hodgkin lymphoma in the era of combination antiretroviral therapy: incidence and evolution of CD4+ T-cell lymphocytes. 2011;117(23):6100–8. doi: 10.1182/blood-2010-08-301531.
  87. Kowalkowski MA, Mims MP, Amiran ES, et al. Effect of immune reconstitution on the incidence of HIV-related Hodgkin lymphoma. PloS One. 2013;8(10):e77409. doi: 10.1371/journal.pone.0077409.
  88. Kowalkowski MA, Mims MA, Day RS, et al. Longer duration of combination antiretroviral therapy reduces the risk of Hodgkin lymphoma: A cohort study of HIV-infected male veterans. Cancer Epidemiol. 2014;38(4):386–92. doi: 10.1016/j.canep.2014.05.009.
  89. Gotti D, Danesi M, Calabresi A, et al. Clinical Characteristics, Incidence, and Risk Factors of HIV-Related Hodgkin Lymphoma in the Era of Combination Antiretroviral Therapy. AIDS Patient Care STDs. 2013;27(5):259. doi: 10.1089/apc.2012.0424.
  90. Patel P, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med. 2008;148(10):728–36. doi: 10.7326/0003-4819-148-10-200805200-00005.
  91. Yotsumoto M, Hagiwara S, Ajisawa A, et al. Clinical characteristics of human immunodeficiency virus-associated Hodgkin lymphoma patients in Japan. Int J Hematol. 2012;96(2):247–53. doi: 10.1007/s12185-012-1127-5.
  92. Sombogaard F, Franssen EJF, Terpstra WE. Outcome effects of antiretroviral drug combinations in HIV-positive patients with chemotherapy for lymphoma: a retrospective analysis. Int J Clin Pharm. 2018;40(5):1402–8. doi: 10.1007/s11096-018-0620-1.
  93. Eschke M, Piehler D, Schulze B, et al. A novel experimental model of Cryptococcus neoformans‐related immune reconstitution inflammatory syndrome (IRIS) provides insights into pathogenesis. Eur J Immunol. 2015;45(12):3339–50. doi: 10.1002/eji.201545689.
  94. Tadokera R, Wilkinson KA, Meintjes GA, et al. Role of the interleukin 10 family of cytokines in patients with immune reconstitution inflammatory syndrome associated with HIV infection and tuberculosis. J Infect Dis. 2013;207(7):1148–56. doi: 10.1093/infdis/jit002.
  95. Sereti I, Rodger AJ, French MA. Biomarkers in immune reconstitution inflammatory syndrome: signals from pathogenesis. Curr Opin HIV AIDS. 2010;5(6):504–10. doi: 10.1097/COH.0b013e32833ed774.
  96. Chang CC, Lim A, Omarjee S, et al. Cryptococcosis-IRIS is associated with lower cryptococcus-specific IFN-γ responses before antiretroviral therapy but not higher T-cell responses during therapy. J Infect Dis. 2013;208(6):898–906. doi: 10.1093/infdis/jit271.
  97. Meya DB, Manabe YC, Boulware DR, Janoff EN. The immunopathogenesis of cryptococcal immune reconstitution inflammatory syndrome: understanding a conundrum. Curr Opin Infect Dis. 2016;29(1):10–22. doi: 10.1097/QCO.0000000000000224.
  98. de Sa NBR, Ribeiro-Alves M, da Silva TP, et al. Clinical and genetic markers associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. BMC Infect Dis. 2020;20(1):59. doi: 10.1186/s12879-020-4786-5.
  99. Crane M, Matthews G, Lewin SR. Hepatitis virus immune restoration disease of the liver. Curr Opin HIV AIDS. 2008;3(4):446–52. doi: 10.1097/coh.0b013e3282fdc953.
  100. Ravimohan S, Tamuhla N, Nfanyana K, et al. Robust Reconstitution of Tuberculosis-Specific Polyfunctional CD4+ T-Cell Responses and Rising Systemic Interleukin 6 in Paradoxical Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. Clin Infect Dis. 2016;62(6):795–803. doi: 10.1093/cid/civ978.
  101. Stek C, Allwood B, Du Bruyn E, et al. The effect of HIV-associated tuberculosis, tuberculosis-IRIS and prednisone on lung function. Eur Respir J. 2020;55(3):1901692. doi: 10.1183/13993003.01692-2019.
  102. Dhasmana DJ, Dheda K, Ravn P, et al. Immune reconstitution inflammatory syndrome in HIV–infected patients receiving antiretroviral therapy: pathogenesis, clinical manifestations and management. Drugs. 2008;68:191–208. doi: 10.2165/00003495-200868020-00004.
  103. Beishuizen SJ, Geerlings SE. Immune reconstitution inflammatory syndrome: immunopathogenesis, risk factors, diagnosis and prevention. Neth J Med. 2009;67(10):327–31.
  104. Herida A, Mary-Krause M, Kaphan R, et al. Incidence of non AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients. J Clin Oncol. 2003;21(8):3447–53. doi: 10.1200/JCO.2003.01.096.
  105. Clifford GM, Polesel J, Rickenbach M, et al.; for the Swiss HIV Cohort. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005;97(6):425–32. doi: 10.1093/jnci/dji072.
  106. Stein H, Hummel M. Hodgkin’s disease: biology and origins of Hodgkin and Reed-Sternberg cells. Cancer Treat Rev. 1999;25(3):161–8. doi: 10.1053/ctrv.1999.0117.
  107. Chan The Reed-Sternberg cells in classical Hodgkin’s disease. Hematol Oncol. 2001;19(1):1–17. doi: 10.1002/hon.659.

Множественная миелома и вакцины на основе дендритных клеток

И.В. Грибкова, А.А. Завьялов

ГБУ «НИИ организации здравоохранения и медицинского менеджмента ДЗМ», ул. Шарикоподшипниковская, д. 9, Москва, Российская Федерация, 115088

Для переписки: Ирина Владимировна Грибкова, канд. биол. наук, ул. Шарикоподшипниковская, д. 9, Москва, Российская Федерация, 115088; тел.: +7(916)078-73-90; e-mail: igribkova@yandex.ru

Для цитирования: Грибкова И.В., Завьялов А.А. Множественная миелома и вакцины на основе дендритных клеток. Клиническая онкогематология. 2021;14(3):370–7.

DOI: 10.21320/2500-2139-2021-14-3-370-377


РЕФЕРАТ

Несмотря на успехи, достигнутые в лечении множественной миеломы, у большинства пациентов после его окончания сохраняется минимальная остаточная болезнь (МОБ-положительный статус), что повышает риск развития рецидива. Антигенспецифическая иммунотерапия опухолей позволяет улучшить клинический исход у таких пациентов за счет уничтожения устойчивого к лекарственному противоопухолевому воздействию клона опухолевых клеток без повреждения нормальных тканей. Дендритные клетки (ДК) представляют собой антигенпрезентирующие элементы, главной функцией которых является захват антигенов, процессинг и представление их наивным Т-лимфоцитам для активации иммунного ответа против захваченного антигена. Уникальные способности ДК активировать Т-хелперы, а также цитотоксические Т-лимфоциты и посредством этого определять направленность иммунных реакций использовались для разработки иммунотерапии опухолей на основе ДК. Такой подход предполагает применение так называемых ДК-вакцин. К настоящему времени уже имеются результаты клинических исследований по использованию ДК-вакцин при различных опухолях, включая гематологические. В целом, согласно проведенным испытаниям, ДК-вакцины характеризуются удовлетворительным профилем безопасности, умеренной иммунной активностью и умеренной клинической эффективностью. В настоящем обзоре рассматриваются результаты клинических исследований по использованию вакцин на основе ДК у больных множественной миеломой. Кроме того, обсуждаются возможности повышения клинической эффективности данной терапии.

Ключевые слова: множественная миелома, дендритные клетки, ДК-вакцины, гематологические злокачественные новообразования, иммунотерапия.

Получено: 9 марта 2021 г.

Принято в печать: 11 июня 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Семочкин С.В. Новые ингибиторы протеасомы в терапии множественной миеломы. Онкогематология. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40.
    [Semochkin SV. New proteasome inhibitors in the management of multiple myeloma. Onkogematologiya. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40. (In Russ)]
  2. Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol. 2017;183:181–90. doi: 10.1016/j.clim.2017.08.016.
  3. Mody N, Dubey S, Sharma R, et al. Dendritic cell-based vaccine research against cancer. Expert Rev Clin Immunol. 2015;11(2):213–32. doi: 10.1586/1744666X.2015.987663.
  4. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52. doi: 10.1038/32588.
  5. Ito T, Liu YJ, Kadowaki N. Functional diversity and plasticity of human dendritic cell subsets. Int J Hematol. 2005;81(3):188–96. doi: 10.1532/IJH97.05012.
  6. Qian X, Wang X, Jin H. Cell transfer therapy for cancer: past, present, and future. J Immunol Res. 2014;2014:1–9. doi: 10.1155/2014/525913.
  7. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–77. doi: 10.1038/nrc3258.
  8. Марков О.В., Миронова Н.Л., Власов В.В., Зенкова М.А. Противоопухолевые вакцины на основе дендритных клеток: от экспериментов на животных моделях до клинических испытаний. Acta Naturae. 2017;9(3):29–41.
    [Markov OV, Mironova NL, Vlasov VV, Zenkova МА. Antitumor vaccines based on dendritic cells: from experiments using animal tumor models to clinical trials. Acta Naturae. 2017;9(3):29–41. (In Russ)]
  9. Богданова И.М., Постовалова Е.А. Клеточная иммунотерапия в онкологии. Противоопухолевые вакцины на основе дендритных клеток. Клиническая и экспериментальная морфология. 2017;22(3):62–73.
    [Bogdanova IM, Postovalova EA. Cellular immunotherapy in oncology. Antitumor vaccines based on dendritic cells. Klinicheskaya i eksperimental’naya morfologiya. 2017;22(3):62–73. (In Russ)]
  10. Yi Q, Szmania S, Freeman J, et al. Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol. 2010;150(5):554–64. doi: 10.1111/j.1365-2141.2010.08286.x.
  11. Hobo W, Strobbe L, Maas F, et al. Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother. 2013;62(8):1381–92. doi: 10.1007/s00262-013-1438-2.
  12. Jung SH, Lee HJ, Lee YK, et al. A phase I clinical study of autologous dendritic cell therapy in patients with relapsed or refractory multiple myeloma. Oncotarget. 2017;8(25):41538–48. doi: 10.18632/oncotarget.14582.
  13. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant. 2000;6(6):621–7. doi: 10.1016/s1083-8791(00)70027-9.
  14. Yi Q, Desikan R, Barlogie B, Munshi N. Optimizing dendritic cell-based immunotherapy in multiple myeloma. Br J Haematol. 2002;117(2):297–305. doi: 10.1046/j.1365-2141.2002.03411.x.
  15. Rosenblatt J, Vasir B, Uhl L, et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011;117(2):393–402. doi: 10.1182/blood-2010-04-277137.
  16. Kitawaki T. DC-based immunotherapy for hematological malignancies. Int J Hematol. 2014;99(2):117–22. doi: 10.1007/s12185-013-1496-4.
  17. Reichardt VL, Okada CY, Liso A, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood. 1999;93(7):2411–9. doi: 10.1182/blood.v93.7.2411.
  18. Massaia M, Borrione P, Battaglio S, et al. Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood. 1999;94(2):673–83. doi: 10.1182/blood.v94.2.673.
  19. Lim SH, Bailey-Wood R. Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int J Cancer. 1999;83(2):215–22. doi: 10.1002/(sici)1097-0215(19991008)83:2<215::aid-ijc12>3.0.co;2-q.
  20. Cull G, Durrant L, Stainer C, et al. Generation of anti-idiotype immune responses following vaccination with idiotype-protein pulsed dendritic cells in myeloma. Br J Haematol. 1999;107(3):648–55. doi: 10.1046/j.1365-2141.1999.01735.x.
  21. Titzer S, Christensen O, Manzke O, et al. Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br J Haematol. 2000;108(4):805–16. doi: 10.1046/j.1365-2141.2000.01958.x.
  22. Lacy MQ, Mandrekar S, Dispenzieri A, et al. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol. 2009;84(12):799–802. doi: 10.1002/ajh.21560.
  23. Rollig C, Schmidt C, Bornhauser M, et al. Induction of cellular immune responses in patients with stage-I multiple myeloma after vaccination with autologous idiotype-pulsed dendritic cells. J Immunother. 2011;34(1):100–6. doi: 10.1097/CJI.0b013e3181facf48.
  24. Rosenblatt J, Avivi I, Vasir B, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res. 2013;19(13):3640–8. doi: 10.1158/1078-0432.CCR-13-0282.
  25. Palumbo A, Rajkumar SV, San Miguel JF, et al. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J Clin Oncol. 2014;32(6):587–600. doi: 10.1200/JCO.2013.48.7934.
  26. Richter J, Neparidze N, Zhang L, et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood. 2013;121(3):423–30. doi: 10.1182/blood-2012-06-435503.
  27. Kolb HJ, Schattenberg A, Goldman JM, et al.; European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86(5):2041–50. doi: 10.1182/blood.v86.5.2041.bloodjournal8652041.
  28. Goulmy Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol Rev. 1997;157(1):125–40. doi: 10.1111/j.1600-065x.1997.tb00978.x.
  29. Oostvogels R, Kneppers E, Minnema MC, et al. Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients. Bone Marrow Transplant. 2017;52(2):228–37. doi: 10.1038/bmt.2016.250.
  30. Franssen LE, Roeven MWH, Hobo W, et al. A phase I/II minor histocompatibility antigen-loaded dendritic cell vaccination trial to safely improve the efficacy of donor lymphocyte infusions in myeloma. Bone Marrow Transplant. 2017;52(10):1378–83. doi: 10.1038/bmt.2017.118.
  31. Weinstock M, Rosenblatt J, Avigan D. Dendritic Cell Therapies for Hematologic Malignancies. Mol Ther Methods Clin Dev. 2017;5:66–75. doi: 10.1016/j.omtm.2017.03.004.
  32. Wilgenhof S, Corthals J, Heirman C, et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol. 2016;34(12):1330–8. doi: 10.1200/JCO.2015.63.4121.
  33. Ribas A, Comin-Anduix B, Chmielowski B, et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin Cancer Res. 2009;15(19):6267–76. doi: 10.1158/1078-0432.CCR-09-1254.
  34. Emens LA, Machiels JP, Reilly RT, Jaffee EM. Chemotherapy: friend or foe to cancer vaccines? Curr Opin Mol Ther. 2001;3(1):77–84.
  35. Emens LA. Chemoimmunotherapy. Cancer J. 2010;16(4):295–303. doi: 10.1097/PPO.0b013e3181eb5066.
  36. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65. doi: 10.1093/jnci/djs629.
  37. Demaria S, Formenti SC. Radiotherapy effects on anti-tumor immunity: implications for cancer treatment. Front Oncol. 2013;3:128. doi: 10.3389/fonc.2013.00128.
  38. Chi KH, Liu SJ, Li CP, et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother. 2005;28(2):129–35. doi: 10.1097/01.cji.0000154248.74383.5e.
  39. Shibamoto Y, Okamoto M, Kobayashi M, et al. Immune-maximizing (IMAX) therapy for cancer: Combination of dendritic cell vaccine and intensity-modulated radiation. Mol Clin Oncol. 2013;1(4):649–54. doi: 10.3892/mco.2013.108.
  40. de Haas N, de Koning C, Spilgies L, et al. Improving cancer immunotherapy by targeting the STATe of MDSCs. Oncoimmunology. 2016;5(7):e1196312. doi: 10.1080/2162402X.2016.1196312.
  41. Butt AQ, Mills KH. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene. 2014;33(38):4623–31. doi: 10.1038/onc.2013.432.
  42. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;3. В печати.
    [Gribkova IV, Zavyalov AA. Chimeric antigen receptor T‑cell therapy of B-cell non-Hodgkin’s lymphoma: opportunities and challenges. Voprosy onkologii. 2021;3. In print. (In Russ)]
  43. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза: обзор литературы. Клиническая онкогематология. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230.
    [Gribkova IV, Zavyalov AA. CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review. Clinical oncohematology. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230. (In Russ)]
  44. Stripecke R, Cardoso AA, Pepper KA, et al. Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage–colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood. 2000;96(4):1317–26. doi: 10.1182/blood.v96.4.1317.
  45. Sundarasetty BS, Singh VK, Salguero G, et al. Lentivirus-induced dendritic cells for immunization against high-risk WT1(+) acute myeloid leukemia. Hum Gene Ther. 2013;24(2):220–37. doi: 10.1089/hum.2012.128.

Лечение пациентов с мастоцитозом: обзор литературы

К.М. Чернавина1, А.С. Орлова1, Е.А. Никитин2

1 ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России, ул. Трубецкая, д. 8, стр. 2, Москва, Российская Федерация, 119991

2 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, ул. Баррикадная, д. 2/1, Москва, Российская Федерация, 125993

Для переписки: Карина Максимовна Чернавина, ул. Трубецкая, д. 8, стр. 2, Москва, Российская Федерация, 119992; e-mail: Shkyrlak@gmail.com

Для цитирования: Чернавина К.М., Орлова А.С., Никитин Е.А. Лечение пациентов с мастоцитозом: обзор литературы. Клиническая онкогематология. 2021;14(3):361–9.

DOI: 10.21320/2500-2139-2021-14-3-361-369


РЕФЕРАТ

Термин «мастоцитоз» объединяет группу редких гетерогенных расстройств, возникающих в результате пролиферации и накопления неопластических тучных клеток в различных органах. Согласно классификации Всемирной организации здравоохранения (ВОЗ), выделяют три вида заболевания: кожный мастоцитоз, системный мастоцитоз (СМ) и тучноклеточная саркома (ТКС). СМ в зависимости от степени агрессивности может быть индолентным, тлеющим, агрессивным (АСМ) или ассоциированным с другим пролиферативным гематологическим заболеванием нетучноклеточной линии (СМ-АГЗ). СМ также включает тучноклеточный лейкоз (ТКЛ). В многочисленных исследованиях подтверждается прогностическое значение классификации ВОЗ. Все пациенты с мастоцитозом нуждаются в лечении, направленном на купирование симптомов активации тучных клеток. При прогностически неблагоприятных формах мастоцитоза, таких как АСМ, СМ-АГЗ, ТКЛ и ТКС, также необходимо рассмотреть более интенсивные методы лечения, включающие применение трансплантации аллогенных гемопоэтических стволовых клеток, циторедуктивной терапии ингибиторами тирозинкиназ (ИТК), интерфероном-α и кладрибином. Ведущую роль в патогенезе мастоцитоза занимают мутации в различных экзонах гена KIT. Наиболее часто обнаруживается активирующая мутация KITD816V (80–90 % случаев СМ). Разработан ряд ИТК, некоторые из которых (иматиниба мезилат и мидостаурин) успешно использовались в рамках клинических исследований и были одобрены для лечения пациентов с прогностически неблагоприятными формами мастоцитоза. Однако применение только ИТК не обеспечивает длительную ремиссию заболевания у ряда пациентов ввиду развития резистентности к лечению, обусловленной активирующими мутациями KIT, а также наличием других дополнительных соматических мутаций и молекулярных изменений. В обзоре для сравнительной оценки приводятся результаты наиболее крупных клинических исследований, касающихся различных методов лечения пациентов с мастоцитозом.

Ключевые слова: тучные клетки, мастоцитоз, мутация KITD816V, таргетное лечение, ингибиторы тирозинкиназ, иматиниб, мидостаурин.

Получено: 12 марта 2021 г.

Принято в печать: 10 июня 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Gotlib J, Gerds AT, Bose P, et al. Systemic Mastocytosis, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16(12):1500–37. doi: 10.6004/jnccn.2018.0088.
  2. Bibi S, Arock M. Tyrosine Kinase Inhibition in Mastocytosis: KIT and Beyond KIT. Immunol Allergy Clin North 2018;38(3):527–43. doi: 10.1016/j.iac.2018.04.007.
  3. Pardanani A. Systemic mastocytosis in adults: 2017 update on diagnosis, risk stratification and management. Am J Hematol. 2016;91(11):1146–59. doi: 10.1002/ajh.24553.
  4. Valent P, Sotlar K, Blatt K, et al. Proposed diagnostic criteria and classification of basophilic leukemias and related disorders. Leukemia. 2017;31(4):788–97. doi: 10.1038/leu.2017.15.
  5. Swerdlow SH, Campo E, Harris N, et al. (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. 4th edition. Lyon: IARC Press; 2017. 586 p.
  6. Valent P, Akin C, Metcalfe DD. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood. 2017;129(11):1420–7. doi: 10.1182/blood-2016-09-731893.
  7. Valent P, Akin C, Hartmann K, et al. Advances in the Classification and Treatment of Mastocytosis: Current Status and Outlook toward the Future. Cancer Res. 2017;77(6):1261–70. doi: 10.1158/0008-5472.CAN-16-2234.
  8. Parwaresch MR, Horny HP, Lennert K. Tissue mast cells in health and disease. Pathol Res Pract. 1985;179(4–5):439–61. doi: 10.1016/s0344-0338(85)80184-9.
  9. Valent P, Akin C, Sperr WR et al. Diagnosis and treatment of systemic mastocytosis: state of the art. Br J Haematol. 2003;122(5):695–717. doi: 10.1046/j.1365-2141.2003.04575.x.
  10. Metcalfe DD. Mast cells and mastocytosis. Blood. 2008;112(4):946–56. doi: 10.1182/blood-2007-11-078097.
  11. Horny HP, Parwaresch MR, Lennert K. Bone marrow findings in systemic mastocytosis. Hum Pathol. 1985;16(8):808–14. doi: 1016/s0046-8177(85)80252-5.
  12. Carter MC, Metcalfe DD, Komarow HD. Immunol Allergy Clin North Am. 2014;34(1):181–96. doi: 10.1016/j.iac.2013.09.001.
  13. Valent P, Akin C, Escribano L, et al. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Invest. 2007;37(6):435–53. doi: 10.1111/j.1365-2362.2007.01807.x.
  14. Hartmann K, Escribano L, Grattan C, et al. Cutaneous manifestations in patients with mastocytosis: Consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma & Immunology; and the European Academy of Allergology and Clinical Immunology. J Allergy Clin Immunol. 2016;137(1):35–45. doi: 10.1016/j.jaci.2015.08.034.
  15. Valent P, Horny HP, Escribano L, et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res. 2001;25(7):603–25. doi: 10.1016/s0145-2126(01)00038-8.
  16. Komi DEA, Rambasek T, Wohrl S. Mastocytosis: from a molecular point of view. Clin Rev Allergy Immunol. 2018;54(3):397–411. doi: 10.1007/s12016-017-8619-2.
  17. Lange M, Nedoszytko B, Gorska A, et al. Mastocytosis in children and adults: clinical disease heterogeneity. Arch Med Sci. 2012;8(3):533–41. doi: 10.5114/aoms.2012.29409.
  18. Brockow K, Metcalfe DD. Mastocytosis. Chem Immunol Allergy. 2010;95:110–24. doi: 10.1159/000315946.
  19. Valent P, Sotlar K, Sperr WR, et al. Refined diagnostic criteria and classification of mast cell leukemia (MCL) and myelomastocytic leukemia (MML): a consensus proposal. Ann Oncol. 2014;25(9):1691–700. doi: 10.1093/annonc/mdu047.
  20. Falchi L, Verstovsek S. Kit Mutations: New Insights and Diagnostic Value. Immunol Allergy Clin North Am. 2018;38(3):411–28. doi: 10.1016/j.iac.2018.04.005.
  21. Cohen SS, Skovbo S, Vestergaard H, et al. Epidemiology of systemic mastocytosis in Denmark. Br J Haematol. 2014;166(4):521–8. doi: 10.1111/bjh.12916.
  22. Morales JK, Falanga YT, Depcrynski A, et al. Mast cell homeostasis and the JAK-STAT pathway. Genes Immun. 2010;11(8):599–608. doi: 10.1038/gene.2010.35.
  23. Sperr WR, Horny HP, Valent P. Spectrum of associated clonal hematologic non-mast cell lineage disorders occurring in patients with systemic mastocytosis. Int Arch Allergy Immunol. 2002;127(2):140–2. doi: 10.1159/000048186.
  24. Arock M, Akin C, Hermine O, et al. Current treatment options in patients with mastocytosis: status in 2015 and future perspectives. Eur J Haematol. 2015;94(6):474–90. doi: 10.1111/ejh.12544.
  25. Шкурлатовская К.М., Орлова А.С., Силина Е.В. и др. Молекулярно-генетические механизмы мастоцитоза. Патологическая физиология и экспериментальная терапия. 2019;63(3):127–33. doi: 10.25557/0031-2991.2019.03.127-133.
    [Shkurlatovskaia KM, Orlova AS, Silina EV, et al. Molecular and genetic mechanisms of mastocytosis. Patologicheskaya fiziologiya i eksperimental’naya terapiya. 2019;63(3):127–33. doi: 10.25557/0031-2991.2019.03.127-133. (In Russ)]
  26. Pardanani A. Systemic mastocytosis in adults: 2019 update on diagnosis, risk stratification and management. Am J Hematol. 2019;94(3):363–77. doi: 10.1002/ajh.25371.
  27. Cardet JC, Akin C, Lee MJ. Mastocytosis: update on pharmacotherapy and future directions. Expert Opin Pharmacother. 2013;14(15):2033–45. doi: 10.1517/14656566.2013.824424.
  28. Халиулин Г.Ю. Мастоцитоз: клинические проявления, методы диагностики и тактика ведения пациентов. Лечащий врач. 2012;8:83.
    [Khaliulin GYu. Mastocytosis: clinical manifestations, diagnostic methods, and patient management strategy. Lechashchii vrach. 2012;8:83. (In Russ)]
  29. Scherber RM, Borate U. How we diagnose and treat systemic mastocytosis in adults. Br J Haematol. 2018;180(1):11–23. doi: 10.1111/bjh.14967.
  30. Дробик О.С., Воронова М.Ю. Омализумаб: новые горизонты в терапии хронической спонтанной крапивницы. Эффективная фармакотерапия. 2014;44:36–43.
    [Drobik OS, Voronova MYu. Omalizumab: new horizons in the therapy of chronic spontaneous urticaria. Effektivnaya farmakoterapiya. 2014;44:36–43. (In Russ)]
  31. Valent P, Akin C, Sperr WR, et al. Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria. Leuk Res. 2003;27(7):635–41. doi: 10.1016/s0145-2126(02)00168-6.
  32. Alvarez-Twose I, Matito A, Morgado JM, et al. Imatinib in systemic mastocytosis: a phase IV clinical trial in patients lacking exon 17. Oncotarget. 2017;8(40):68950–63. doi: 10.18632/oncotarget.10711.
  33. Gotlib J, Pardanani A, Akin C, et al. International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) & European Competence Network on Mastocytosis (ECNM) consensus response criteria in advanced systemic mastocytosis. Blood. 2013;121(13):2393–401. doi: 10.1182/blood-2012-09-458521.
  34. Ustun C, Reiter A, Scott BL, et al. Hematopoietic stem-cell transplantation for advanced systemic mastocytosis. J Clin Oncol. 2014;32(29):3264–74. doi: 10.1200/JCO.2014.55.2018.
  35. Simon J, Lortholary O, Caillat-Vigneron N, et al. Interest of interferon alpha in systemic mastocytosis. The French experience and review of the literature. Pathol Biol (Paris). 2004;52(5):294–9. doi: 10.1016/j.patbio.2004.04.012.
  36. Lim KH, Pardanani A, Butterfield JH, et al. Cytoreductive therapy in 108 adults with systemic mastocytosis: Outcome analysis and response prediction during treatment with interferon-alpha, hydroxyurea, imatinib mesylate or 2-chlorodeoxyadenosine. Am J Hematol. 2009;84(12):790–4. doi: 10.1002/ajh.21561.
  37. Barete S, Lortholary O, Damaj G, et al. Long-term efficacy and safety of cladribine (2-CdA) in adult patients with mastocytosis. Blood. 2015;126(8):1009–16. doi: 10.1182/blood-2014-12-614743.
  38. Hochhaus A, Baccarani M, Giles FJ, et al. Nilotinib in patients with systemic mastocytosis: analysis of the phase 2, open-label, single-arm nilotinib registration study. J Cancer Res Clin Oncol. 2015;141(11):2047–60. doi: 10.1007/s00432-015-1988-0.
  39. Verstovsek S, Tefferi A, Cortes J, et al. Phase II study of dasatinib in Philadelphia chromosome-negative acute and chronic myeloid diseases, including systemic mastocytosis. Clin Cancer Res. 2008;14(12):3906–15. doi: 10.1158/1078-0432.CCR-08-0366.
  40. Gotlib J, Kluin-Nelemans HC, George TI, et al. Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis. N Engl J Med. 2016;374(26):2530–41. doi: 10.1056/NEJMoa1513098.
  41. DeAngelo DJ, George TI, Linder A, et al. Efficacy and safety of midostaurin in patients with advanced systemic mastocytosis: 10-year median follow-up of a phase II trial. Leukemia. 2018;32(2):470–8. doi: 10.1038/leu.2017.234.
  42. Deininger MW, Gotlib J, Robinson WA, et al. А vapritinib (BLU-285), a selective kit inhibitor, is associated with high response rate and tolerable safety profile in advanced systemic mastocytosis (ADVSM): results of a phase 1 study. 2018. [Internet] Available from: https://www.blueprintmedicines.com/wp-content/uploads/2018/12/2018_EHA_EXPLORER_Ph1_Avapritinib_AdvSM.pdf (accessed 15.03.2021).
  43. Ustun C, Gotlib J, Popat U, et al. Consensus Opinion on Allogeneic Hematopoietic Cell Transplantation in Advanced Systemic Mastocytosis. Biol Blood Marrow Transplant. 2016;22(8):1348–56. doi: 10.1016/j.bbmt.2016.04.018.
  44. Gilreath JA, Tchertanov L, Deininger MW. Novel approaches to treating advanced systemic mastocytosis. Clin Pharmacol. 2019;11:77–92. doi: 10.2147/CPAA.S206615.
  45. Ma Y, Zeng S, Metcalfe DD, et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. 2002;99(5):1741–4. doi: 10.1182/blood.v99.5.1741.
  46. Dubreuil P, Letard S, Ciufolini M, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PloS One. 2009;4(9):e7258. doi: 10.1371/journal.pone.0007258.
  47. Saleh R, Wedeh G, Herrmann H, et al. A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection. Blood. 2014;124(1):111–20. doi: 10.1182/blood-2013-10-534685.
  48. Gotlib J, Berube C, Growney JD, et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood. 2005;106(8):2865–70. doi: 10.1182/blood-2005-04-1568.
  49. S. Food and Drug Administration. [Internet] Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/midostaurin (accessed 15.03.2021).
  50. Lortholary O, Chandesris MO, Bulai Livideanu C, et al. Masitinib for treatment of severely symptomatic indolent systemic mastocytosis: a randomised, placebo-controlled, phase 3 study. Lancet. 2017;389(10069):612–20. doi: 10.1016/S0140-6736(16)31403-9.
  51. Paul C, Sans B, Suarez F, et al. Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study. Am J Hematol. 2010;85(12):921–5. doi: 10.1002/ajh.21894.
  52. Bibi S, Arslanhan MD, Langenfeld F, et al. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica. 2014;99(3):417–29. doi: 10.3324/haematol.2013.098442.