Профилактика острой реакции «трансплантат против хозяина» после аллогенной неродственной трансплантации гемопоэтических стволовых клеток: сравнение эффективности программ на основе антитимоцитарного глобулина или циклофосфамида

О.В. Пирогова, И.С. Моисеев, Е.В. Бабенко, О.А. Слесарчук, О.В. Паина, С.Н. Бондаренко, Е.В. Морозова, А.Л. Алянский, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Ольга Владиславовна Пирогова, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)338-62-65; e-mail: dr.pirogova@gmail.com

Для цитирования: Пирогова О.В., Моисеев И.С., Бабенко Е.В. и др. Профилактика острой реакции «трансплантат против хозяина» после аллогенной неродственной трансплантации гемопоэтических стволовых клеток: сравнение эффективности программ на основе антитимоцитарного глобулина или циклофосфамида. Клиническая онкогематология. 2016;9(4):391–397.

DOI: 10.21320/2500-2139-2016-9-4-391-397


РЕФЕРАТ

Актуальность и цели. До настоящего времени не представлены данные об эффективности профилактики реакции «трансплантат против хозяина» (РТПХ) с помощью циклофосфамида, назначаемого в посттрансплантационный период у больных после неродственной аллогенной трансплантации гемопоэтических стволовых клеток (аллоТГСК). Цель — оценить заболеваемость острой и хронической РТПХ, трансплантационную летальность, бессобытийную и общую выживаемость, а также профиль токсичности и частоту инфекционных осложнений в исследуемой группе с применением циклофосфамида для профилактики РТПХ; провести сравнительный анализ полученных результатов с группой исторического контроля.

Методы. В клиническое исследование (№ NCT02294552) по оценке эффективности профилактики РТПХ с использованием посттрансплантационного циклофосфамида (ПТЦ) вошло 110 взрослых пациентов. С целью профилактики РТПХ в исследуемой группе пациентов (группа ПТЦ) использовались циклофосфамид, такролимус и микофенолата мофетил (ММФ). Группу исторического контроля (группа АТГ) составили 160 пациентов с режимом профилактики РТПХ, включавшим антитимоцитарный глобулин (АТГ), ингибиторы кальциневрина и метотрексат либо ММФ. В качестве источника трансплантата использовались стволовые клетки периферической крови.

Результаты. При оценке кумулятивная частота острой РТПХ II–IV степени (18,2 vs 40,4 %; < 0,0001), III–IV степени (4,5 vs 22,5 %; < 0,0001) и хронической РТПХ (21,7 vs 40,6 %; < 0,0001) была статистически значимо ниже в группе ПТЦ в сравнении с АТГ. Профилактика РТПХ на основе циклофосфамида связана со снижением трансплантационной летальности (12,7 vs 33,7 %; = 0,003), повышением показателей 3-летней общей выживаемости (70,9 vs 44,4 %; < 0,001), бессобытийной выживаемости (68,2 vs 38,1 %; < 0,001) и выживаемости без РТПХ и рецидива (59,1 vs 16,3 %; = 0,001). Профилактика РТПХ с использованием циклофосфамида в сравнении с режимом на основе АТГ была менее токсичной, сопровождалась снижением частоты веноокклюзионной болезни (2,7 vs 10,9 %; = 0,016), числа тяжелых мукозитов (69,5 vs 87,6 %; < 0,001), а также инвазивных микозов (7,2 vs 29 %; < 0,001).

Заключение. Циклофосфамид в комбинации с такролимусом и ММФ — эффективный режим профилактики РТПХ у больных после аллоТГСК от неродственного донора.


Ключевые слова: реакция «трансплантат против хозяина», профилактика РТПХ, аллоТГСК, циклофосфамид, антитимоцитарный глобулин.

Получено: 30 марта 2016 г.

Принято в печать: 4 мая 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Thomas’ Hematopoietic Cell Transplantation. 3rd edition. Malden, MA: Blackwell Science Publishers; 2004. pp. 130–77. doi: 10.1002/9780470987070.
  2. Szydlo R, Goldman JM, Klein JP, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol. 1997;15(5):1767–77.
  3. Di Stasi A, Milton DR, Poon LM, et al. Similar transplantation outcomes for acute myeloid leukemia and myelodysplastic syndrome patients with haploidentical versus 10/10 human leukocyte antigen-matched unrelated and related donors. Biol Blood Marrow Transplant. 2014;20(12):1975–81. doi: 10.1016/j.bbmt.2014.08.013.
  4. Zuckerman T, Rowe JM. Alternative donor transplantation in acute myeloid leukemia: which source and when? Curr Opin Hematol. 2007;14(2):152–61. doi: 1097/moh.0b013e328017f64d.
  5. Tolar J, Sodani P, Symons H, et al. Alternative donor transplant of benign primary hematologic disorders. Bone Marrow Transplant. 2015;50(5):619–27. doi: 10.1038/bmt.2015.1.
  6. Anasetti C, Beatty PG, Storb R, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol. 1990;29(2):79–91. doi: 10.1016/0198-8859(90)90071-v.
  7. Kanda Y, Chiba S, Hirai H, et al. Allogeneic hematopoietic stem cell transplantation from family members other than HLA-identical siblings over the last decade (1991–2000). Blood. 2003;102(4):1541–7. doi: 10.1182/blood-2003-02-0430.
  8. Ruutu T, Gratwohl A, de Witte T, et al. Prophylaxis and treatment of GVHD: EBMT-ELN working group recommendations for a standardized practice. Bone Marrow Transplant. 2014;49(2):168–73. doi: 10.1038/bmt.2013.107.
  9. Flowers ME, Inamoto Y, Carpenter PA, et al. Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria. 2011;117(11):3214–9. doi: 10.1182/blood-2010-08-302109.
  10. Finke J, Bethge WA, Schmoor C, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncol. 2009;10(9):855–64. doi: 10.1016/S1470-2045(09)70225-6.
  11. Soiffer RJ, LeRademacher J, Ho V, et al. Impact of immune modulation with anti-T-cell antibodies on the outcome of reduced-intensity allogeneic hematopoietic stem cell transplantation for hematologic malignancies. 2011;117(25):6963–70. doi: 10.1182/blood-2011-01-332007.
  12. O’Donnell MR, Long GD, Parker PM, et al. Busulfan/cyclophosphamide as conditioning regimen for allogeneic bone marrow transplantation for myelodysplasia. J Clin Oncol. 1995;13(12):2973–9.
  13. Lehnert S, Rybka WB. Amplification of the graft-versus-host reaction by cyclophosphamide: dependence on timing of drug administration. Bone Marrow Transplant. 1994;13(4):473–7. doi: 10.1097/00007890-198606000-00002.
  14. Mayumi H, Himeno K, Tanaka K, et al. Drug-induced tolerance to allografts in mice: Xii. The relationships between tolerance, chimerism, and graft-versus-host disease. Transplantation. 1987;44(2):286–90. doi: 10.1097/00007890-19870800-00021.
  15. Luznik L, Jalla S, Engstrom LW, et al. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001;98(12):3456–64. doi: 10.1182/blood.v98.12.3456.
  16. Santos GW, Owens AH Jr. A comparison of the effects of selected cytotoxic agents on allogeneic skin graft survival in rats. Bull Johns Hopkins Hosp. 1965;116:327–40.
  17. Berenbaum MC. Prolongation of homograft survival in mice with single doses of cyclophosphamide. 1963;200(4901):84. doi: 10.1038/200084a0.
  18. Owens AH Jr, Santos GW. The effect of cytotoxic drugs on graft-versus-host disease in mice. Transplantation. 1971;11(4):378–82. doi: 10.1097/00007890-197104000-00004.
  19. Luznik L, O’Donnell PV, Symons HJ, et al. HLA-Haploidentical Bone Marrow Transplantation for Hematologic Malignancies Using Nonmyeloablative Conditioning and High-Dose, Posttransplantation Cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–50. doi: 10.1016/j.bbmt.2008.03.005.
  20. Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15(6):825–8.
  21. Filipovich AH, Weisdorf D, Pavletic S, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;11(12):945–56. doi: 1016/j.bbmt.2005.09.004.
  22. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637. doi: 10.1007/s00134-012-2769-8.
  23. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21. doi: 10.1086/588660.
  24. Luznik L, Bolanos-Meade J, Zahuraket M, et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. 2010;115(16):3224–30. doi: 10.1182/blood-2009-11-251595.
  25. Kanakry CG, Tsai HL, Bolanos-Meade J, et al. Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. 2014;124(25):3817–27. doi: 10.1182/blood-2014-07-587477.
  26. Bradstock KF, Bilmon I, Kwan J, et al. Single-Agent High-Dose Cyclophosphamide for Graft-versus-Host Disease Prophylaxis in Human Leukocyte Antigen-Matched Reduced-Intensity Peripheral Blood Stem Cell Transplantation Results in an Unacceptably High Rate of Severe Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2015;21(5):941–4. doi: 10.1016/j.bbmt.2015.01.020.
  27. Holtick U, Chemnitz JM, Shimabukuro-Vornhagen A, et al. OCTET-CY: a phase II study to investigate the efficacy of post-transplant cyclophosphamide as sole graft-versus-host prophylaxis after allogeneic peripheral blood stem cell transplantation. Eur J Haematol. 2015;96(1):27–35. doi: 10.1111/ejh.12541.
  28. Solomon SR, Sanacore M, Zhang X, et al. Calcineurin inhibitor-free graft-versus-host disease prophylaxis with post-transplantation cyclophosphamide and brief-course sirolimus following reduced-intensity peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(11):1828–34. doi: 10.1016/j.bbmt.2014.07.020.

Исход аллогенной трансплантации гемопоэтических стволовых клеток при острых миелоидных лейкозах с гипердиплоидным кариотипом

Т.Л. Гиндина, Н.Н. Мамаев, Е.С. Николаева, С.Н. Бондаренко, О.А. Слесарчук, А.С. Боровкова, С.В. Разумова, О.В. Пирогова, А.Л. Алянский, Л.С. Зубаровская, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Татьяна Леонидовна Гиндина, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: + 7(812)233-12-43; e-mail: cytogenetics.bmt.lab@gmail.com

Для цитирования: Гиндина Т.Л., Мамаев Н.Н., Николаева Е.С. и др. Исход аллогенной трансплантации гемопоэтических стволовых клеток при острых миелоидных лейкозах с гипердиплоидным кариотипом. Клиническая онкогематология. 2016;9(4):383–90.

DOI: 10.21320/2500-2139-2016-9-4-383-390


РЕФЕРАТ

Цель. Оценить прогностическое значение различных цитогенетических характеристик, включая модальное число хромосом, количество хромосомных нарушений в сложном кариотипе и прогностически неблагоприятные хромосомные аномалии — НХА (–7/7q–, –5/5q–, –17/17p–, t(6;9)(p22;q34)), а также их влияние на результаты аллогенной трансплантации гемопоэтических стволовых клеток (аллоТГСК) у больных с вариантом острого миелоидного лейкоза (ОМЛ), при котором наблюдается гипердиплоидный кариотип (ГВ-ОМЛ).

Методы. Обследовано 47 больных c ГВ-ОМЛ (21 женщина и 26 мужчин в возрасте 1–58 лет, медиана 23,9 года). Проведен анализ предикторов общей (ОВ) и бессобытийной выживаемости (БСВ) после аллоТГСК у больных с различными клиническими, трансплантационными и цитогенетическими характеристиками.

Результаты. Наиболее частым в кариотипе было модальное число хромосом (МЧХ) 47–48. МЧХ наблюдали у 31 (66 %) больного. Высокая гипердиплоидия с числом хромосом 49–65 была выявлена у 13 (28 %) больных, а у 3 (6 %) — число хромосом приближалось к три- и тетраплоидному набору. Количественные аномалии хромосом оказались неслучайными. Самыми частыми были трисомии хромосом 8 (50 %), 21 (32 %), 13 (16 %) и 22 (16 %). Структурные хромосомные нарушения выявлены у 22 (47 %) больных, причем у 7 (19 %) — НХА (маркеры неблагоприятного прогноза). Однофакторный анализ выявил, что показатели ОВ и БСВ после аллоТГСК различались у больных с разным клиническим статусом на момент трансплантации (ремиссия vs вне ремиссии; = 0,003 и = 0,002 соответственно) и с разными хромосомными аномалиями в гипердиплоидном кариотипе (НХА– vs НХА+; = 0,001 и = 0,03 соответственно). Дополнительный анализ в специально отобранной группе больных со сложным кариотипом (n = 19) показал, что ОВ у больных без НХА была лучше, чем у больных с НХА (= 0,03). При многофакторном анализе независимыми предикторами ухудшения ОВ и БСВ оказались статус заболевания (рецидив) на момент аллоТГСК (= 0,004 и = 0,006 соответственно) и наличие НХА (= 0,002 только для ОВ).

Заключение. Факторами высокого риска у больных ГВ-ОМЛ, которым выполнялись аллоТГСК, являются НХА. Пациенты с формальными критериями сложного кариотипа (³ 3 аномалий хромосом) не должны автоматически включаться в цитогенетическую группу неблагоприятного риска.


Ключевые слова: гипердиплоидный и сложный кариотипы, острый миелоидный лейкоз, аллогенная трансплантация гемопоэтических стволовых клеток, прогноз.

Получено: 17 апреля 2016 г.

Принято в печать: 5 мая 2016 г.

Читать статью в PDF pdficon


ЛИТЕРАТУРА

  1. Chilton L, Hills RK, Harrison CJ, et al. Hyperdiploidy with 49-65 chromosomes represents a heterogeneous cytogenetic subgroup of acute myeloid leukemia with differential outcome. Leukemia. 2013;28(2):321–8. doi: 1038/leu.2013.198.
  2. Sandahl JD, Kjeldsen E, Abrahamsson J, et al. Ploidy and clinical characteristics of childhood acute myeloid leukemia: a NOPHO-AML study. Genes Chromos Cancer. 2014;53(8):667–75. doi: 1002/gcc.22177.
  3. Stolzel F, Mohr B, Kramer M, et al. Karyotype complexity and prognosis in acute myeloid leukemia. Blood Cancer J. 2016;6:e386. doi: 101038/bcj.2015.114.
  4. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 1182/blood-2009-07-235358.
  5. Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354–65. doi: 1182/blood-2009-11-254441.
  6. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6.
    [Gindina TL, Mamaev NN, Barkhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6. (In Russ)]
  7. Schaffer L, McGovan-Jordan J, Schmid M. An International System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013. pp. 140. doi: 10.1002/ajmg.a.35995.
  8. Guo RJ, Atenafu EG, Craddock K, et al. Allogeneic hematopoietic cell transplantation may alleviate the negative prognostic impact of monosomal and complex karyotypes on patients with acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(5):690–5. doi: 1016/j.bbmt.2014.01.027.

Аллогенная трансплантация гемопоэтических стволовых клеток при миелофиброзе

М.В. Барабанщикова, Е.В. Морозова, В.В. Байков, И.М. Бархатов, Н.Н. Мамаев, С.Н. Бондаренко, А.Л. Алянский, Л.С. Зубаровская, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Людмила Степановна Зубаровская, д-р мед. наук, профессор, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)338-62-64; e-mail: zubarovskaya_ls@mail.ru

Для цитирования: Барабанщикова М.В., Морозова Е.В., Байков В.В. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при миелофиброзе. Клиническая онкогематология. 2016;9(3):279-86.

DOI: 10.21320/2500-2139-2016-9-3-279-286


РЕФЕРАТ

Актуальность и цели. Аллогенная трансплантация гемопоэтических стволовых клеток (аллоТГСК) в настоящее время является единственным методом, позволяющим добиться излечения пациентов с миелофиброзом (МФ), особенно промежуточной и высокой группы риска. Цель исследования — провести ретроспективный анализ результатов аллоТГСК у пациентов с МФ.

Материалы и методы. В исследовании представлены результаты аллоТГСК у 11 пациентов с промежуточным-2 (n = 3) и высоким (n = 6) риском по динамической прогностической шкале DIPSSplus, проведенной в НИИДОГиТ им. Р.М. Горбачевой с 2005 по 2015 г. Еще у 2 пациентов аллоТГСК выполнена в фазе трансформации в острый миелобластный лейкоз. Руксолитиниб до аллоТГСК получали 2 больных, 1 — до и после аллоТГСК. Медиана возраста составила 46 лет (диапазон 30–57 лет). Во всех случаях использовался режим кондиционирования сниженной интенсивности.

Результаты. Приживление трансплантата отмечено у 8 пациентов. У 72 % больных достигнута клинико-гематологическая ремиссия. Молекулярная ремиссия и уменьшение степени фиброза костного мозга подтверждены у 5 пациентов. Из 11 пациентов 5 ко времени подачи публикации оставались под наблюдением в ремиссии. Общая 2-летняя выживаемость составила 46 %.

Заключение. АллоТГСК — эффективный метод лечения больных МФ. Требуются дальнейшие исследования для определения оптимального времени выполнения аллоТГСК, а также роли ингибиторов Янус-киназ (JAK) в качестве пред- и посттрансплантационной терапии МФ.


Ключевые слова: миелофиброз, аллоТГСК, режим кондиционирования сниженной интенсивности, руксолитиниб.

Получено: 28 января 2016 г.

Принято в печать: 22 марта 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  2. Passamonti F, Rumi E, Caramella M, et al. A dynamic prognostic model to predict survival in post-polycythemia vera myelofibrosis. Blood. 2008;111(7):3383–7. doi: 10.1182/blood-2007-11-121434.
  3. Passamonti F, Rumi E, Arcaini L, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93(11):1645–51. doi: 10.3324/haematol.13346.
  4. Dupriez BB, Morel P, Demory JL, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood. 1996;88(3):1013–8.
  5. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2009;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  6. Gangat N, Caramazza D, Vaidya R, et al. DIPSS Plus: A Refined Dynamic International Prognostic Scoring System for Primary Myelofibrosis That Incorporates Prognostic Information From Karyotype, Platelet Count, and Transfusion Status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  7. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. ASH; 2014. Abstract 405.
  8. Verstovsek S, Mesa R, Gotlib J, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica. 2015;100(4):479–88. doi: 10.3324/haematol.2014.115840.
  9. Kvasnicka HM, Thiele J, Bueso-Ramos CE, et al. Long-Term Effects of Ruxolitinib on Bone Marrow Morphology in Patients With Myelofibrosis and Comparison to Best Available Therapy. Haematologica. 2014;14: Abstract S155. doi:10.1016/j.clml.2014.06.098.
  10. Giorgino T, Scott BL, Ditschkowski M, et al. CME Article Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015;125(21):3347–51. doi: 10.1182/blood-2014-10-608315.
  11. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–70. doi: 10.1182/blood-2009-07-234880.
  12. Thiele J, Kvasnica HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  13. Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21(3):389–401. doi: 10.1016/j.bbmt.2014.12.001.
  14. Kroger N, Zabelina T, Alchalby H, et al. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2014;20(6):812–5. doi: 10.1016/j.bbmt.2014.02.019.
  15. Slot S, Smits K, van de Donk NW, et al. Effect of conditioning regimens on graft failure in myelofibrosis: a retrospective analysis. Bone Marrow Transplant. 2015;11;1424–31. doi: 10.1038/bmt.2015.172.
  16. Shanavas M, Popat U, Michaelis LC, et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Myelofibrosis with Prior Exposure to Janus Kinase 1/2 Inhibitors. Biol Blood Marrow Transplant. 2016;22(3):432–40. doi: 10.1016/j.bbmt.2015.10.005.
  17. Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and Efficacy of INCB018424, a JAK1 and JAK2 Inhibitor, in Myelofibrosis. N Engl J Med. 2010;363(12):1117–27. doi: 10.1056/nejmoa1002028.
  18. Stubig T, Alchalby H, Ditschkowski M, et al. JAK inhibition with ruxolitinib as pretreatment for allogeneic stem cell transplantation in primary or post-ET/PV myelofibrosis. Leukemia. 2014;28(8):1736–8. doi: 10.1038/leu.2014.86.
  19. Jaekel N, Behre G, Behning A, et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant. 2014;49(2):179–84. doi: 10.1038/bmt.2013.173.

Аллогенная трансплантация гемопоэтических стволовых клеток при острых миелоидных лейкозах: прогностическое значение сложного кариотипа, включающего аномалии del(5q), –7, del(7q)

Т.Л. Гиндина, Н.Н. Мамаев, С.Н. Бондаренко, Е.С. Николаева, И.А. Петрова, О.А. Слесарчук, А.С. Боровкова, С.В. Разумова, А.Л. Алянский, Л.С. Зубаровская, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Татьяна Леонидовна Гиндина, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)233-12-43; e-mail: cytogenetics.bmt.lab@gmail.com

Для цитирования: Гиндина Т.Л., Мамаев Н.Н., Бондаренко С.Н. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при острых миелоидных лейкозах: прогностическое значение сложного кариотипа, включающего аномалии del(5q), –7, del(7q). Клиническая онкогематология. 2016;9(3):271-78.

DOI: 10.21320/2500-2139-2016-9-3-271-278


РЕФЕРАТ

Цель. Оценить прогностическое значение сложного кариотипа, включающего аномалии del(5q), –7, del(7q) при острых миелоидных лейкозах (ОМЛ) у больных после аллогенной трансплантации гемопоэтических стволовых клеток (аллоТГСК).

Материалы и методы. Обследовано 44 больных ОМЛ с аномалиями хромосомы 5 и/или 7 (22 женского и 22 мужского пола в возрасте от 1,2 до 67 лет, медиана 31,2 года). Проведен анализ предикторов общей (ОВ) и бессобытийной выживаемости (БСВ) после аллоТГСК у больных с различными клиническими, трансплантационными и цитогенетическими характеристиками.

Результаты. До аллоТГСК сложный кариотип (³ 3 хромосомных нарушений) был выявлен у 19 (43 %) больных, моносомный кариотип — у 8 (18 %). По данным однофакторного анализа, показатели ОВ и БСВ после аллоТГСК отличались у больных различных возрастных групп (³ 18 vs < 18 лет; = 0,01 и = 0,05 соответственно), с различным клиническим статусом болезни на момент трансплантации (1 ремиссия vs другой статус; = 0,1 и = 0,008 соответственно), со сложным кариотипом и без такового (СК– vs СК+; = 0,05 и = 0,002 соответственно), с моносомным кариотипом и без такового (МК+ vs МК–; = 0,009 только для БСВ) и в зависимости от источника стволовых клеток (костный мозг vs другие источники; = 0,03 только для ОВ). Многофакторный анализ подтвердил, что независимыми предикторами ухудшения ОВ и БСВ были возраст 18 лет и старше (= 0,02 и = 0,01 соответственно), активная стадия заболевания на момент аллоТГСК (= 0,04 и = 0,005 соответственно), СК (= 0,04 и = 0,0008 соответственно) и когда источником стволовых клеток служит не костный мозг (= 0,02 только для ОВ).

Заключение. В исследовании показано, что аномалии хромосомы 5 и/или 7 в составе СК, но не МК являются фактором высокого риска у больных ОМЛ после аллоТГСК, что требует особого терапевтического подхода.


Ключевые слова: острые миелоидные лейкозы, сложный кариотип, аномалии хромосом 5 и 7, аллогенная трансплантация гемопоэтических стволовых клеток, прогноз.

Получено: 5 марта 2016 г.

Принято в печать: 5 апреля 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-
  2. Breems DA, Van Putten WL, De Greef GE, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26(29);4791–7. doi: 10.1200/jco.2008.16.0259.
  3. Medeiros BC, Othus M, Fang M, et al. Prognostic impact of monosomal karyotype in young adult and elderly acute myeloid leukemia: the Southwest Oncology Group (SWOG) experience. Blood. 2012;116(13):2224–8. doi: 10.1182/blood-2010-02-
  4. Fang M, Storer B, Estey E, et al. Outcome of patients with acute myeloid leukemia with monosomal karyotype who undergo hematopoietic cell transplantation. Blood. 2011;118(6):1490–4. doi: 10.1182/blood-2011-02-
  5. Lazarus HM, Litzow MR. AML cytogenetics: the complex just got simpler. Blood. 2012;120(12):2357–8. doi: 10.1182/blood-2012-08-
  6. Kayzer S, Zucknick M, Dohner K, et al. Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood. 2011;119(2):551–8. doi: 10.1182/blood-2011-07-
  7. Voutiadou G, Papaioannou G, Gaitatzi M, et al. Monosomal karyotype in acute myeloid leukemia defines a distinct subgroup within the adverse cytogenetic risk category. Cancer Genet. 2013;206(1–2):32–6. doi: 10.1016/j.cancergen.2012.10.003.
  8. Guo RJ, Atenafu EG, Craddock K, et al. Allogeneic hematopoietic cell transplantation may alleviate the negative prognostic impact of monosomal and complex karyotypes on patients with acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(5):690–5. doi: 10.1016/j.bbmt.2014.01.027.
  9. Cornelissen JJ, Breems D, Putten WLJ, et al. Comparative analysis of the value of allogeneic hematopoietic stem-cell transplantation in acute myeloid leukemia with monosomal karyotype versus other cytogenetic risk categories. J Clin Oncol. 2012;30(17):2140–6. doi: 10.1200/jco.2011.39.6499.
  10. Hemmati P, Schuzle-Luckow A, Terwey T, et al. Cytogenetic risk grouping by the monosomal karyotype classification is superior in predicting the outcome of acute myeloid leukemia undergoing allogeneic stem cell transplantation in complete remission. Eur J Haematol. 2013;92(2):102–10. doi: 10.1111/ejh.12216.
  11. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;84(8):61–6.
    [Gindina TL, Mamaev NN, Barhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;84(8):61–6. (In Russ)]
  12. Schaffer L, McGovan-Jordan J, Schmid M. ISCN. An international System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013. pp. 140.
  13. Wawrzyniak E, Wierzbowska A, Kotkowska A, et al. Different prognosis of acute myeloid leukemia harboring monosomal karyotype with total or partial monosomies determined by FISH: Retrospective PALG study. Leuk Res. 2013;37(3):293–9. doi: 10.1016/j.leukres.2012.10.022.
  14. Yoon JH, Kim HJ, Shin SH, et al. Stratification of de novo adult acute myelogenous leukemia with adverse-risk karyotype: can we overcome the worse prognosis of adverse-risk group acute myelogenous leukemia with hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(1):80–8. doi: 10.1016/j.bbmt.2013.10.015.

Плериксафор у пациентов со сниженной мобилизационной способностью аутологичных гемопоэтических стволовых клеток

M.A. Кучер1, М.С. Моталкина2, О.У. Климова1, Е.В. Кондакова1, О.Б. Калашникова1, С.М. Алексеев2, Д.В. Моторин3, Д.В. Бабенецкая3, Э.И. Подольцева4, Н.Б. Михайлова1, М.А. Эстрина1, Е.В. Бабенко1, А.Ю. Зарицкий3, Б.В. Афанасьев1

1 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

2 ФГБУ «НИИ онкологии им. Н.Н. Петрова» Минздрава России, ул. Ленинградская, д. 68, пос. Песочный, Санкт-Петербург, Российская Федерация, 197758

3 ФГБУ «Северо-Западный федеральный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

4 Санкт-Петербургское государственное бюджетное учреждение здравоохранения «Городская клиническая больница № 31», пр-т Динамо, д. 3, Санкт-Петербург, Российская Федерация, 197110

Для переписки: Максим Анатольевич Кучер, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)338-62-60; e-mail: doctorkucher@yandex.ru

Для цитирования: Кучер M.A., Моталкина М.С., Климова О.У. и др. Плериксафор у пациентов со сниженной мобилизационной способностью аутологичных гемопоэтических стволовых клеток. Клиническая онкогематология. 2016;9(2):155–61.

DOI: 10.21320/2500-2139-2016-9-2-155-161


РЕФЕРАТ

Актуальность и цели. Аутологичная трансплантация гемопоэтических стволовых клеток является эффективным методом лечения злокачественных лимфопролиферативных заболеваний, множественной миеломы и чувствительных к химиотерапии солидных опухолей. Предшествующая трансплантации заготовка аутологичных гемопоэтических стволовых клеток (ГСК) может быть неэффективной в 40 % случаев при наличии отягощающих факторов. Одним из способов преодоления сниженной мобилизационной способности является включение обратимого антагониста СXCR4-рецептора ГСК (плериксафора) в схемы мобилизации. Цель — оценить эффективность и безопасность различных режимов мобилизации аутологичных ГСК на основе плериксафора.

Методы. У 63 пациентов с солидными и гематологическими опухолями использовались 2 схемы мобилизации: филграстим + плериксафор (n = 47) и пэгфилграстим + плериксафор (n = 16). Филграстим назначался в 1–4-й день по 5 мкг/кг п/к 2 раза в сутки, 4-й день в 24.00 — плериксафор 0,24 мг/кг п/к, 5-й день — филграстим 5 мкг/кг п/к, затем в 10.00 — сеанс цитафереза. Пэгфилграстим вводился в 1-й день 6 мг п/к, 4-й день в 06.00 — плериксафор 0,24 мг/кг п/к, через 11 ч — сеанс цитафереза. Цитаферез проводили при уровне CD34+ ³ 20 ´ 106 кл./мкл.

Результаты. В 73,7 % случаев (n = 42) пациенты имели распространенные стадии заболевания и более одной линии химиотерапии в анамнезе к моменту мобилизации аутологичных ГСК. После мобилизации с помощью Г-КСФ (филграстим или пэгфилграстим) уровень CD34+ в крови составил 0–17 ´ 106 кл./мкл (медиана 9,8 ´ 106 кл./мкл). Последующее введение плериксафора увеличивало уровень СD34+ до 2–89 ´ 106 кл./мкл (медиана 31,6 ´ 106 кл./мкл) (= 0,0001). В 85,7 % случаев (n = 54) был заготовлен адекватной клеточности трансплантат CD34+ ³ 2 ´ 106 кл./кг (медиана 5,1 ´ 106 кл./кг). Получена сравнимая эффективность мобилизации в группах филграстима + плериксафор и пэгфилграстима + плериксафор — 90,2 и 68,7 % соответственно (= 0,08). Комбинация филграстим + плериксафор у больных с исходным низким уровнем клеток CD34+ позволила увеличить количество ГСК до 6,6–63 ´ 106 кл./мкл (медиана 27,1 ´ 106 кл./мкл) и получить достаточный по количеству ГСК трансплантат в 83,3 % случаев (= 0,0001). При пограничном уровне клеток CD34+ успешная заготовка трансплантата выполнена в 90 % случаев и составила 1,74–4,6 ´ 106 кл./кг (медиана 3,1 ´ 10кл./мкл; = 0,0001). Осложнения при использовании плериксафора наблюдались в 2 случаях в виде диареи (n = 1) и гипокальциемии (n = 1).

Заключение. У пациентов из категории «плохих мобилизаторов» применение плериксафора повышает вероятность заготовки качественного трансплантата при удовлетворительной переносимости.


Ключевые слова: мобилизация гемопоэтических стволовых клеток, Г-КСФ, пэгфилграстим, плериксафор.

Получено: 17 февраля 2016 г.

Принято в печать: 18 февраля 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Ljungman P, Bregni M, Brune M, et al. Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe 2009. Bone Marrow Transplant. 2010;45(2):219–34. doi: 10.1038/bmt.2009.141.
  2. Gratwohl A, Baldomero H, Schwendener A, et al. The EBMT activity survey 2008: impact of team size, team density and new trends. Bone Marrow Transplant. 2011;46(2):174–91. doi: 10.1038/bmt.2010.69.
  3. Baldomero H, Gratwohl M, Gratwohl A, et al. The EBMT activity survey 2009: trends over the past 5 years. Bone Marrow Transplant. 2011;46(4):485–501. doi: 10.1038/bmt.2011.11.
  4. Duong HK, Savani BN, Copelan E, et al. Peripheral blood progenitor cell mobilization for autologous and allogeneic hematopoietic cell transplantation: Guidelines from the American Society for blood and marrow transplantation. Biol Blood Marrow Transplant. 2014;20(9):1262–73. doi: 10.1016/j.bbmt.2014.05.003.
  5. Wuchter P, Ran D, Bruckner T, et al. Poor mobilization of hematopoietic stem cells – definitions, incidence, risk factors and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant. 2010;16(4):490–9. doi: 10.1016/j.bbmt.2009.11.012.
  6. Han X, Ma L, Zhao L, et al. Predictive factors for inadequate stem cell mobilization in Chinese patients with NHL and HL: 14-year experience of a single-center study. J Clin Apher. 2012;27(2):64–74. doi: 10.1002/jca.21204.
  7. Sancho JM, Morgades M, Grifols JR, et al. Predictive factors for poor peripheral blood stem cell mobilization and peak CD34(+) cell count to guide pre-emptive or immediate rescue mobilization. Cytotherapy. 2012;14(7):823–9. doi: 10.3109/14653249.2012.681042.
  8. Olivieri A, Marchetti M, Lemoli R et al. Proposed definition of ‘poor mobilizer’ in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo ItalianoTrapianto di Midollo Osseo. Bone Marrow Transplant. 2012;47(3):342–51. doi: 10.1038/bmt.2011.82.
  9. Mohty M, Hubel K, Kroger N, et al. Autologous haematopoietic stem cell mobilization in multiple myeloma and lymphoma patients: a position statement from the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2013;49(7):1–5. doi: 10.1038/bmt.2014.39.
  10. Jantunen E, Kvalheim G. Mobilization strategies in hard-to-mobilize patients with lymphoid malignancies. Eur J Haematol. 2010;85(6):463–71. doi: 10.1111/j.1600-0609.2010.01520.x.
  11. Fricker SP. Physiology and Pharmacology of Plerixafor. Transfus Med Hemother. 2013;40(4):237–45. doi: 10.1159/000354132.
  12. Hartmann T, Hubel K, Monsef I, et al. Additional plerixafor to granulocyte colony-stimulating factors for haematopoietic stem cell mobilisation for autologous transplantation in people with malignant lymphoma or multiple myeloma. Cochrane Database Syst Rev – Article in press, 2015. doi: 10.1002/14651858.CD010615.pub2.
  13. DiPersio JF, Stadtmauer EA, Nademanee A, et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood. 2009;113:5720–6. doi: 10.1182/blood-2008-08-174946.
  14. DiPersio JF, Micallef IN, Stiff PJ, et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27(28):4767–73. doi: 10.1200/JCO.2008.20.7209.
  15. Saraceni F, Shem-Tov N, Olivieri A, Nagler A. Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective. Bone Marrow Transplant. 2015;50(7):886–91. doi: 10.1038/bmt.2014.330.
  16. Flomenberg N, Devine SM, DiPersio JF, et al. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood. 2005;106(5):1867–74. doi: 10.1182/blood-2005-02-0468.
  17. Fruehauf S. Current Clinical Indications for Plerixafor. Transfus Med Hemother. 2013;40(4):246–50. doi: 10.1159/000354229.
  18. Veeraputhiran M, Jain T, Cronin S, et al. Successful hematopoietic stem cell collection in patients who fail initial plerixafor mobilization for autologous stem cell transplant. J Clin Apheresis. 2014;26(6):293–8. doi: 10.1002/jca.21321.
  19. Herbert KE, Demosthenous L, Wiesner G, et al. Plerixafor plus pegfilgrastim is a safe, effective mobilization regimen for poor or adequate mobilizers of hematopoietic stem and progenitor cells: a phase I clinical trial. Bone Marrow Transplant. 2014;49(8):1056–62. doi: 10.1038/bmt.2014.112.
  20. Maschan AA, Balashov DN, Kurnikova EE, et al. Efficacy of plerixafor in children with malignant tumors failing to mobilize a sufficient number of hematopoietic progenitors with G-CSF. Bone Marrow Transplant. 2015;50(8):1089–91. doi: 10.1038/bmt.2015.71.

Результаты аллогенной трансплантации гемопоэтических стволовых клеток у больных острым миелоидным лейкозом c t(8;21)(q22;q22)/RUNX1-RUNX1T1 и дополнительными цитогенетическими аномалиями

Т.Л. Гиндина, Н.Н. Мамаев, С.Н. Бондаренко, Е.С. Николаева, О.А. Слесарчук, А.С. Боровкова, О.В. Паина, С.В. Разумова, А.Л. Алянский, Л.С. Зубаровская, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Татьяна Леонидовна Гиндина, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)233-12-43; e-mail: cytogenetics.bmt.lab@gmail.com

Для цитирования: Гиндина Т.Л., Мамаев Н.Н., Бондаренко С.Н. и др. Результаты аллогенной трансплантации гемопоэтических стволовых клеток у больных острым миелоидным лейкозом c t(8;21)(q22;q22)/RUNX1-RUNX1T1 и дополнительными цитогенетическими аномалиями. Клиническая онкогематология. 2016;9(2):148–54.

DOI: 10.21320/2500-2139-2016-9-2-148-154


РЕФЕРАТ

Цель. Оценить влияние дополнительных хромосомных аномалий на результаты аллогенной трансплантации гемопоэтических стволовых клеток (аллоТГСК) у больных острым миелоидным лейкозом (ОМЛ) с транслокацией t(8;21)(q22;q22)/RUNX1-RUNX1T1.

Методы. Обследовано 25 больных ОМЛ с t(8;21)(q22;q22)/RUNX1-RUNX1T1 (10 женщин и 15 мужчин в возрасте 2–58 лет, медиана 20,2 года). Проведен анализ факторов прогноза общей (ОВ) и бессобытийной выживаемости (БСВ) после аллоТГСК у больных с различными клиническими, трансплантационными и цитогенетическими характеристиками.

Результаты. До трансплантации дополнительные хромосомные аномалии были выявлены у 13 (52 %) больных, причем у 9 (69 %) имел место сложный кариотип с 3 хромосомными нарушениями и более. Однофакторный анализ показал, что ОВ и БСВ после аллоТГСК статистически различались у больных в зависимости от возраста (= 0,03; = 0,0006), клинического статуса на момент трансплантации (= 0,0002; = 0,006), типа донора (= 0,0003; = 0,002), временно¢го интервала от даты постановки диагноза ОМЛ до трансплантации (= 0,008 только для ОВ), наличия или отсутствия дополнительных цитогенетических нарушений в кариотипе (= 0,03; = 0,009) и от сложного кариотипа (= 0,004; = 0,0003). При многофакторном анализе было установлено, что независимыми факторами прогноза для ОВ оказались тип донора (= 0,01), временной интервал от диагностики лейкоза до аллоТГСК (= 0,01), дополнительные хромосомные аномалии в кариотипе (= 0,04), а для БСВ — тип донора (= 0,04) и возраст пациентов (= 0,004).

Заключение. ОМЛ с транслокацией t(8;21)/RUNX1-RUNX1T1 является гетерогенным заболеванием. Прогноз у больных с дополнительными цитогенетическими аномалиями, особенно со сложным кариотипом, хуже как в группе получавших ранее только стандартную химиотерапию, т. е. до аллоТГСК, так и после ее выполнения.


Ключевые слова: ОМЛ транслокацией t(8;21), аллоТГСК, цитогенетические аномалии.

Получено: 6 февраля 2016 г.

Принято в печать: 15 февраля 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Mrozek K, Bloomfield CD. Chromosomal abnormalities in acute leukemia and their clinical importance. In: Rowley JD, et al, eds. Chromosomal translocations and genome rearrangements in cancer. Switzerland: Springer International Publishing; 2015. pp. 275–306. doi: 10.1007/978-3-319-19983-2_13.
  2. Klein K, Kaspers G, Harrison CJ, et al. Clinical impact of additional cytogenetic aberrations, cKIT and RAS mutations, and treatment elements in pediatric t(8;21)-AML: results from an international retrospective study by the international Berlin-Frankfurt-Munster study group. J Clin Oncol. 2015;33(36):4247. doi: 10.1200/jco.2015.61.1947.
  3. Krauth MT, Eder C, Alpermann T, et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia. 2014;28(7):1449–58. doi:10.1038/leu.2014.4.
  4. Byrd JC, Dodge RK, Carroll A, et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol. 1999;17:3767–75.
  5. Numata A, Fujimaki K, Aoshima T, et al. Retrospective analysis of treatment outcomes in 70 patients with t(8;21) acute myeloid leukemia. Jpn J Clin Oncol. 2012;53(7):698–704.
  6. Kuwatsuka Y, Miyamura K, Suzuki R, et al. Hematopoietic cell transplantation for core binding factor acute myeloid leukemia: t(8;21) and inv(16) represent different clinical outcomes. Blood. 2009;113(9):2096–103. doi: 10.1182/blood-2008-03-145862/
  7. Shlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2004;22(18):3741–50. doi: 10.1200/JCO.2004.03.012.
  8. Shlenk RF, Pasquini MC, Perez WS, et al. HLA-identical sibling allogeneic transplant versus chemotherapy in acute myelogenous leukemia with t(8;21) in first complete remission: collaborative study between the German AML Intergroup and CIBMTR. Biol Blood Marrow Transplant. 2008;14(2):187–96. doi: 10.1016/j.bbmt.2007.10.006.
  9. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Трансплантация гемопоэтических стволовых клеток при остром миелоидном лейкозе с транслокацией t(8;21)(q22;q22). Клиническая онкогематология. 2013;6(4):439–50.
    [Mamaev NN, Gorbunova AV, Gindina TL, et al. Hematopoietic stem cell transplantation in AML patients with t(8;21) (q22;q22) translocation. Klinicheskaya onkogematologiya. 2013;6(4):439–50. (In Russ)]
  10. Appelbaum FR, Kopecky KJ, Tallman MS, et al. The clinical spectrum of adult acute myeloid leukemia associated with core binding factor translocations. Br J Haematol. 2006;135(2):165–73. doi: 10.1111/j.1365-2141.2006.06276.x.
  11. Yoon JH, Kim HJ, Kim JW, et al. Identification of molecular and cytogenetic risk factors for unfavorable core-binding factor-positive adult AML with post-remission treatment outcome analysis including transplantation. Bone Marrow Transplant. 2014;49(12):1466–74. doi: 10.1038/bmt.2014.180.
  12. Marcucci G, Mrozek K, Ruppert AS, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B Study. J Clin Oncol. 2005;23(24):5705–17. doi: 10.1200/jco.2005.15.610.
  13. Qin YZ, Zhu HH, Jiang Q, et al. Prevalence and prognostic significance of c-KIT mutations in core binding factor acute myeloid leukemia: a comprehensive large-scale study from a single Chinese center. Leuk Res. 2016;38(12):1435–40. doi: 10.1016/j.leukres.2014.09.017.
  14. Mosna F, Papayannidis C, Martinelli G, et al. Complex karyotype, older age, and reduced first-line dose intensity determine poor survival in core binding factor acute myeloid leukemia patients with long-term follow-up. Am J Hematol. 2015;90(6):515–23. doi: 10.1002/ajh.24000.
  15. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6.
    [Gindina TL, Mamaev NN, Barhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6. (In Russ)]
  16. Schaffer L, McGovan-Jordan J, Schmid M. ISCN. An international System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013.
  17. Gindina T, Mamaev N, Nikolaeva E, et al. Jumping translocations in a 13-year-old child with RUNX1/RUNX1T1-positive acute myeloid leukemia. 10th European Cytogenetics Conference 2015. Chromosome Res. 2015;23(Suppl 1):88. doi: 10.1007/s10577-015-9476-6.
  18. Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2015;8(3):309–20.
    [Mamaev NN, Gorbunova AV, Barkhatov IM, et al. Molecular Monitoring of WT1 Gene Expression Degree in Acute Myeloid Leukemias after Allogeneic Hematopoietic Stem Cell Transplantation. Klinicheskaya onkogematologiya. 2015;8(3):309–20. (In Russ)]
  19. Mamaev N, Mamaeva S. Two cases of acute myeloblastic leukemia (M2-type) with karyotypes 45X,-X,t(6;8)(q27;q22),inv(9) and 46,XY, t(8;21)(q22;q22),del(9)(q22). Cancer Genet Cytogenet. 1985;18(2):105–11. doi: 10.1016/0165-4608(85)90060-3.

Анализ хромосомных нарушений у детей и подростков с посттрансплантационными рецидивами острых лейкозов

Т.Л. Гиндина, Н.Н. Мамаев, Е.Н. Николаева, И.А. Петрова, С.Н. Бондаренко, А.Л. Алянский, Н.В. Станчева, О.А. Слесарчук, М.Ю. Аверьянова, Л.С. Зубаровская, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Татьяна Леонидовна Гиндина, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)233-12-43; e-mail: cytogenetics.bmt.lab@gmail.com

Для цитирования: Гиндина Т.Л., Мамаев Н.Н., Николаева Е.Н. и др. Анализ хромосомных нарушений у детей и подростков с посттрансплантационными рецидивами острых лейкозов. Клиническая онкогематология. 2015;8(4):420–427.

DOI: 10.21320/2500-2139-2015-8-4-420-427


РЕФЕРАТ

Цель. Проанализировать изменения кариотипа при рецидивах после аллогенной трансплантации гемопоэтических стволовых клеток (аллоТГСК) у детей и подростков с острыми лейкозами, оценить связь изменений кариотипа с показателями безрецидивной и общей выживаемости (ОВ) после рецидива, выделить прогностические группы на основании клинических и цитогенетических характеристик опухоли.

Методы. Цитогенетические исследования были проведены 30 детям и 15 подросткам (26 лиц мужского пола и 19 — женского в возрасте 1,2–21 год, медиана 10 лет) с посттрансплантационными рецидивами (ПТР) острых миелоидных (n = 29) и острых лимфобластных лейкозов (n = 16). Анализ изменяющихся хромосомных нарушений проводили путем сравнения кариотипов при ПТР с таковыми до аллоТГСК.

Результаты. Изменения кариотипа при ПТР были отмечены у 29 (64 %) больных. Наличие 2 и более аномальных цитогенетических клонов наблюдалось у 10 (34 %) пациентов с ПТР. Дополнительные хромосомные перестройки, приобретаемые при ПТР, касались прежде всего хромосом 1, 11 и 19. ОВ после констатации рецидива была выше у пациентов, которым аллоТГСК выполнялась в период ремиссии заболевания и при наличии во время рецидива лейкоза не более 1 аномального цитогенетического клона. На основании этого были выделены три прогностических группы: 1-ю группу составили 8 (18 %) пациентов с 2 неблагоприятными факторами и медианой ОВ после ПТР 40 дней; 2-ю — 20 (44 %) пациентов с 1 неблагоприятным фактором и медианой ОВ после ПТР 152 дня, 4-летняя ОВ составила 16 %; 3-ю — 17 (38 %) пациентов без отмеченных выше неблагоприятных факторов и с медианой ОВ после рецидива 549 дней, 4-летняя ОВ 31 %. Многофакторный анализ показал, что число аномальных цитогенетических клонов в лейкозной популяции является независимым предиктором, влияющим на показатели ОВ после ПТР.

Заключение. Важным прогностическим фактором, отрицательно влияющим на показатели ОВ у больных с ПТР является наличие в лейкозной популяции 2 и более аномальных цитогенетических клонов. Поскольку клоновая эволюция кариотипа может быть связана с использованием цитостатических препаратов у детей и подростков с острыми лейкозами при наличии показаний к аллоТГСК, последняя должна выполняться как можно раньше, причем предпочтение следует отдавать немиелоаблативным режимам кондиционирования.


Ключевые слова: острые лейкозы у детей, посттрансплантационные рецидивы, клоновая эволюция кариотипа.

Получено: 13 июня 2015 г.

Принято в печать: 8 ноября 2015 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Schmidt-Hieber M, Blau I, Richter G, et al. Cytogenetic studies in acute leukemia patients relapsing after allogeneic stem cell transplantation. Cancer Genet Cytogenet. 2010;198(2):135–43. doi: 10.1016/j.cancergencyto.2010.01.005.
  2. Bacher U, Haferlach T, Alpermann Т, et al. Comparison of cytogenetic clonal evolution patterns following allogeneic hematopoietic transplantation versus conventional treatment in patients at relapse of AML. Biol Blood Marrow Transplant. 2010;16(12):1649–57. doi: 10.1016/j.bbmt.2010.06.007.
  3. Kawamata N, Ogawa S, Seeger K, et al. Molecular allelokaryotyping of relapsed pediatric acute lymphoblastic leukemia. Int J Oncol. 2009;34(6):1603–12. doi: 10.3892/ijo_00000290.
  4. Lee J, Jang P, Chung N, et al. Treatment of children with acute myeloid leukaemia who relapsed after allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2013;160(1):80–6. doi: 10.1111/bjh.12074.
  5. Lawler S, Khokhar M, Davies H, et al. Cytogenetic studies of leukemic recurrence in recipients of bone marrow allografts. Cancer Genet Cytogenet. 1990;47(1):249–63. doi: 10.1016/0165-4608(90)90034-8.
  6. Yuasa M, Uchida N, Kaji D, et al. Prognostic significance of the cytogenetic evolution after the hematopoietic stem cell transplantation in adult acute myeloid leukemia. Blood. 2013;122(21):1391.
  7. Cho Y, Chi H, Park S, et al. Comparative analysis of cytogenetic evolution patterns during relapse in the hematopoietic stem cell transplantation and chemotherapy settings of patients with acute leukemia. Blood. 2013;122(21):1320.
  8. Гиндина Т.Л., Мамаев Н.Н., Бондаренко С.Н. и др. Сложные хромосомные нарушения у больных с посттрансплантационными рецидивами острых лейкозов: клинические и теоретические аспекты. Клиническая онкогематология. 2015;8(1):69–77.
    [Gindina TL, Mamaev NN, Bondarenko SN, et al. Complex chromosomal aberrations in patients with post-tranplantation relapses of acute leukemias: clinical and theoretical aspects. Klinicheskaya onkogematologiya. 2015;8(1):69–77. (In Russ)]
  9. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6.
    [Gindina TL, Mamaev NN, Barhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6 (In Russ)]
  10. Schaffer L, McGovan-Jordan J, Schmid M. An International System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013.
  11. Gindina T, Mamaev N, Bondarenko S, et al. Complex aberrant karyotype in patients with post-transplant relapses of acute myeloid and lymphoid leukemias evaluated by serial cytogenetic assays, including mFISH. Blood. 2014;124(21):5313.

Аллогенная трансплантация гемопоэтических стволовых клеток при остром лимфобластном лейкозе с транслокацией t(12;21)(p13;q22)

Н.Н. Мамаев1, Е.В. Семенова1, Н.В. Станчева1, В.А. Катерина1, И.М. Бархатов1, А.В. Евдокимов1, Э.Г. Бойченко2, Т.Л. Гиндина1, В.М. Кравцова1, Л.С. Зубаровская1, Б.В. Афанасьев1

1 Институт детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, Санкт-Петербургский государственный медицинский университет им. И.П. Павлова, Санкт-Петербург, Российская Федерация

2 Детская городская больница № 1, Санкт-Петербург, Российская Федерация

Для цитирования: Мамаев Н.Н., Семенова Е.В., Станчева Н.В., Катерина В.А., Бархатов И.М., Евдокимов А.В., Бойченко Э.Г., Гиндина Т.Л., Кравцова В.М., Зубаровская Л.С., Афанасьев Б.В. Аллогенная трансплантация гемопоэтических стволовых клеток при остром лимфо- бластном лейкозе с транслокацией t(12;21)(p13;q22). Клин. онкогематол. 2014; 7(3): 327–34.


РЕФЕРАТ

Представлены результаты аллогенной трансплантации гемопоэтических стволовых клеток (аллоТГСК) у 10 детей (4 мальчика и 6 девочек в возрасте 4–17 лет, средний возраст 9,8 года) с рецидивами острого лимфобластного лейкоза (ОЛЛ) со слитным геном TEL-AML1. Продолжительность первой ремиссии варьировала от 20 до 70 мес. (в среднем 39,9 мес.). Трансплантация была выполнена 6 больным во второй или более гематологической ремиссии, а у остальных 4 — при рецидивах. Трансплантат от HLA-совместимых родственных (n = 3) и неродственных (n = 3) доноров использован у 6 больных, у 4 пациентов в связи с отсутствием донора принято решение о выполнении гаплоидентичной трансплантации. В 8 наблюдениях режимы кондиционирования были миелоаблативными, в 2 — сниженной интенсивности. Успешное приживление трансплантата имело место у 9 (90 %) из 10 больных. В случае же неприживления трансплантата у 1 больного была проведена дополнительная гаплоидентичная трансплантация.

Мониторинг лечения осуществляли с помощью серийного определения уровня экспрессии слитного гена TELAML1, уровня донорского химеризма, а также содержания бластных клеток в костном мозге и крови. Исследование показало что, у 4 больных в возрасте до 4 лет экспрессия гена TELAMLимела место на всех этапах лечения, включая пред- и посттрансплантационный периоды. В соответствии с этим изменялись также донорский химеризм и содержание бластных клеток в костном мозге и/или крови. Напротив, у 3 других больных экспрессия гена TELAMLперед аллоТГСК была низкой, а после ее выполнения — не обнаруживалась.

В целом 7 больных остаются под наблюдением в течение 178–2627 дней (в среднем 870 дней), включая 2 пациентов с посттрансплантационными рецидивами. В то же время 3 больных умерли на 20–263-й день после аллоТГСК. Обнаруженные различия результатов терапии предположительно могут быть объяснены возможностью вовлечения в лейкозный процесс не только гемопоэтических, но и мезенхимных элементов, что для больных с данной патологией было показано в исследовании S. Shalapour и соавт. (2010). Однако это нуждается в подтверждении.

Ключевые слова: ОЛЛ, транслокация t(12;21)(p13;q22), аллоТГСК, молекулярный мониторинг, разница в ответе на лечение.

Принято в печать: 22 мая 2014 г.

Читать статью в PDF pdficon


ЛИТЕРАТУРА 

  1. Romana S.P., Mauchauffe M., Le Coniat M. et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 1995; 85: 3662–70.
  2. Shurtleff S.A., Buijs A., Behm F.G. et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995; 9: 1985–9.
  3. McLeen T.W., Ringold S., Neuberg D. et al. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood 1996; 88: 4252–8.
  4. Loh M.L., Rubnitz J.E. TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr. Opin. Hematol. 2002; 9: 345–52.
  5. Pui C.H., Campana D., Evans W.E. Childhood acute lymphoblastic leukemia — current status and future perspectives. Lancet Oncol. 2001; 2: 597–607.
  6. Loh M.L., Goldwasser M.A., Silverman L.B. et al. Prospective analysis of TEL/AML1-positive patients treated on Dana-Faber Cancer Institute Consortium Protocol 95-01. Blood 2006; 107: 4508–13.
  7. Burmeister T., Gokbuget N., Schwartz S. et al. Clinical features and prognostic implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica 2010; 95: 241–6.
  8. Pui C.H., Pei D., Campana D. et al. Improved prognosis for older adolescents with acute lymphoblastic leukemia. J. Clin. Oncol. 2011; 29(4): 386–91.
  9. Seeger K., Adams H.P., Buchwald D. et al. TEL-AML 1 fusion transcript in relapsed childhood acute lymphoblastic leukemia: the Berlin-Frankfurt-Munster Study Group. Blood 1998; 91: 1716–22.
  10. Seeger K., Stackelberg A.V., Taube T. et al. Relapse of TEL-AML1- positive acute lymphoblastic leukemia in childhood: A matched-pair analysis. J. Clin. Oncol. 2001; 19: 3188–93.
  11. Shalapour S., Eckert C., Seeger K. et al. Leukemia-associated genetic aberrations in mesenchymal stem cells of children with acute lymphoblastic leukemia. J. Mol. Med. 2010; 88: 249–65.

Высокодозная химиотерапия с аутологичной трансплантацией гемопоэтических стволовых клеток при первичной резистентности и резистентных рецидивах лимфомы Ходжкина. Существует ли равное право на жизнь?

Н.В. Жуков1,2, А.Г. Румянцев1, А.Л. Усс3, Н.Ф. Миланович3, В.В. Птушкин1, Б.В. Афанасьев4, Н.Б. Михайлова4, В.Б. Ларионова5, Е.А. Демина5, Е.Е. Караманешт6, Н.Г. Тюрина7, М.А. Вернюк7, А.Д. Каприн7

1 ФГБУ «Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» МЗ РФ, Москва, Российская Федерация

2 Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Российская Федерация

3 Республиканский центр гематологии и пересадки костного мозга, Минск, Республика Беларусь

4 Институт детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, Санкт-Петербургский государственный медицинский университет им. И.П. Павлова, Санкт-Петербург, Российская Федерация

5 ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина РАМН», Москва, Российская Федерация

6 Киевский центр трансплантации костного мозга, Киев, Украина

7 ФГБУ «Московский научно-исследовательский онкологический институт им. П.А. Герцена» МЗ РФ, Москва, Российская Федерация

Для цитирования: Жуков Н.В., Румянцев А.Г., Усс А.Л., Миланович Н.Ф., Птушкин В.В., Афанасьев Б.В., Михайлова Н.Б., Ларионова В.Б., Демина Е.А., Караманешт Е.Е., Тюрина Н.Г., Вернюк М.А., Каприн А.Д. Высокодозная химиотерапия с аутологичной трансплантацией гемопоэтических стволовых клеток при первичной резистентности и резистентных рецидивах лимфомы Ходжкина. Существует ли равное право на жизнь? Клин. онкогематол. 2014; 7(3): 317–26.


РЕФЕРАТ

Цель. Больные с первично-резистентным течением и резистентными к терапии второй линии рецидивами лимфомы Ходжкина (ЛХ) часто получают отказ в выполнении высокодозной химиотерапии (ВДХТ) с аутологичной трансплантацией гемопоэтических стволовых клеток (аутоТГСК), мотивируя ее недостаточной эффективностью и высокой токсичностью в данной популяции. Целью исследования было оценить эффективность и безопасность ВДХТ с аутоТГСК у этой категории больных.

Материалы и методы. В исследование включено 372 больных ЛХ, получивших ВДХТ с аутоТГСК в период с 01.1990 по 06.2013 г. У 132 (35,5 %) пациентов поводом для ВДХТ с аутоТГСК стала первичная резистентность, у 81 (22 %) — рецидив заболевания, резистентный к химиотерапии второй линии (резистентный рецидив). Остальные 159 (42,5 %) больных имели либо рецидив заболевания, по поводу которого они ранее не получали терапию второй линии (рецидив с нетестированной чувствительностью), либо рецидив, оказавшийся чувствительным к ранее проводившейся терапии второй линии (чувствительный рецидив). Эти больные были объединены в группу химиочувствительной ЛХ.

Результаты. При медиане наблюдения 51 мес. (диапазон 1–218 мес.) общая и безрецидивная выживаемость у больных с первично-резистентным течением заболевания, резистентным рецидивом и химиочувствительной ЛХ статистически значимо не различались (> 0,05). Лишь показатели выживаемости, свободной от неудач лечения, были статистически значимо хуже у больных с первично-резистентным течением: 5-летняя выживаемость — 42 % по сравнению с 58 % у больных с резистентным рецидивом и 60 % с химиочувствительной ЛХ (= 0,004). Показатели 100-дневной летальности, в основном обусловленной токсичностью ВДХТ c аутоТГСК, между группами статистически значимо не различались (= 0,2). Вне зависимости от варианта течения заболевания, послужившего поводом для выполнения ВДХТ с аутоТГСК, отдаленные результаты лечения значимо зависели от ответа на циторедуктивную химиотерапию. Эффект циторедуктивной химиотерапии был оценен у 309 больных. При достижении полной, выраженной частичной или частичной ремиссии 5-летняя общая, свободная от неудач лечения и безрецидивная выживаемость составили 78, 64 и 68 % соответственно. При стабилизации или прогрессировании заболевания на фоне циторедуктивной химиотерапии эти же показатели составили 33, 24 и 52 % соответственно (< 0,001 для общей и свободной от неудач лечения выживаемости; = 0,005 — для безрецидивной).

Заключение. У больных с первично-резистентным течением и резистентными рецидивами лимфомы Ходжкина ВДХТ с аутоТГСК обладает приемлемой эффективностью и ранней летальностью, сопоставимыми с аналогичными показателями у больных с химиочувствительной ЛХ. Это позволяет рассматривать ВДХТ с аутоТГСК в качестве возможного лечебного подхода у больных с первично-резистентным течением и резистентными рецидивами ЛХ. Независимо от исходного течения заболевания основным фактором, определяющим отдаленные результаты ВДХТ с аутоТГСК, является ответ опухоли на циторедуктивную химиотерапию.


Ключевые слова: лимфома Ходжкина, высокодозная химиотерапия, аутологичная трансплантация гемопоэтических стволовых клеток, первичная резистентность, резистентный рецидив.

Принято в печать: 13 апреля 2014 г.

Читать статью в PDF pdficon


ЛИТЕРАТУРА

  1.  Linch D., Winfield D., Goldstone A. et al. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet 1993; 341: 1051.
  2. Schmitz N., Sextro M., Pfistner B. HDR-1: high-dose therapy (HDT) followed by hematopoietic stem cell transplantation (HSCT) for relapsed chemosensitive Hodgkin’s disease (HD): final results of a randomized GHSG and EBMT trial (HD-R1). Proc. Am. Soc. Clin. Oncol. 1999; 18(Suppl. 5): 18.
  3. Josting A., Franklin J., May M. et al. New prognostic score based on treatment outcome of patients with relapsed Hodgkin’s lymphoma registered in the database of the German Hodgkin’s lymphoma study group. J. Clin. Oncol. 2002; 20: 221–30.
  4. Longo L., Duffey P.L., Young R.C. et al. Conventional-dose salvage combination chemotherapy in patients relapsing with Hodgkin’s disease after combination chemotherapy: the low probability for cure. J. Clin. Oncol. 1992; 10: 210–8.
  5. Brusamolino E., Orlandi E., Canevari A. et al. Results of CAV regimen (CCNU, melphalan, and VP-16) as third-line salvage therapy for Hodgkin’s disease. Ann. Oncol. 1994; 5: 427–32.
  6. Bonfante V., Santoro A., Viviani S. et al. Outcome of patients with Hodgkin’s disease failing after primary MOPP/ABVD. J. Clin. Oncol. 1997; 15: 528–34.
  7. Josting A., Rueffer U., Franklin J. et al. Prognostic factors and treatment outcome in primary progressive Hodgkin lymphoma: a report from the German Hodgkin Lymphoma Study Group. Blood 2000; 96: 1280–6.
  8. Josting A., Rudolph C., Mapara M. et al. Cologne high-dose sequential chemotherapy in relapsed and refractory Hodgkin lymphoma: results of a large multicenter study of the German Hodgkin Lymphoma Study Group (GHSG). Ann. Oncol. 2005; 16(1): 116–23.
  9. Argiris A., Seropian S., Cooper D.L. High-dose BEAM chemotherapy with autologous peripheral blood progenitor-cell transplantation for unselected patients with primary refractory or relapsed Hodgkin’s disease. Ann. Oncol. 2000; 11: 665–72.
  10. Ferme C., Mounier N., Divine M. et al. Intensive salvage therapy with high dose chemotherapy for patients with advanced Hodgkin’s disease in relapse or failure after initial chemotherapy: Results of the Groupe d’Etudes des Lymphomes de l’Adulte H89 Trial. J. Clin. Oncol. 2002; 20: 467–75.
  11. Constans M., Sureda A., Terol M.J. et al. Autologous stem cell transplantation for primary refractory Hodgkin’s disease: Results and clinical variables affecting outcome. Ann. Oncol. 2003; 14: 745–51.
  12. Sweetenham J.W., Carella A.M., Taghipour G. et al. High-dose therapy and autologous stem-cell transplantation for adult patients with Hodgkin’s disease who do not enter remission after induction chemotherapy: Results in 175 patients reported to the European Group for Blood and Marrow Transplantation. Lymphoma Working Party. J. Clin. Oncol. 1999; 17: 3101–9.
  13. Gopal A.K., Metcalfe T.L., Gooley T.A. et al. High-Dose Therapy and Autologous Stem Cell Transplantation for Chemoresistant Hodgkin Lymphoma: The Seattle Experience. Cancer 2008; 113(6): 1344–50.
  14. Sureda A., Arranz R., Iriondo A. et al. Autologous stem-cell transplantation for Hodgkin’s disease: results and prognostic factors in 494 patients from the Grupo Espanol de Linfomas/Transplante Autologo de Medula Osea Spanish Cooperative Group. J. Clin. Oncol. 2001; 19(5): 1395–404.
  15. Czyz J., Dziadziuszko R., Knopinska-Postuszuy W. et al. Outcome and prognostic factors in advanced Hodgkin’s disease treated with high-dose chemotherapy and autologous stem cell transplantation: a study of 341 patients. Ann. Oncol. 2004; 15(8): 1222–30.
  16. Sureda A., Constans M., Iriondo A. et al. Prognostic factors affecting long-term outcome after stem cell transplantation in Hodgkin’s lymphoma autografted after a first relapse. Ann. Oncol. 2005; 16(4): 625–33.

Гаплоидентичная трансплантация гемопоэтических стволовых клеток у детей с острыми миелоидными лейкозами: эволюция метода и собственные данные

Н.Н. Субботина, И.С. Долгополов, А.В. Попа, В.К. Бояршинов, Р.И. Пименов, Г.Л. Менткевич

НИИ детской онкологии и гематологии ФГБУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва, Российская Федерация


РЕФЕРАТ

В настоящей работе представлены результаты проведения гаплоидентичной трансплантации гемопоэтических стволовых клеток (гаплоТГСК) детям с острыми миелоидными лейкозами (ОМЛ) крайне неблагоприятного прогноза. В исследование включено 18 пациентов в возрасте 1–18 лет. Статус заболевания на момент трансплантации: ОМЛ высокого риска в первой ремиссии (n = 4, 22 %), более двух ремиссий (n = 7, 39 %), не в ремиссии (n = 4, 22 %), вторичный ОМЛ в ремиссии (n = 3, 17 %). Всем пациентам был проведен немиелоаблативный режим кондиционирования с последующей гаплоТГСК от гаплоидентичных доноров. За счет донорского материала показатели крови восстановились у 17 из 18 пациентов: лейкоциты — в среднем на 11-й день, тромбоциты — на 12-й. От прогрессирования заболевания и инфекции без признаков восстановления кроветворения умерла 1 больная из группы «не в ремиссии на момент гаплоТГСК». Токсические проявления режима были незначительными. Острая реакция «трансплантат против хозяина» I–II степени отмечена у 88 % пациентов, III степени — у 6 %. Проявления хронической реакции «трансплантат против хозяина» наблюдались у 85 % реципиентов, у 1 больной — в тяжелой форме. Причины смертности: инфекция (n = 2, 11 %), рецидив/прогрессирование опухоли (n = 5, 28 %). Остаются под наблюдением без признаков заболевания 11 (61 %) пациентов. При среднем сроке наблюдения 84 мес. (диапазон 1–144 мес.) бессобытийная выживаемость равна 57,5 % Трансплантационная летальность составила 13,3 % при среднем сроке наблюдения 124 мес.


Ключевые слова: острые миелоидные лейкозы у детей, неблагоприятный прогноз, гаплоидентичная трансплантация гемопоэтических стволовых клеток.

Читать статью в PDF pdficon


ЛИТЕРАТУРА

  1. Rubnitz J.E. Childhood acute myeloid leukemia. Curr. Treat. Options Oncol. 2008; 9: 95–105.
  2. Creutzig U., Zimmermann M., Henze G. et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML BFM trials. Leukemia 2005; 19(12): 2030–42.
  3. Perel Y., Auvrignon A., Vannier J.P. et al. Treatment of childhood acute myeloblastic leukemia: dose intensification improves outcome and maintenance therapy is of no benefit—multicenter studies of the French LAME (Leucemie Aigue Myeloblastique Enfant) Cooperative Group. Leukemia 2005; 19(12): 2082–9.
  4. August K.J., Narendran A., Neville K.A. Pediatric Relapsed or Refractory Leukemia: New Pharmacotherapeutic Developments and Future Directions. Drugs 2013; 73: 439–61.
  5. Grimwade D., Walker H., Oliver F. et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998; 92: 2322–33.
  6. Gorman M.F., Ji L., Hutchinson R. et al. Outcome for children treated for relapsed or refractory acute myelogenous leukemia (rAML): a Therapeutic Advances in Childhood Leukemia (TACL) Consortium study. Pediatr. Blood Cancer 2010; 55(3): 421–9.
  7. Liu D.-H., Xu L.-P., Liu K.-Y. et al. Long-term outcomes of unmanipulated haploidentical HSCT for paediatric patients with acute leukaemia. Bone Marrow Transplant. 2013; 48: 1519–24.
  8. Shaw P.J., Kan F., Pulsipher M.A. et al. Outcomes of pediatric bone marrow transplantation for leukemia and myelodysplasia using matched sibling, mismatched related, or matched unrelated donors. Blood 2010; 116: 4007–15.
  9. Gluckman E., Vanderson R., William A. et al. Outcome of cord-blood transplantation from related and unrelated donors. N. Engl. J. Med. 1997; 337(6): 373–81.
  10. Kurtzberg J., Laughlin M., Graham M.L. et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N. Engl. J. Med. 1996; 335: 157–66.
  11. Wagner J.E., Rosenthal J., Sweetman R. et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood 1996; 88: 795–802.
  12. Silberstein L.E., Jefferies L.C. Placental-blood banking — a new frontier in transfusion medicine. N. Engl. J. Med. 1996; 335: 199–201.
  13. Rubinstein P., Rosenfield R.E., Stevens C.E. Stored placental blood for unrelated bone marrow reconstitution. Blood 1993; 81: 1679–90.
  14. Rubinstein P., Dobrila L., Rosenfield R.E. et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc. Natl. Acad. Sci. U S A 1995; 92: 10119–22.
  15. Rocha V., Gluckman E., Frassoni F. et al. Unrelated cord blood transplantation: outcomes after single-unit intrabone injection compared with double-unit intravenous injection in patients with hematological malignancies. Transplantation 2013; 95(10): 1284–91.
  16. Page K.M., Zhang L., Kurtzberg J. et al. Total colony-forming units are a strong, independent predictor of neutrophil and platelet engraftment after unrelated umbilical cord blood transplantation: a single-center analysis of 435 cord blood transplants. Biol. Blood Marrow Transplant. 2011; 17(9): 1362–74.
  17. Barker J.N., Scaradavou A., Stevens C.E. Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood 2010; 115: 1843–9.
  18. Sideri A., Neokleous N., Gluckman E. An overview of the progress on double umbilical cord blood transplantation. Haematologica 2011; 96(8): 1213–20.
  19. Rocha V., Crotta A., Gluckman E. et al. Double cord blood transplantation: extending the use of unrelated umbilical cord blood cells for patients with hematological diseases. Best Pract. Res. Clin. Haematol. 2010; 23(2): 223–9.
  20. Powles R.L., Morgenstern G.R., Robinson B. et al. Mismatched family donors for bone marrow transplantation as treatment for acute leukaemia. Lancet 1983; 1: 612.
  21. Beatty P.G., Clift R.A., Storb R. et al. Marrow transplantation from related donors other than HLA identical siblings. N. Engl. J. Med. 1985; 313: 765.
  22. Hows J.M., Yin J.L., Goldman J.M. et al. Histocompatible unrelated volunteer donors compared with HLA nonidentical family donors in marrow transplantation for aplastic anemia and leukemia. Blood 1986; 68(6): 1322–8.
  23. Reisner Y., Kapoor N., Good R.A. et al. Transplantation for acute leukeamia with HLA-A and B non identical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 1981; 2(8242): 327–31.
  24. Mehta J., Singhal S., Gee A.P. et al. Bone marrow transplantation from partially HLA-mismatched family donors for acute leukemia: single-center experience of 201 patients. Bone Marrow Transplant. 2004; 33: 389–96.
  25. O’Reilly R.J., Kernan N.A., Cunningham I. Allogeneic transplants depleted of T cells by soybean lectin agglutination and E-rosette depletion. Bone Marrow Transplant. 1988; 3: 3–6.
  26. Schwartz E., Lapidot T., Reisner Y. et al. Abrogation of bone marrow allograft resistance in mice by increased total body irradiation correlates with eradication of host clonable T cells and alloreactive cytotoxic precursors. J. Immunol. 1987; 138(2): 460–5.
  27. Terenzi A., Lubin I., Rabi I. et al. Enhancement of T-cell depleted bone marrow allografts inmice by thiotepa. Transplantation 1990; 50(4): 717–20.
  28. Cobbold S.P., Martin G., Waldmann H. et al. Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature 1986; 323(6084): 164–6.
  29. Reisner Y., Itzicovitch L., Sharon N. et al. Hematopoietic stem cell transplantation using mouse bone-marrow and spleen cells fractionated by lectins. Proc. Natl. Acad. Sci. U S A 1978; 75(5): 2933–6.
  30. Aversa F., Tabilio A., Giannoni C. et al. Successful engraftment of T-celldepleted haploidentical “threeloci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 1994; 84(11): 3948–55.
  31. Aversa F., Terenzi A., Ballanti S. et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: A phase II study in patients with acute leukemia at high risk of relapse. J. Clin. Oncol. 2005; 23(15): 3447–54.
  32. Schumm M., Lang P., Taylor G. et al. Isolation of highly purified autologous and allogeneic peripheral CD34+ cells using the CliniMACS device. J. Hematother. 1999; 8: 209–18.
  33. Klingebiel T., Cornish J., Labopin M. et al. Pediatric Diseases and Acute Leukemia Working Parties of the European Group for Blood and Marrow Transplantation (EBMT). Results and factors influencing outcome after fully haploidentical hematopoietic stem cell transplantation in children with very high-risk acute lymphoblastic leukemia: impact of center size: an analysis on behalf of the Acute Leukemia and Pediatric Disease Working Parties of the European Blood and Marrow Transplant group. Blood 2010; 115: 3437–46.
  34. Ciceri F., Labopin M., Rocha V. et al. Acute Leukemia Working Party (ALWP) of European Blood and Marrow Transplant (EBMT) Group. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with highrisk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood 2008; 112(9): 3574–81.
  35. Barfield R.C., Otto M., Houston J. et al. A one-step large-scale method for T- and B-cell depletion of mobilized PBSC for allogeneic transplantation. Cytotherapy 2004; 6: 1–6.
  36. Oevermann L., Handgretinger R. New strategies for haploidentical transplantation. Pediatr. Res. 2012; 71(4 Pt. 2): 418–26.
  37. Hale G.A., Kasow K., Gan K. et al. Haploidentical Stem Cell Transplantation with CD3 Depleted Mobilized Peripheral Blood Stem Cell Grafts for Children with Hematologic Malignancies. 47th Annual Meeting of the American Society of Hematology, 10–13 December 2005, Atlanta, GA, USA.
  38. Hale G.A., Kasow K., Madden R. et al. Mismatched family member donor transplantation for patients with refractory hematologic malignancies: Long-term follow-up of a prospective clinical trial. 48th Annual Meeting of the American Society of Hematology, 9–12 December 2006, Orlando, FL, USA.
  39. Handretinger R., Chen X., Lang P. et al. Feasibility and Outcome of Reduced-Intensity Conditioning in Haploidentical Transplantation. Ann. N.Y. Acad. Sci. 2007; 1106: 279–89.
  40. Federmann B., Handgretinger R., Bethge W.A. et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: a phase II study. Haematologica 2012; 97(10): 1523–31.
  41. Bader P., Koehl U., Klingebiel T. et al. Rapid immune recovery and low TRM in haploidentical stem cell transplantation in children and adolescence using CD3/CD19-depleted stem cells. Best Pract. Res. Clin. Haematol. 2011; 24: 331–7.
  42. Dufort G., Pisano S., Castillo L. et al. Feasibility and outcome of haploidentical SCT in pediatric high risk hematologic malignancies and Fanconianemia in Uruguay. Bone Marrow Transplant. 2012; 47(5): 663–8.
  43. Palma J., Handgretinger R., Rivera G.K. et al. Haploidentical stem cell transplantation for children with high-risk leukemia. Pediatr. Blood Cancer 2012; 59(5): 895–901.
  44. Gonzalez-Vicent M., Ramirez M., Diaz M.A. et al. Graft manipulation and reduced-intensity conditioning for allogeneic hematopoietic stem cell transplantation from mismatched unrelated and mismatched/haploidentical related donors in pediatric leukemia patients. J. Pediatr. Hematol. Oncol. 2010; 32(3): e85–90.
  45. Oevermann L., Lang P., Handgretinger R. et al. Immune reconstitution and strategies for rebuilding the immune system after haploidentical stem cell transplantation. Ann. N. Y. Acad. Sci. 2012; 1266: 161–70.
  46. Locatelli F., Vinti L., Moretta L. et al. Strategies to optimize the outcome of children given T-cell depleted HLA-haploidentical hematopoietic stem cell transplantation. Best Pract. Res. Clin. Haematol. 2011; 24(3): 339–49.
  47. Azevedo R.I., Soares M.V., Sousa A.E. et al. Long-term immune reconstitution of naive and memory T cell pools after haploidentical hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2013; 19(5): 703–12.
  48. Handgretinger R. Negative depletion of CD3(+) and TcRab(+) T cells. Curr. Opin. Hematol. 2012; 19(6): 434–9. 49. Bonneville M., O’Brien R.L., Born W.K. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 2010; 10: 467–78.
  49. Chiplunkar S., Dhar S., Wesch D., Kabelitz D. Gammadelta T cells in cancer immunotherapy: current status and future prospects. Immunotherapy 2009; 1: 663–78.
  50. Godder K.T., Henslee-Downey P.J., Mehta J. et al. Long term diseasefree survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant. 2007; 39: 751–7.
  51. Locatelli F., Bauquet A., Bertaina A. et al. Negative depletion of a/b+ T cells and of CD19+ B lymphocytes: A novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol. Lett. 2013 Sep 30.
  52. Dodero A., Carniti C., Raganato A. et al. Haploidentical stem cell transplantation after a reduced-intensity conditioning regimen for the treatment of advanced hematologic malignancies: posttransplantation CD8-depleted donor lymphocyte infusions contribute to improve T-cell recovery. Blood 2009; 113: 4771–9.
  53. Amrolia P.J., Muccioli-Casadei G., Huls H. et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood 2006; 108: 1797–808.
  54. Mielke S., Nunes R., Rezvani K. et al. A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor- recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique. Blood 2008; 111: 4392–402.
  55. Feuchtinger T., Matthes-Martin S., Richard C. et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br. J. Haematol. 2006; 134: 64–76.
  56. Feuchtinger T., Opherk K., Bethge W.A. et al. Adoptive transfer of pp65- specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 2010; 116: 4360–7.
  57. Perruccio K., Tosti A., Burchielli E. et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood 2005; 106: 4397–406.
  58. Lugthart G., Albon S.J., Ricciardelli I. et al. Simultaneous generation of multivirus-specific and regulatory T cells for adoptive immunotherapy. J. Immunother. 2012; 35: 42–53.
  59. Di I.M., Falzetti F., Carotti A. et al. Tregs prevent GVHD and promote immune reconstitution in HLA haploidentical transplantation. Blood 2011; 117(14): 3921–8.
  60. Brehm C., Huenecke S., Quaiser A. et al. IL-2 stimulated but not unstimulated NK cells induce selective disappearance of peripheral blood cells: concomitant results to a phase I/II study. PLoS One 2011; 6(11): e27351.
  61. Rizzieri D.A., Storms R., Chen D.F. et al. Natural killer cell-enriched donor lymphocyte infusions from A 3-6/6 HLA matched family member following nonmyeloablative allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 2010; 16: 1107–14.
  62. Passweg J.R., Tichelli A., Meyer-Monard S. et al. Purified donor NKlymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 2004; 18(11): 1835–8.
  63. Rubnitz J.E., Inaba H., Ribeiro R.C. et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J. Clin. Oncol. 2010; 28(6): 955–9.
  64. Ji S.Q., Chen H.R., Xun C.Q. et al. G-CSF-primed haploidentical marrow transplantation without ex vivo T cell depletion: an excellent alternative for highrisk leukemia. Bone Marrow Transplant. 2002; 30(12): 861–6.
  65. Lu D.P., Dong L., Liu K.Y. et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood 2006; 107(8): 3065–73. Epub 2005 Dec 27.
  66. Yabe H., Inoue H., Yabe M. et al. Unmanipulated HLA-haploidentical bone marrow transplantation for the treatment of fatal, nonmalignant diseases in children and adolescents. Int. J. Hematol. 2004; 80(1): 78–82.
  67. Ikegame K., Tanji Y., Ogawa H. et al. Successful treatment of refractory T-cell acute lymphoblastic leukemia by unmanipulated stem cell transplantation from an HLA 3-loci mismatched (haploidentical) sibling. Bone Marrow Transplant. 2003; 31(6): 507–10.
  68. Shimazaki C., Ochiai N., Nakagawa M. et al. Non-T-cell-depleted HLA haploidentical stem cell transplantation in advanced hematologic malignancies based on the feto-maternal michrochimerism. Blood 2003; 101(8): 3334–6.
  69. Huang X., Liu D., Zhang X. et al. Haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for treatment of hematologic malignancies in children. Biol. Blood Marrow Transplant. 2009; 15(1): 91–4.
  70. Mochizuki K., Kikuta A., Hosoya M. et al. Feasibility of tacrolimus, methotrexate, and prednisolone as a graft-versus-host disease prophylaxis in non-T-cell depleted haploidentical hematopoietic stem cell transplantation for children. Clin. Transplant. 2011; 25(6): 892–7.
  71. Субботина Н. Режимы кондиционирования со сниженной интенсивностью. Современный взгляд и собственный опыт применения в детской онкологии (обзор литературы). Дет. онкол. 2009; 3–4: 3–14. [Subbotina N. Reduced intensity conditioning regimens. Current view and own experience with usage in pediatric oncology (literature review). Det. onkol. 2009; 3–4: 3–14. (In Russ.)].
  72. Leung W., Handgretinger R., Pui C.H. et al. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 2011; 118(2): 223–30.
  73. Grupp S.A., Kalos M., Barrett D. et al. Chimeric Antigen Receptor– Modified T Cells for Acute Lymphoid Leukemia. N. Engl. J. Med. 2013; 368(16): 1509–18.
  74. Tettamanti S., Marin V., Pizzitola I. et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br. J. Haematol. 2013; 161(3): 389–401.