Естественные киллеры: лицензия на убийство

Простейшая форма выживания — убийство.

Элиас Канетти

К.Н. Мелкова1, Ж.В. Шароян1, Г.П. Фролов2

1 ООО «Компас здоровья», Клиника 12, ул. 1812 г., д. 8, корп. 1, Москва, Российская Федерация, 121170

2 Аварийный медицинский радиационный дозиметрический центр, ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России, ул. Живописная, д. 46, корп. 8, Москва, Российская Федерация, 123098

Для переписки: Жанна Вардановна Шароян, ул. 1812 г., д. 8, корп. 1, Москва, Российская Федерация, 121170; тел.: +7(963)642-94-83; e-mail: clinic12.mos@gmail.com

Для цитирования: Мелкова К.Н., Шароян Ж.В., Фролов Г.П. Естественные киллеры: лицензия на убийство. Клиническая онкогематология. 2020;13(3):273–9.

DOI: 10.21320/2500-2139-2020-13-3-273-279


РЕФЕРАТ

Естественные киллеры (NK) были впервые описаны как большие гранулярные лимфоциты, способные уничтожать опухолевые и вирус-инфицированные клетки без предварительной сенсибилизации. В статье обсуждаются биология NK-клеток, особенности их созревания и «лицензирования». Особое внимание уделено механизмам работы NK и отличиям от других лимфоцитов. Рассматривается роль NK в формировании противоопухолевого иммунитета как у онкогематологических больных, так и у здоровых лиц — потенциальных доноров костного мозга.

Ключевые слова: естественные киллеры, созревание естественных киллеров, «лицензирование» естественных киллеров, естественные киллеры у здоровых лиц, противоопухолевый иммунитет.

Получено: 10 марта 2020 г.

Принято в печать: 8 июня 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Cheent K, Khakoo SI. Natural killer cells: integrating diversity with function. Immunology. 2009;126(4):449–57. doi: 10.1111/j.1365-2567.2009.03045.x.

  2. Langers I, Renoux VM, Thiry M, et al. Natural killer cells: role in local tumor growth and metastasis. Biol Targ Ther. 2012;6:73–82. doi: 10.2147/BTT.S23976.

  3. Whiteside TL, Herberman RB. Role of human natural killer cells in health and disease. Clin Diagn Lab Immunol. 1994;1(2):125–33. doi: 10.1128/cdli.1.2.125-133.1994.

  4. Biron CA, Byron KS, Sullivan JL. Severe herpes-virus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320(26):1731–5. doi: 10.1056/nejm198906293202605.

  5. Etzioni A, Eidenschenk C, Katz R, et al. Fatal varicella associated with selective natural killer cell deficiency. J Pediatr. 2005;146(3):423–5. doi: 10.1016/j.jpeds.2004.11.022.

  6. Imai K, Matsuyama S, Miyake S, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000;356(9244):1795–9. doi: 10.1016/s0140-6736(00)03231-1.

  7. Carrega P, Bonaccorsi I, Di Carlo E, et al. CD56(bright)perforin(low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. J Immunol. 2014;192(8):3805–15. doi: 10.4049/jimmunol.1301889.

  8. Shi FD, Ljunggren HG, La Cava A, et al. Organ-specific features of natural killer cells. Nat Rev Immunol. 2011;11(10):658–71. doi: 10.1038/nri3065.

  9. Sharma R, Das A. Organ-specific phenotypic and functional features of NK cells in humans. Immunol Res. 2014;58(1):125–31. doi: 10.1007/s12026-013-8477-9.

  10. Marcus A, Raulet DH. Evidence for natural killer cell memory. Curr Biol. 2013;23(17):817–20. doi: 10.1016/j.cub.2013.07.015.

  11. O’Sullivan TE, Sun JC, Lanier LL. Natural killer cell memory. Immunity. 2015;43(4):634–45. doi: 10.1016/j.immuni.2015.09.013.

  12. Pahl HW, Cerwenka A, Ni J. Memory-like NK cells: remembering a previous activation by cytokines and NK cell receptors. Front Immunol. 2018;9:2796. doi: 10.3389/fimmu.2018.02796.

  13. Brodin P, Hoglund P. Beyond licensing and disarming: a quantitative view on NK-cell education. Eur J Immunol. 2008;38(11):2934–7. doi: 10.1002/eji.200838760.

  14. Kim S, Poursine-Laurent J, Truscott SM, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature. 2005;436(7051):709–13. doi: 10.1038/nature03847.

  15. Grzywacz B, Kataria N, Sikora M, et al. Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells. Blood. 2006;108(12):3824–33. doi: 10.1182/blood-2006-04-020198.

  16. Cooley S, Xiao F, Pitt M, et al. A subpopulation of human peripheral blood NK cells that lacks inhibitory receptors for self-MHC is developmentally immature. Blood. 2007;110(2):578–86. doi: 10.1182/blood-2006-07-036228.

  17. Anfossi N, Andre P, Guia S, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006;25(2):331–42. doi: 10.1016/j.immuni.2006.06.013.

  18. Abel AM, Chao Yang, Thakar M, et al. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol. 2018;9:1869. doi: 10.3389/fimmu.2018.01869.

  19. Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol. 2019;10:1812. doi: 10.3389/fimmu.2019.01812.

  20. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40. doi: 10.1016/S1471-4906(01)02060-9.

  21. Jacobs R, Hintzen G, Kemper A, et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol. 2001;31(10):3121–6. doi: 10.1002/1521-4141(2001010)31:10<3121::aid-immu3121>3.0.co;2-4.

  22. Valiante NM, Uhrberg M, Shilling HG, et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of human donors. Immunity. 1997;7(6):739–51. doi: 10.1016/s1074-7613(00)80393-3.

  23. Draghi M, Yawata N, Gleimer M, et al. Single-cell analysis of the human NK cell response to missing self and its inhibition by HLA class I. Blood. 2005;105(5):2028–35. doi: 10.1182/blood-2004-08-3174.

  24. Lutz CT, Moore MB, Bradley S, et al. Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev. 2005;126(6–7):722–31. doi: 10.1016/j.mad.2005.01.004.

  25. Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–9. doi: 10.1182/blood-2007-09-077438.

  26. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23(1):225–74. doi: 10.1146/annurev.immunol.23.021704.115526.

  27. Rubnitz JE, Inaba H, Ribeiro RC, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28(6):955–9. doi: 10.1200/jco.2009.24.4590.

  28. Passweg JR, Tichelli A, Meyer-Monard S, et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia. 2004;18(11):1835–8. doi: 10.1038/sj.leu.2403524.

  29. Geller MA, Cooley S, Judson PL, et al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy. 2011;13(1):98–107. doi: 10.3109/14653249.2010.515582.

  30. Ljunggren HG, Karre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today. 1990;11(7):237–44. doi: 10.1016/0167-5699(90)90097-s.

  31. Kannan GS, Aquino-Lopez A, Lee DA. Natural killer cells in malignant hematology: A primer for the non-immunologist. Blood Rev. 2017;31(2):1–10. doi: 10.1016/j.blre.2016.08.007.

  32. Moretta A, Pende D, Locatelli F, et al. Activating and inhibitory killer immunoglobulin-like receptors (KIR) in haploidentical haemopoietic stem cell transplantation to cure high-risk leukaemias. Clin Exp Immunol. 2009;157(3):325–31. doi: 10.1111/j.1365-2249.2009.03983.x.

  33. Wang W, Erbe A, Hank J, et al. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol. 2015;6:368. doi: 10.3389/fimmu.2015.00368.

  34. Romain G, Senyukov V, Rey-Villamizar N, et al. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells. Blood. 2014;124(22):3241–9. doi: 10.1182/blood-2014-04-569061.

  35. Balasa B, Yun R, Belmar NA, et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways. Cancer Immunol Immunother. 2015;64(1):61–73. doi: 10.1007/s00262-014-1610-3.

  36. Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115–23. doi: 10.1053/j.seminhematol.2010.01.011.

  37. Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–27. doi: 10.1038/nri2744.

  38. Smyth MJ, Hayakawa Y, Takeda K, et al. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002;2(11):850–61. doi: 10.1038/nrc928.

  39. Ruggeri L, Mancusi A, Burchielli E, et al. NK cell alloreactivity and allogeneic hematopoietic stem cell transplantation. Blood Cells Mol Dis. 2008;40(1):84–90. doi: 10.1016/j.bcmd.2007.06.029.

  40. Park S, Kim K, Jun Ho Jang, et al. KIR alloreactivity based on the receptor–ligand model is associated with improved clinical outcomes of allogeneic hematopoietic stem cell transplantation: Result of single center prospective study. Hum Immunol. 2015;76(9):636–43. doi: 10.1016/j.humimm.2015.09.009.

  41. McCurdy SR, Fuchs EJ. Selecting the best haploidentical donor. Semin Hematol. 2016;53(4):246–51. doi: 10.1053/j.seminhematol.2016.08.001.

  42. Fever Al. Graft-versus-Tumor Responses. In: KG Blume, JS Forman, FR Appelbaum, eds. Thomas’ Hematopoietic Cell Transplantation, 3th edition. Blackwell; 2004. pp. 371–

  43. Petersen SL, Ryder LP, Bjork P, et al. A comparison of T-, B- and NK-cell reconstitution following conventional or nonmyeloablative conditioning and transplantation with bone marrow or peripheral blood stem cells from human leucocyte antigen identical sibling donors. Bone Marrow Transplant. 2003;32(1):65–72. doi: 10.1038/sj.bmt.1704084.

  44. Shenoy S, Mohanakumar T, Todd G, et al. Immune reconstitution following allogeneic peripheral blood stem cell transplants. Bone Marrow Transplant. 1999;23(4):335–46. doi: 10.1038/sj.bmt.1701581.

  45. Nguyen S, Dhedin N, Vernant JP, et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood. 2005;105(10):4135–42. doi: 10.1182/blood-2004-10-4113.

  46. Hattori N, Saito B, Sasaki Y, et al. Status of Natural Killer Cell Recovery in Day 21 Bone Marrow after Allogeneic Hematopoietic Stem Cell Transplantation Predicts Clinical Outcome. Biol Blood Marrow Transplant. 2018;24(9):1841–7. doi: 10.1016/j.bbmt.2018.05.007.

  47. Stern M, Passweg JR, Meyer-Monard S, et al. Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. Bone Marrow Transplant. 2013;48(3):433–8. doi: 10.1038/bmt.2012.162.

  48. Hofmann S, Greiner J. Adoptive Immunotherapy after Allogeneic Hematopoietic Progenitor Cell Transplantation: New Perspectives for Transfusion Medicine. Transfus Med Hemother. 2011;38(3):173–82. doi: 10.1159/000328898.

  49. Mathe G, Amiel JL, Schwarzenberg L, et al. Adoptive immunotherapy of acute leukemia: Experimental and clinical results. Cancer Res. 1965;25(9):1525–31.

  50. Amrolia PJ, Muccioli-Casadei G, Huls H, et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108(6):1797–808. doi: 1182/blood-2006-02-001909.

  51. Мелкова К.Н., Шароян Ж.В. Материалы 45-го конгресса Европейского общества по трансплантации костного мозга (март 2019 г., Франкфурт-на Майне). Клиническая онкогематология. 2019;12(4):468–71. [Melkova KN, Sharoyan ZhV. Materials of the 45th Congress of the European Society for Blood and Marrow Transplantation (March, 2019; Frankfurt am Main). Clinical oncohematology. 2019;12(4):468– (In Russ)]

  52. Montelli TCB, Peracoli MTS, Gabarra RC, et al. Familial cancer: depressed NK-cell cytotoxicity in healthy and cancer affected members. Arq Neuro-Psiquiatr. 2001;59(1):6–10. doi: 10.1590/s0004-282х2001000100003.

  53. Rehermann B. Natural Killer Cells in Viral Hepatitis. Cell Mol Gastroenterol Hepatol. 2015;1(6):578–88. doi: 10.1016/j.jcmgh.2015.09.004.

  54. Lutgendorf SK, Sood AK, Anderson B, et al. Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 2005;23(28):7105–13. doi: 10.1200/jco.2005.10.015.

  55. Whiteside TL, Herberman RB. Role of human natural killer cells in health and disease. Clin Diagn Lab Immunol. 1994;1(2):125–33. doi: 10.1128/cdli.1.2.125-133.1994.

  56. O’Shea D, Hogan A. Dysregulation of Natural Killer Cells in Obesity. Cancers (Basel). 2019;11(4):573. doi: 10.3390/cancers11040573.

  57. Bigley AB, Agha NH, Baker FL, et al. NK cell function is impaired during long-duration spaceflight. J Appl Physiol. 1985;126(4):842–53. doi: 10.1152/japplphysiol.00761.2018.