Клиническое значение полноэкзомных исследований миелоидных опухолей методом секвенирования следующего поколения

С.А. Смирнихина1, А.В. Лавров1, Э.П. Адильгереева1, А.Г. Туркина2, С.И. Куцев1,3

1 ФГБУ «Медико-генетический научный центр» РАМН, Москва, Российская Федерация

2 ФГБУ «Гематологический научный центр» Министерства здравоохранения РФ, Москва, Российская Федерация

3 ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Министерства здравоохранения РФ, Москва, Российская Федерация


РЕФЕРАТ

В обзоре рассматривается применение секвенирования следующего поколения (next-generation sequencing) для изучения патогенеза миелоидных опухолей. Исследования экзомов опухолевых клеток у пациентов с разными формами миелоидных опухолей позволили выявить новые рекуррентные мутации, имеющие значение для понимания молекулярных механизмов патогенеза, определения прогноза эффективности лечения, разработки новых подходов к таргетной терапии этих заболеваний.


Ключевые слова: экзом, секвенирование следующего поколения, миелоидные опухоли.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Hochhaus A., O’Brien S.G., Guilhot F. et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 2009; 23(6): 1054–61.
  2. Choi M., Scholl U.I., Ji W. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA 2009; 106(45): 19096–101.
  3. Rothberg J.M., Hinz W., Rearick T.M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011; 475(7356): 348–52.
  4. Ng S.B., Turner E.H., Robertson P.D. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009; 461(7261): 272–6.
  5. Ng S.B., Buckingham K.J., Lee C. et al. Exome sequencing identifies the cause of a Mendelian disorder. Nat. Genet. 2010; 42(1): 30–5.
  6. Kahvejian A., Quackenbush J., Thompson J.F. What would you do if you could sequence everything? Nat. Biotechnol. 2008; 26(10): 1125–33.
  7. Biesecker L.G. Exome sequencing makes medical genomics a reality. Nat. Genet. 2010; 42(1): 13–4.
  8. Gregory T.K., Wald D., Chen Y. et al. Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J. Hematol. Oncol. 2009; 2: 23.
  9. Riva L., Luzi L., Pelicci P.G. Genomics of acute myeloid leukemia: the next generation. Front Oncol. 2012; 2: 40.
  10. Walter M.J., Payton J.E., Ries R.E. et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc. Natl. Acad. Sci. USA 2009; 106(31): 12950–5.
  11. Walter M.J., Graubert T.A., Dipersio J.F. et al. Next-generation sequencing of cancer genomes: back to the future. Per. Med. 2009; 6(6): 653.
  12. Mrozek K., Heerema N.A., Bloomfield C.D. Cytogenetics in acute leukemia. Blood Rev. 2004; 18: 115–36.
  13. Kelly L.M., Kutok J.L., Williams I.R. et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc. Natl. Acad. Sci. USA 2002; 99: 8283–8.
  14. Ley T.J., Mardis E.R., Ding L. et al. DNA sequencing of a cytogenetically normal acute myeloid leukemia genome. Nature 2008; 456(7218): 66–72.
  15. Arber D.A., Brunning R.D., Le Beau M.M. et al. Acute myeloid leukaemia with recurrent genetic abnormalities. In: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue. Ed. by S. Swerdlow, E. Campo, N.L. Harris. Geneva: IARC Press, 2008: 110–23.
  16. Mardis E.R., Ding L., Dooling D.J. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 2009; 361(11): 1058–66.
  17. Ley T.J., Ding L., Walter M.J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 2010; 363(25): 2424–33.
  18. Grossmann V., Tiacci E., Holmes A.B. et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 2011; 118(23): 6153–63.
  19. Jan M., Snyder T.M., Corces-Zimmerman M.R. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 2012; 4(149): 149ra118.
  20. Thol F., Kolking B., Damm F. et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromos. Cancer 2012; 51(7): 689–95.
  21. Duncavage E.J., Abel H.J., Szankasi P. et al. Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Mod. Pathol. 2012; 25(6): 795–804.
  22. Mardis E.R., Wilson R.K. Cancer genome sequencing: a review. Hum. Mol. Genet. 2009; 18(R2): R163–8.
  23. Papaemmanuil E., Cazzola M., Boultwood J. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 2011; 365(15): 1384–95.
  24. Malcovati L., Papaemmanuil E., Bowen D.T. et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 2011; 118(24): 6239–46.
  25. Visconte V., Rogers H.J., Singh J. et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 2012 Jul 23. [Epub ahead of print]
  26. Yoshida K., Sanada M., Shiraishi Y. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478(7367): 64–9.
  27. Makishima H., Visconte V., Sakaguchi H. et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 2012; 119(14): 3203–10.
  28. Graubert T.A., Shen D., Ding L. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 2011; 44(1): 53–7.
  29. Albert B.J., McPherson P.A., O’Brien K. et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrugresistant cells. Mol. Cancer Ther. 2009; 8(8): 2308–18.
  30. Visconte V., Makishima H., Maciejewski J.P., Tiu R.V. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 2012 May 15. doi: 10.1038/leu.2012.130. [Epub ahead of print]
  31. Tallman M.S., Kim H.T., Paietta E. et al. Acute monocytic leukemia (French-American-British classification M5) does not have a worse prognosis than other subtypes of acute myeloid leukemia: a report from the Eastern Cooperative Oncology Group. J. Clin. Oncol. 2004; 22: 1276–86.
  32. Yan X.J., Xu J., Gu Z.H. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat. Genet. 2011; 43(4): 309–15.
  33. Grimwade D., Biondi A., Mozziconacci M.J. et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action «Molecular Cytogenetic Diagnosis in Haematological Malignancies». Blood 2000; 96(4): 1297–308.
  34. Greif P.A., Yaghmaie M., Konstandin N.P. et al. Somatic mutations in acute promyelocytic leukemia (APL) identified by exome sequencing. Leukemia 2011; 25(9): 1519–22.
  35. Welch J.S., Westervelt P., Ding L. et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 2011; 305(15): 1577–84.
  36. Spector M.S., Iossifov I., Kritharis A. et al. Mast-cell leukemia exome chain and KITbsequencing reveals a mutation in the IgE mast-cell receptor V654A. Leukemia 2012; 26(6): 1422–5.
  37. Kohlmann A., Grossmann V., Klein H.U. et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J. Clin. Oncol. 2010; 28(24): 3858–65.
  38. Kohlmann A., Klein H.U., Weissmann S. et al. The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia 2011; 25(12): 1840–8.