Прогноз эффективности терапии при рецидивах хронического лимфолейкоза

О.Б. Калашникова, И.С. Моисеев, Т.Л. Гиндина, Е.А. Измайлова, М.О. Иванова, Е.В. Кондакова, Н.Б. Михайлова, А.Д. Кулагин

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Ольга Борисовна Калашникова, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: o4290@yandex.ru

Для цитирования: Калашникова О.Б., Моисеев И.С., Гиндина Т.Л. и др. Прогноз эффективности терапии при рецидивах хронического лимфолейкоза. Клиническая онкогематология. 2021;14(4):466–76.

DOI: 10.21320/2500-2139-2021-14-4-466-476


РЕФЕРАТ

Актуальность. Появление ингибиторов сигнальных путей (ИСП) значительно улучшило прогноз пациентов с рецидивами хронического лимфолейкоза (Р-ХЛЛ). Тем не менее у части пациентов не удается достичь оптимального и устойчивого ответа. Наличие дефектов гена TP53 определяет рефрактерность к иммунохимиотерапии (ИХТ) и более низкие показатели выживаемости без прогрессирования при терапии ИСП. Однако прогностическое значение комплексного кариотипа (КК) при ХЛЛ долгое время оставалось дискутабельным. В последние годы все больше внимания уделяется прогностическому влиянию КК в контексте терапии ИСП.

Материалы и методы. В исследование включено 180 пациентов, получавших по поводу Р-ХЛЛ лекарственное лечение (113 — ИХТ, 67 — ИСП). В качестве маркеров прогноза оценивались возраст на начало второй линии терапии, ответ на терапию первой линии, раннее (< 24 мес.) прогрессирование после терапии первой линии, число линий терапии, наличие КК и дефекта гена TP53. С учетом клональной эволюции при ХЛЛ для анализа степени значимости перечисленных предикторов использовался регрессионный анализ пропорциональных рисков Кокса с временно-зависимыми переменными.

Результаты. Независимыми факторами, статистически значимо снижающими риск летального исхода, оказались достижение ответа непосредственно после первой линии терапии (отношение рисков [ОР] 0,38; 95%-й доверительный интервал [95% ДИ] 0,20–0,72; = 0,003) и число линий проводимой терапии (ОР 0,56; 95% ДИ 0,37–0,86; = 0,008). Применение только ИХТ во второй и последующих линиях было связано с повышением риска летального исхода (ОР 2,25; 95% ДИ 1,09–4,63; = 0,028). Наличие генетического риска с высокой статистической значимостью ухудшало прогноз как в случае наличия дефекта гена TP53 с исключенным или неизвестным статусом КК (ОР 10,54; 95% ДИ 4,25–26,17; < 0,001), так и при наличии КК (ОР 14,08; 95% ДИ 5,77–34,35; < 0,001). Значимым предиктором неблагоприятного исхода оказался фактор неизвестного статуса по КК при отсутствии поломки гена TP53 (ОР 4,15; 95% ДИ 1,72–10,00; = 0,002). Срок рецидивов после первой линии терапии и возраст ≥ 65 лет не имели независимого прогностического значения.

Заключение. Проведение стандартного кариотипирования лимфоцитов периферической крови со специфической стимуляцией позволяет более четко определить прогноз заболевания и выбрать оптимальную стратегию лечения пациентов с Р-ХЛЛ.

Ключевые слова: хронический лимфолейкоз, предикторы ответа, del(17p), мутации TP53, комплексный кариотип, цитогенетический риск, иммунохимиотерапия, ибрутиниб, венетоклакс.

Получено: 29 марта 2021 г.

Принято в печать: 15 августа 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–60. doi: 10.1182/blood-2017-09-806398.
  2. Weide R, Feiten S, Chakupurakal G, et al. Survival improvement of patients with chronic lymphocytic leukemia (CLL) in routine care 1995–2017. Leuk Lymphoma. 2020;61(3):557–66. doi: 10.1080/10428194.2019.1680840.
  3. Thompson PA, Tam CS, O’Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–9. doi: 10.1182/blood-2015-09-667675.
  4. Chai-Adisaksopha C, Brown JR. FCR achieves long-term durable remissions in patients with IGHV-mutated CLL. Blood. 2017;130(21):2278–82. doi: 10.1182/blood-2017-07-731588.
  5. Galton DA, Israels LG, Nabarro JD, Till M. Clinical trials of p-(di-2-chloroethylamino)-phenylbutyric acid (CB 1348) in malignant lymphoma. Br Med J. 1955;2(4949):1172–6. doi: 10.1136/bmj.2.4949.1172.
  6. Shaw RK, Boggs DR, Silberman HR, Frei E. A study of prednisone therapy in chronic lymphocytic leukemia. Blood. 1961;17(2):182–9. doi: 10.1182/blood.v17.2.182.182.
  7. Montserrat E, Moreno C, Esteve J, et al. How I treat refractory CLL. Blood. 2006;107(4):1276–83. doi: 10.1182/blood-2005-02-0819.
  8. Tsimberidou AM, Keating MJ. Treatment of fludarabine-refractory chronic lymphocytic leukemia. Cancer. 2009;115(13):2824–36. doi: 10.1002/cncr.24329.
  9. Stilgenbauer S, Zenz T. Understanding and managing ultra high-risk chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2010;2010(1):481–8. doi: 10.1182/asheducation-2010.1.481.
  10. Byrd JC, Furman RR, Coutre SE, et al. Ibrutinib Treatment for First-Line and Relapsed/Refractory Chronic Lymphocytic Leukemia: Final Analysis of the Pivotal Phase Ib/II PCYC-1102 Study. Clin Cancer Res. 2020;26(15):3918–27. doi: 10.1158/1078-0432.CCR-19-2856.
  11. Munir T, Brown JR, O’Brien S, et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94(12):1353–63. doi: 10.1002/ajh.25638.
  12. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374(4):311–22. doi: 10.1056/NEJMoa1513257.
  13. Seymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax-Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. N Engl J Med. 2018;378(12):1107–20. doi: 10.1056/NEJMoa1713976.
  14. Winqvist M, Asklid A, Andersson PO, et al. Real-world results of ibrutinib in patients with relapsed or refractory chronic lymphocytic leukemia: data from 95 consecutive patients treated in a compassionate use program. A study from the Swedish Chronic Lymphocytic Leukemia Group. Haematologica. 2016;101(12):1573–80. doi: 10.3324/haematol.2016.144576.
  15. Ibrutinib for relapsed/refractory chronic lymphocytic leukemia: a UK and Ireland analysis of outcomes in 315 patients. Haematologica. 2016;101(12):1563–72. doi: 10.3324/haematol.2016.147900.
  16. Sorror ML, Storer BE, Sandmaier BM, et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. J Clin Oncol. 2008;26(30):4912–20. doi: 10.1200/JCO.2007.15.4757.
  17. Delgado J, Pillai S, Phillips N, et al. Does reduced-intensity allogeneic transplantation confer a survival advantage to patients with poor prognosis chronic lymphocytic leukaemia? A case-control retrospective analysis. Ann Oncol. 2009;20(12):2007–12. doi: 10.1093/annonc/mdp259.
  18. Poon ML, Fox PS, Samuels BI, et al. Allogeneic stem cell transplant in patients with chronic lymphocytic leukemia with 17p deletion: consult-transplant versus consult-no-transplant analysis. Leuk Lymphoma. 2015;56(3):711–5. doi: 10.3109/10428194.2014.930848.
  19. van Gelder M, Ziagkos D, de Wreede L, et al; CLL Subcommittee of the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation. Baseline Characteristics Predicting Very Good Outcome of Allogeneic Hematopoietic Cell Transplantation in Young Patients With High Cytogenetic Risk Chronic Lymphocytic Leukemia – A Retrospective Analysis From the Chronic Malignancies Working Party of the EBMT. Clin Lymphoma Myel Leuk. 2017;17(10):667–75.e2. doi: 10.1016/j.clml.2017.06.007.
  20. Kim HT, Ahn KW, Hu ZH, et al. Prognostic Score and Cytogenetic Risk Classification for Chronic Lymphocytic Leukemia Patients: Center for International Blood and Marrow Transplant Research Report. Clin Cancer Res. 2019;25(16):5143–55. doi: 10.1158/1078-0432.CCR-18-3988.
  21. Afanasyeva KS, Barabanshchikova MV, Bondarenko SN, et al. Indications for hematopoietic stem cell transplantation. Cell Ther Transplant. 2019;8(4):101–45. doi: 10.18620/ctt-1866-8836-2019-8-4-101-145.
  22. Moreno C. Standard treatment approaches for relapsed/refractory chronic lymphocytic leukemia after frontline chemoimmunotherapy. Hematology Am Soc Hematol Educ Program. 2020;2020(1):33–40. doi: 10.1182/hematology.2020000086.
  23. Baliakas P, Iskas M, Gardiner A, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249–55. doi: 10.1002/ajh.23618.
  24. Eichhorst B, Hallek M. Prognostication of chronic lymphocytic leukemia in the era of new agents. Hematology Am Soc Hematol Educ Program. 2016;2016(1):149–55. doi: 10.1182/asheducation-2016.1.149.
  25. Blanco G, Puiggros A, Baliakas P, et al. Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with TP53 aberrations. Oncotarget. 2016;7(49):80916–24. doi: 10.18632/oncotarget.13106.
  26. Jaglowski SM, Ruppert AS, Heerema NA, et al. Complex karyotype predicts for inferior outcomes following reduced-intensity conditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol. 2012;159(1):82–7. doi: 10.1111/j.1365-2141.2012.09239.x.
  27. Rigolin GM, Cavallari M, Quaglia FM, et al. In CLL, comorbidities and the complex karyotype are associated with an inferior outcome independently of CLL-IPI. Blood. 2017;129(26):3495–8. doi: 10.1182/blood-2017-03-772285.
  28. Rigolin GM, Saccenti E, Guardalben E, et al. In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br J Haematol. 2018;181(2):229–33. doi: 10.1111/bjh.15174.
  29. Badoux XC, Keating MJ, Wang X, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. Blood. 2011;117(11):3016–24. doi: 10.1182/blood-2010-08-304683.
  30. Herling CD, Klaumunzer M, Rocha CK, et al. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood. 2016;128(3):395–404. doi: 10.1182/blood-2016-01-691550.
  31. Le Bris Y, Struski S, Guieze R, et al. Major prognostic value of complex karyotype in addition to TP53 and IGHV mutational status in first-line chronic lymphocytic leukemia. Hematol Oncol. 2017;35(4):664–70. doi: 10.1002/hon.2349.
  32. Mato AR, Hill BT, Lamanna N, et al. Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients. Ann Oncol. 2017;28(5):1050–6. doi: 10.1093/annonc/mdx031.
  33. Mato AR, Thompson M, Allan JN, et al. Real-world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States. Haematologica. 2018;103(9):1511–7. doi: 10.3324/haematol.2018.193615.
  34. Thompson PA, O’Brien SM, Wierda WG, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121(20):3612–21. doi: 10.1002/cncr.29566.
  35. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362–70. doi: 10.1182/blood-2017-01-763003.
  36. Baliakas P, Puiggros A, Xochelli A, et al. Additional trisomies amongst patients with chronic lymphocytic leukemia carrying trisomy 12: the accompanying chromosome makes a difference. Haematologica. 2016;101(7):e299–е302. doi: 10.3324/haematol.2015.140202.
  37. Dierlamm J, Michaux L, Criel A, et al. Genetic abnormalities in chronic lymphocytic leukemia and their clinical and prognostic implications. Cancer Genet Cytogenet. 1997;94(1):27–35. doi: 10.1016/s0165-4608(96)00246-4.
  38. Dubuc AM, Davids MS, Pulluqi M, et al. FISHing in the dark: How the combination of FISH and conventional karyotyping improves the diagnostic yield in CpG-stimulated chronic lymphocytic leukemia. Am J Hematol. 2016;91(10):978–83. doi: 10.1002/ajh.24452.
  39. Haferlach C, Dicker F, Schnittger S, et al. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21(12):2442–51. doi: 10.1038/sj.leu.2404935.
  40. Haferlach C, Dicker F, Weiss T, et al. Toward a comprehensive prognostic scoring system in chronic lymphocytic leukemia based on a combination of genetic parameters. Genes Chromos Cancer. 2010;49(9):851–9. doi: 10.1002/gcc.20794.
  41. Puiggros A, Collado R, Calasanz MJ, et al. Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletions. Oncotarget. 2017;8(33):54297–303. doi: 10.18632/oncotarget.17350.
  42. Rigolin GM, del Giudice I, Formigaro L, et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia: Clinical and biologic correlations. Genes Chromos Cancer. 2015;54(12):818–26. doi: 10.1002/gcc.22293.
  43. US Food and Drug Administration. Framework for FDA’s real-world evidence program. 2018. Available from: https://www.fda.gov/media/120060/download (accessed 3.06.2021).
  44. Personalized Medicine Coalition. Personalized Medicine at FDA: The Scope & Significance of Progress in 2019. Available from: http://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/PM_at_FDA_The_Scope_and_Significance_of_Progress_in_2019.pdf (accessed 3.06.2021).
  45. Khozin S, Blumenthal GM, Pazdur R. Real-world Data for Clinical Evidence Generation in Oncology. J Natl Cancer Inst. 2017;109(11):1–5. doi: 10.1093/jnci/djx187.
  46. Booth CM, Karim S, Mackillop WJ. Real-world data: towards achieving the achievable in cancer care. Nat Rev Clin Oncol. 2019;16(5):312–25. doi: 10.1038/s41571-019-0167-7.
  47. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.
  48. Калашникова О.Б., Иванова М.О., Волков Н.П. и др. Факторы прогноза и эффективность терапии первой линии хронического лимфолейкоза: результаты 10-летнего наблюдения. Ученые записки Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова. 2020;27(3):80–96. doi: 10.24884/1607-4181-2020-27-3-80-96.
    [Kalashnikova ОB, Ivanova MO, Volkov NP, et al. Prognostic factors and effectiveness of the first-line therapy for chronic lymphocytic leukemia: results of 10-year follow-up. The Scientific Notes of the Pavlov University. 2020;27(3):80–96. doi: 10.24884/1607-4181-2020-27-3-80-96. (In Russ)]
  49. Ahn IE, Farber CM, Davids MS, et al. Early progression of disease as a predictor of survival in chronic lymphocytic leukemia. Blood Adv. 2017;1(25):2433–43. doi: 10.1182/bloodadvances.2017011262.
  50. Malcikova J, Tausch E, Rossi D, et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia–update on methodological approaches and results interpretation. Leukemia. 2018;32(5):1070–80. doi: 10.1038/s41375-017-0007-7.
  51. Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11):1205–16. doi: 10.1182/blood-2018-09-873083.
  52. Rosenquist R, Ghia P, Hadzidimitriou A, et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia. 2017;31(7):1477–81. doi: 10.1038/leu.2017.125.
  53. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–30. doi: 10.1038/nature15395.
  54. Amin NA, Malek SN. Gene mutations in chronic lymphocytic leukemia. Semin Oncol. 2016;43(2):215–21. doi: 10.1053/j.seminoncol.2016.02.002.
  55. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.
  56. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362–70. doi: 10.1182/blood-2017-01-763003.
  57. Le Bris Y, Struski S, Guieze R, et al. Major prognostic value of complex karyotype in addition to TP53 and IGHV mutational status in first-line chronic lymphocytic leukemia. Hematol Oncol. 2017;35(4):664–70. doi: 10.1002/hon.2349.
  58. Deng J, Isik E, Fernandes SM, et al. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia. 2017;31(10):2075–84. doi: 10.1038/leu.2017.32.
  59. Tam CS, Siddiqi T, Allan JN, et al. Ibrutinib (Ibr) plus venetoclax (Ven) for first-line treatment of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL): results from the MRD cohort of the phase 2 CAPTIVATE Study. Blood. 2019;134(Suppl 1):35. doi: 10.1182/blood-2019-121424.
  60. Jain N, Keating M, Thompson P, et al. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N Engl J Med. 2019;380(22):2095–103. doi: 10.1056/NEJMoa1900574.
  61. Rogers KA, Huang Y, Ruppert AS, et al. Phase 1b study of obinutuzumab, ibrutinib, and venetoclax in relapsed and refractory chronic lymphocytic leukemia. Blood. 2018;132(15):1568–72. doi: 10.1182/blood-2018-05-853564.
  62. Lampson BL, Tyekucheva S, Crombie JL, et al. Updated Safety and Efficacy Results from a Phase 2 Study of Acalabrutinib, Venetoclax and Obinutuzumab (AVO) for Frontline Treatment of Chronic Lymphocytic Leukemia (CLL). Blood. 2020;136(Suppl 1):20–1. doi: 10.1182/blood-2020-139864.