Роль иммунологического синапса в биологии хронического лимфолейкоза

Д.С. Бадмажапова, И.В. Гальцева, Е.Е. Звонков

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Дарима Сэмункоевна Бадмажапова, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(929)562-93-41; e-mail: badmazhapova-darima@mail.ru

Для цитирования: Бадмажапова Д.С., Гальцева И.В., Звонков Е.Е. Роль иммунологического синапса в биологии хронического лимфолейкоза. Клиническая онкогематология. 2018;11(4):313–8.

DOI: 10.21320/2500-2139-2018-11-4-313-318


РЕФЕРАТ

Хронический лимфолейкоз (ХЛЛ) — злокачественное лимфопролиферативное заболевание, которое проявляется накоплением опухолевых В-лимфоцитов с характерным иммунофенотипом (CD19+CD5+CD23+) в костном мозге, периферической крови и вторичных лимфоидных органах. По клиническому течению ХЛЛ является гетерогенным заболеванием. Это самый частый вид лейкоза у лиц старшей возрастной группы. Несмотря на применение новых лекарственных средств, остаются рефрактерные формы заболевания. Последние открытия в иммунологии позволили понять некоторые механизмы уклонения опухолевых клеток от иммунного надзора. Взаимодействие клеток иммунной системы друг с другом осуществляется за счет формирования иммунологического синапса, в котором основная роль отводится семейству молекул CD28/В7, так называемым иммунным контрольным точкам, регулирующим активационные и ингибирующие механизмы регуляции клеток. Приобретение клетками опухолевого фенотипа — многоступенчатый процесс, в котором клетка приобретает уникальные биологические свойства, в т. ч. и возможность быть невидимой для иммунитета. В отличие от солидных опухолей при лимфопролиферативных заболеваниях опухолевые В-лимфоциты способны экспрессировать главный комплекс гистосовместимости II класса и костимулирующие молекулы CD80 и CD86. Это свидетельствует о том, что они могут быть антигенпрезентирующими клетками для Т-клеток. Наличие коингибирующих молекул на поверхности опухолевых клеток может служить одним из факторов ингибирования иммунного ответа. В настоящем обзоре рассматриваются современные представления о биологических особенностях и иммунологических взаимодействиях клеток ХЛЛ с клетками микроокружения.

Ключевые слова: хронический лимфолейкоз, иммунологический синапс, иммунитет.

Получено: 15 марта 2018 г.

Принято в печать: 29 июня 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.

  2. Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v78–v84. doi: 10.1093/annonc/mdv303.

  3. The International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90. doi: 10.1016/S1470-2045(16)30029-8.

  4. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. doi: 10.1038/ni1102-991.

  5. Mellor AL, Munn DH. Tryptophan catabolism and regulation of adaptive immunity. J Immunol. 2003;170(12):5809–13. doi: 4049/jimmunol.170.12.5809.

  6. Vladimirova R, Popova D, Vikentieva E, et al. Chronic Lymphocytic Leukemia — Microenvironment and B Cells. In: Guenova M, Balatzenko G, eds. Leukemias: Updates and New Insights [Internet]; 2015. рр. 247–76. doi: 10.5772/60761. Available from: https://www.intechopen.com/books/leukemias-updates-and-new-insights/chronic-lymphocytic-leukemia-microenvironment-and-b-cells (accessed 31.05.2018).

  7. Ярилин А.А. Иммунология: учебник. M.: ГЭОТАР-Медиа, 2010. С. 394–403.

    [Yarilin AA. Immunologiya: uchebnik. (Immunology: a manual.) Moscow: GEOTAR-Media Publ.; 2010. pp. 394–403. (In Russ)]

  8. Kupfer A, Kupfer H. Imaging immune cell interactions and functions: SMACs and the immunological synapse. Semin Immunol. 2003;15(6):295–300. doi: 10.1016/j.smim.2003.09.001.

  9. Dustin ML. Modular design of immunological synapses and kinapses. Cold Spring Harb Perspect Biol. 2009;1(1):a002873. doi: 10.1101/cshperspect.a002873.

  10. Janeway C, Travers P, Walport M, et al. Immunobiology. The immune system in health and disease, 6th edn. Garland Science; 2005.

  11. Burger JA. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2011;1:96–103. doi: 10.1182/asheducation-2011.1.96.

  12. Pasikowska M, Walsby E, Apollonio B, et al. Phenotype and immune function of lymph node and peripheral blood CLL cells are linked to transendothelial migration. 2016;128(4):563–73. doi: 10.1182/blood-2016-01-683128.

  13. Hofbauer JP, Heyder C, Denk U, et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia. 2011;25(9):1452–8. doi: 10.1038/leu.2011.111.

  14. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23(1):515–48. doi:1146/annurev.immunol.23.021704.115611.

  15. Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom? 2000;101(2):169–77. doi: 10.1046/j.1365-2567.2000.00121.x.

  16. Boussiotis VA, Freeman GJ, Gribben GJ, et al. The role of B7-1/B7-2:CD28/CTLA-4 pathways in the prevention of anergy, induction of productive immunity and downregulated of the immune response. Immunol Rev. 1996;153(1):5–26. doi: 10.1111/j.1600-065x.1996.tb00918.x.

  17. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. doi: 10.1084/jem.20112741.

  18. Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3 zeta signalosome and downstream signaling to PKC theta. FEBS Lett. 2004;574(1–3):37–41. doi: 10.1016/j.febslet.2004.07.083.

  19. Thibult M-L, Mamessier E, Gertner-Dardenne J, et al. PD-1 is a novel regulator of human B-cell activation. Int Immunol. 2013;25(2):129–37. doi: 10.1093/intimm/dxs098.

  20. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi: 10.1186/2162-3619-1-36.

  21. Mills DM, Stolpa JC, Cambier JC. Modulation of MHC class II signal transduction by CD19. Adv Exp Med Biol. 2007;596:139–48. doi: 1007/0-387-46530-8_12.

  22. Kuijpers TW, Bende RJ, Baars PA, et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest. 2010;120(1):214–22. doi: 1172/JCI40231.

  23. Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev. 2009;230(1):128–43. doi: 1111/j.1600-065X.2009.00801.x.

  24. Cerutti A, Kim EC, Shah S, et al. Dysregulation of CD30+ T cells by leukemia impairs isotype switching in normal B cells. Nat Immunol. 2001;2(2):150–6. doi: 10.1038/84254.

  25. Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765–72. doi: 10.1093/intimm/8.5.765.

  26. Chinai JM, Janakiram M, Chen F, et al. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci. 2015;36(9):587–95. doi: 10.1016/j.tips.2015.06.005.

  27. Majolini MB, D’Elios MM, Galieni P, et al. Expression of the T-cell-specific tyrosine kinase Lck in normal B-1 cells and in chronic lymphocytic leukemia B cells. Blood. 1998;91(9):3390–6.

  28. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37. doi: 10.1172/JCI35017.

  29. Caligaris-Cappio F, Bertilaccio MT, Scielzo C. How the microenvironment wires the natural history of chronic lymphocytic leukemia. Semin Cancer Biol. 2014;24:43–8. doi: 10.1016/j.semcancer.2013.06.010.

  30. Damle RN, Calissano C, Chiorazzi N. Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Clin Haematol. 2010;23(1):33–45. doi: 10.1016/j.beha.2010.02.001.

  31. Lauria F, Foa R, Catovsky D. Increase in T gamma lymphocytes in B-cell chronic lymphocytic leukaemia. Scand J Haematol. 1980;24(2):187–90. doi:1111/j.1600-0609.1980.tb02366.x.

  32. Herrmann F, Lochner A, Philippen H, et al. Imbalance of T cell subpopulations in patients with chronic lymphocytic leukaemia of the B cell type. Clin Exp Immunol. 1982;49(1):157–62.

  33. Mills KH, Worman CP, Cawley JC. T-cell subsets in B-chronic lymphocytic leukaemia (CLL). Br J Haematol. 1982;50(4):710–2. doi:1111/j.1365-2141.1982.tb01974.x.

  34. Platsoucas CD, Galinski M, Kempin S, et al. Abnormal T lymphocyte subpopulations in patients with B cell chronic lymphocytic leukemia: an analysis by monoclonal antibodies. J Immunol. 1982;129(5):2305–12.

  35. Pizzolo G, Chilosi M, Ambrosetti A, et al. Immunohistologic study of bone marrow involvement in B-chronic lymphocytic leukemia. Blood. 1983;62(6):1289–96.

  36. Ghia P, Strola G, Granziero L, et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol. 2002;32(5):1403–13. doi: 10.1002/1521-4141(200205)32:5<1403::aid-immu1403>3.0.co;2-y.

  37. Bagnara D, Kaufman MS, Calissano C, et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood. 2011;117(20):5463–72. doi: 10.1182/blood-2010-12-324210.

  38. Qorraj M, Bottcher M, Mougiakakos D. PD-L1/PD-1: new kid on the “immune metabolic” block. Oncotarget. 2017;8(43):73364–5. doi: 10.18632/oncotarget.20639.

  39. Burger JA, Tsukada N, Burger M, et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96(8):2655–63.

  40. Tsukada N, Burger JA, Zvaifler NJ, Kipps TJ. Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood. 2002;99(3):1030–7. doi: 10.1182/blood.V99.3.1030.

  41. Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293(5537):2111–4. doi: 1126/science.1061964.

  42. Schneider P, Takatsuka H, Wilson A, et al. Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. J Exp Med. 2001;194(11):1691–7. doi: 10.1084/jem.194.11.1691.

  43. Mackay F, Schneider P, Rennert P, et al. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21(1):231–64. doi: 1146/annurev.immunol.21.120601.141152.

  44. Walton JA, Lydyard PM, Nathwani A, et al. Patients with B cell chronic lymphocytic leukaemia have an expanded population of CD4 perforin expressing T cells enriched for human cytomegalovirus specificity and an effector-memory phenotype. Br J Haematol. 2010;148(2):274–84. doi: 10.1111/j.1365-2141.2009.07964.x.

  45. Nunes C, Wong R, Mason M, et al. Expansion of a CD8(+) PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res. 2012;18(3):678–87. doi: 10.1158/1078-0432.CCR-11-2630.

  46. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170(3):1257–66. doi: 10.4049/jimmunol.170.3.1257.

  47. Ramsay AG, Clear AJ, Fatah R, et al. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412–21. doi: 10.1182/blood-2012-02-411678.

  48. Grzywnowicz M, Karabon L, Karczmarczyk A, et al. The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma. 2015;56(10):2908–13. doi: 10.3109/10428194.2015.1017820.

  49. Li J, Pang N, Zhang Z, et al. PD-1/PD-L1 expression and its implications in patients with chronic lymphocytic leukemia. Zhonghua Xue Ye Xue Za Zhi. 2017;38(03):198–203. doi: 10.3760/cma.j.issn.0253-2727.2017.03.005.

  50. Brusa D, Serra S, Coscia M, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–63. doi: 10.3324/haematol.2012.077537.

  51. Xerri L, Chetaille B, Seriari N, et al. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol. 2008;39(7):1050–8. doi: 10.1016/j.humpath.2007.11.012.

  52. Panayiotidis P, Jones D, Ganeshaguru K, et al. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol. 1996;92(1):97–103. doi: 10.1046/j.1365-2141.1996.00305.x.

  53. Burger M, Hartmann T, Krome M, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood. 2005;106(5):1824–30. doi: 10.1182/blood-2004-12-4918.