Сердечно-сосудистые осложнения иммунотерапии гематологических злокачественных опухолей (обзор литературы)

Г.Р. Гиматдинова1, О.Е. Данилова2, В.П. Кузьмин1, Г.И. Давыдкин1, Ю.В. Косталанова3, Д.А. Кудлай4, И.Л. Давыдкин2

1 ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, ул. Чапаевская, д. 89, Самара, Российская Федерация, 443099

2 НИИ гематологии, трансфузиологии и интенсивной терапии СамГМУ, пр-т К. Маркса, д. 165Б, Самара, Российская Федерация, 443086

3 ГБУЗ «Самарский областной клинический онкологический диспансер», ул. Солнечная, д. 50, Самара, Российская Федерация, 443031

4 ФГБУ «ГНЦ институт иммунологии» ФМБА России, Каширское ш., д. 24, Москва, Российская Федерация, 115522

Для переписки: Гелия Рифкатовна Гиматдинова, ул. Чапаевская, д. 89, Самара, Российская Федерация, 443099; тел.: +7(919)809-68-56; e-mail: gimatdinova1995@icloud.com

Для цитирования: Гиматдинова Г.Р., Данилова О.Е., Кузьмин В.П. и др. Сердечно-сосудистые осложнения иммунотерапии гематологических злокачественных опухолей (обзор литературы). Клиническая онкогематология. 2023;16(4):407–12.

DOI: 10.21320/2500-2139-2023-16-4-407-412


РЕФЕРАТ

В клинической онкологии в целом лечение опухолевых заболеваний тесно связано с чрезвычайно актуальной проблемой нежелательных явлений, обусловленных противоопухолевыми препаратами. Среди побочных эффектов лидирующее место занимает кардиоваскулярная токсичность. Стратегия сдерживания развития сердечно-сосудистых осложнений, связанных с противоопухолевой лекарственной и клеточной терапией, предполагает раннюю диагностику изменений в сердечной мышце и сосудах еще на этапе субклинических проявлений нежелательных явлений. В настоящем обзоре литературы подвергнута анализу информация о побочных эффектах иммунотерапии гематологических злокачественных опухолей с фокусом на сердечно-сосудистых осложнениях. В обзоре подробно обсуждаются особенности кардиоваскулярных осложнений, обусловленных ингибиторами иммунных контрольных точек, CAR T-клеточными продуктами, биспецифическими антителами, а также иммуномодулирующими и антиангиогенными препаратами.

Ключевые слова: кардиотоксичность, иммунотерапия, онкология, гематология.

Получено: 3 апреля 2023 г.

Принято в печать: 30 августа 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Totzeck M, Michel L, Lin Y, et al. Cardiotoxicity from chimeric antigen receptor-T cell therapy for advanced malignancies. Eur Heart J. 2022;43(20):1928–40. doi: 10.1093/eurheartj/ehac106.
  2. Asnani A. Cardiotoxicity of Immunotherapy: Incidence, Diagnosis, and Management. Curr Oncol Rep. 2018;20(6):44. doi: 10.1007/s11912-018-0690-1.
  3. Yasukawa M. Immunotherapy for hematological neoplasms. Rinsho Ketsueki. 2012;53(10):1759–67. doi: 10.11406/rinketsu.53.1759.
  4. Totzeck M, Schuler M, Stuschke M, et al. Cardio-oncology – strategies for management of cancer-therapy related cardiovascular disease. Int J Cardiol. 2019;280:163–75. doi: 10.1016/j.ijcard.2019.01.038.
  5. Moslehi JJ. Cardiovascular Toxic Effects of Targeted Cancer Therapies. N Engl J Med. 2016;375(15):1457–67. doi: 10.1056/NEJMra1100265.
  6. Rassaf T, Totzeck M, Backs J, et al. Onco-Cardiology: Consensus Paper of the German Cardiac Society, the German Society for Pediatric Cardiology and Congenital Heart Defects and the German Society for Hematology and Medical Oncology. Clin Res Cardiol. 2020;109(10):1197–222. doi: 10.1007/s00392-020-01636-7.
  7. Michel L, Helfrich I, Hendgen-Cotta UB, et al. Targeting early stages of cardiotoxicity from anti-PD1 immune checkpoint inhibitor therapy. Eur Heart J. 2022;43(4):316–29. doi: 10.1093/eurheartj/ehab430.
  8. Шубникова Е.В., Букатина Т.М., Вельц Н.Ю. и др. Ингибиторы контрольных точек иммунного ответа: новые риски нового класса противоопухолевых средств. Безопасность и риск фармакотерапии. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22.
    [Shubnikova EV, Bukatina TM, Velts NYu, et al. Immune checkpoint inhibitors: new risks of a new class of antitumour agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22. (In Russ)]
  9. Лепик К.В. Ингибиторы иммунных контрольных точек в терапии лимфом. Клиническая онкогематология. 2018;11(4):303–12. doi: 10.21320/2500-2139-2018-11-4-303-312.
    [Lepik KV. Immune Checkpoint Inhibitors in the Treatment of Lymphomas. Clinical oncohematology. 2018;11(4):303–12. doi: 10.21320/2500-2139-2018-11-4-303-312. (In Russ)]
  10. Zarifa A, Lopez-Mattei J, Palaskas N, et al. Immune Checkpoint Inhibitor (ICI)-Related Cardiotoxicity. Adv Exp Med Biol. 2021;1342:377–87. doi: 10.1007/978-3-030-79308-1_15.
  11. Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in Patients Treated with Immune Checkpoint Inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64. doi: 10.1016/j.jacc.2018.02.037.
  12. Michel L, Totzeck M, Lehmann L, et al. Emerging role of immune checkpoint inhibitors and their relevance for the cardiovascular system. Herz. 2020;45(7):645–51. doi: 10.1007/s00059-020-04954-8.
  13. Patel R, Parikh R, Gunturu K, et al. Cardiotoxicity of Immune Checkpoint Inhibitors. Curr Oncol Rep. 2021;23(7):79. doi: 10.1007/s11912-021-01070-6.
  14. Dong M, Yu T, Zhang Z, et al. ICIs-Related Cardiotoxicity in Different Types of Cancer. J Cardiovasc Dev Dis. 2022;9(7):203. doi: 10.3390/jcdd9070203.
  15. Palaskas N, Lopez-Mattei J, Durand JB, et al. Immune Checkpoint Inhibitor Myocarditis: Pathophysiological Characteristics, Diagnosis, and Treatment. J Am Heart Assoc. 2020;9(2):e013757. doi: 10.1161/JAHA.119.013757.
  16. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–68. doi: 10.1200/JCO.2017.77.6385
  17. Rassaf T, Totzeck M, Backs J, et al. Onkologische Kardiologie. Der Kardiologie. 2020;14:267–93. doi: 10.1007/s12181-020-00395-z.
  18. Bonaca MP, Olenchock BA, Salem JE, et al. Myocarditis in the Setting of Cancer Therapeutics: Proposed Case Definitions for Emerging Clinical Syndromes in Cardio-Oncology. Circulation. 2019;140(2):80–91. doi: 10.1161/CIRCULATIONAHA.118.034497.
  19. Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1289–367. doi: 10.1093/eurheartj/ehaa575.
  20. Michel L, Rassaf T, Totzeck M. Biomarkers for the detection of apparent and subclinical cancer therapy-related cardiotoxicity. J Thorac Dis. 2018;10(Suppl 35):S4282–S4295. doi: 10.21037/jtd.2018.08.15.
  21. Thavendiranathan P, Zhang L, Zafar A, et al. Myocardial T1 and T2 Mapping by Magnetic Resonance in Patients with Immune Checkpoint Inhibitor-Associated Myocarditis. J Am Coll Cardiol. 2021;77(12):1503–16. doi: 10.1016/j.jacc.2021.01.050.
  22. Khunger A, Battel L, Wadhawan A, et al. New Insights into Mechanisms of Immune Checkpoint Inhibitor-Induced Cardiovascular Toxicity. Curr Oncol Rep. 2020;22(7):65. doi: 10.1007/s11912-020-00925-8.
  23. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(38):3599–726. doi: 10.1093/eurheartj/ehab368.
  24. Castrillon J, Eng C, Cheng F. Pharmacogenomics for immunotherapy and immune-related cardiotoxicity. Hum Mol Genet. 2020;29(R2):R186–R196. doi: 10.1093/hmg/ddaa137.
  25. Safi M, Ahmed H, Al-Azab M, et al. PD-1/PDL-1 Inhibitors and Cardiotoxicity; Molecular, Etiological and Management Outlines. J Adv Res. 2020;29:45–54. doi: 10.1016/j.jare.2020.09.006.
  26. Brumberger Z, Branch M, Klein M, et al. Cardiotoxicity risk factors with immune checkpoint inhibitors. Cardiooncology. 2022;8(1):3. doi: 10.1186/s40959-022-00130-5.
  27. Burns EA, Gentille C, Trachtenberg B, et al. Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management. Diseases. 2021;9(1):20. doi: 10.3390/diseases9010020.
  28. Lefebvre B, Kang Y, Smith AM, et al. Cardiovascular effects of CAR T cell therapy. A retrospective study. JACC CardioOncol. 2020;2(2):193–203. doi: 10.1016/j.jaccao.2020.04.012.
  29. Le RQ, Li L, Yuan W, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23(8):943–7. doi: 10.1634/theoncologist.2018-0028.
  30. Riegler LL, Jones GP, Lee DW. Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. Ther Clin Risk Manag. 2019;15:323–35. doi: 10.2147/TCRM.S150524.
  31. Alvi R, Frigault M, Fradley M, et al. Cardiovascular Events Among Adults Treated with Chimeric Antigen Receptor T-Cells (CAR-T). J Am Coll Cardiol. 2019;74(25):3099–108. doi: 10.1016/j.jacc.2019.10.038.
  32. Dal’bo N, Patel R, Parikh R, et al. Cardiotoxicity of Contemporary Anticancer Immunotherapy. Curr Treat Options Cardiovasc Med. 2020;22(12):62. doi: 10.1007/s11936-020-00867-1.
  33. Gutierrez C, Rajendram P, Pastores S. Toxicities Associated with Immunotherapy and Approach to Cardiotoxicity with Novel Cancer Therapies. Crit Care Clin. 2021;37(1):47–67. doi: 10.1016/j.ccc.2020.08.003.
  34. Oved J, Barrett D, Teachey D. Cellular therapy: Immune-related complications. Immunol Rev. 2019;290(1):114–26. doi: 10.1111/imr.12768.
  35. Gardner R, Ceppi F, Rivers J, et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood. 2019;134(24):2149–58. doi: 10.1182/blood.2019001463.
  36. Thakur A, Huang M, Lum L. Bispecific antibody-based therapeutics: Strengths and challenges. Blood Rev. 2018;32(4):339–47. doi: 10.1016/j.blre.2018.02.004.
  37. Jung J, Lee S, Yang D, et al. Efficacy and safety of blinatumomab treatment in adult Korean patients with relapsed/refractory acute lymphoblastic leukemia on behalf of the Korean Society of Hematology ALL Working Party. Ann Hematol. 2019;98(1):151–8. doi: 10.1007/s00277-018-3495-2.
  38. Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14(1):75. doi: 10.1186/s13045-021-01084-4.
  39. Stein-Merlob A, Ganatra S, Yang E. T-cell Immunotherapy and Cardiovascular Disease: Chimeric Antigen Receptor T-cell and Bispecific T-cell Engager Therapies. Heart Fail Clin. 2022;18(3):443–54. doi: 10.1016/j.hfc.2022.02.008.
  40. Darvishi B, Farahmand L, Jalili N, Majidzadeh-A K. Blinatumomab provoked fatal heart failure. Int Immunopharmacol. 2016;41:42–6. doi: 10.1016/j.intimp.2016.10.017.
  41. Piccolomo A, Schifone C, Strafella V, et al. Immunomodulatory Drugs in Acute Myeloid Leukemia Treatment. Cancers (Basel). 2020;12(9):2528. doi: 10.3390/cancers12092528.
  42. Chanan-Khan A, Miller K, Musial L, et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J Clin Oncol. 2006;24(34):5343–9. doi: 10.1200/JCO.2005.05.0401.
  43. Jacob R, Strati P, Palaskas N, et al. Lenalidomide-Induced Myocarditis, Rare But Possibly Fatal Toxicity of a Commonly Used Immunotherapy. JACC Case Rep. 2020;2(13):2095–100. doi: 10.1016/j.jaccas.2020.07.033.
  44. Bringhen S, Milan A, Ferri C, et al. Cardiovascular adverse events in modern myeloma therapy – Incidence and risks. A review from the European Myeloma Network (EMN) and Italian Society of Arterial Hypertension (SIIA). Haematologica. 2018;103(9):1422–32. doi: 10.3324/haematol.2018.191288.
  45. Das A, Dasgupta S, Gong Y, et al. Cardiotoxicity as an adverse effect of immunomodulatory drugs and proteasome inhibitors in multiple myeloma: A network meta-analysis of randomized clinical trials. Hematol Oncol. 2022;40(2):233–42. doi: 10.1002/hon.2959.
  46. Bojan A, Torok-Vistai T, Parvu A. Assessment and Management of Cardiotoxicity in Hematologic Malignancies. Dis Markers. 2021;2021:6616265. doi: 10.1155/2021/6616265.