Гипометилирующие препараты в онкогематологии

А.Д. Ширин, О.Ю. Баранова

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Антон Дмитриевич Ширин, канд. мед. наук, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-28-24; e-mail: shirin-anton@mail.ru

Для цитирования: Ширин А.Д., Баранова О.Ю. Гипометилирующие препараты в онкогематологии. Клиническая онкогематология. 2016;9(4):369–82.

DOI: 10.21320/2500-2139-2016-9-4-369-382


РЕФЕРАТ

В обзоре описываются эпигенетические процессы, включая метилирование ядерной и митохондриальной ДНК, а также РНК. Рассматриваются механизмы деметилирования и препараты, обладающие этим свойством. Широко освещаются результаты многочисленных крупных рандомизированных исследований, посвященных изучению гипометилирующих средств (азануклеозидов). Особое внимание уделяется результатам терапии азануклеозидами у пациентов с острыми миелоидными лейкозами. В статье описаны некоторые прогностические системы и алгоритм лечения миелодиспластических синдромов. К настоящему времени в России одобрено к клиническому применению два азануклеозида: азацитидин (для п/к введения) и децитабин (для в/в введения). В зарубежных работах анализируется опыт применение децитабина внутрь и подкожно. Остается открытым вопрос об использовании гипометилирующих препаратов не по прямым показаниям (off-label). Кратко описываются проводимые новые клинические исследования с включением азануклеозидов.


Ключевые слова: эпигенетика, острые миелоидные лейкозы, миелодиспластические синдромы, азацитидин, децитабин, гипометилирующие препараты, азануклеозиды.

Получено: 10 мая 2016 г.

Принято в печать: 20 мая 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Уоддингтон К.Х. Основные биологические концепции. В кн.: На пути к теоретической биологии. Часть I. Пролегомены. М.: Мир, 1970. С. 11–38.
    [Waddington CH. Basic Ideas of Biology. In: Waddington CH, ed. Towards a Theoretical Biology. Vol. 1. Edinburgh: Edinburgh University Press. 1968–72. (Russ. ed.: Waddington CH. Osnovnye biologicheskie kontseptsii. In: Waddington CH, ed. Na puti k teoreticheskoi biologii. Chast’ I. Prolegomeny. Moscow: Mir Publ.; 1970. pp. 11–38.)]
  2. Huntly BJP, Johnson PWM. Targeting Epigenetic Readers in Hematologic Malignancies: A Good BET? The Hematologist. 2012;9(2):5–7.
  3. Daser A, Rabbitts TH. Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes & Dev. 2004;18:965–74. doi: 10.1101/gad.1195504.
  4. Ansorge WJ. Next-generation DNA sequencing techniques. New Biotechnol. 2009;25(4):195–203. doi: 10.1016/j.nbt.2008.12.009.
  5. Foley SB, Rios JJ, Mgbemena V. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic. EBioMedicine. 2014;2(1):74–81. doi: 10.1016/j.ebiom.2014.12.003.
  6. Wojdacz TK, Moller TH, Thestrup BB, et al. Limitations and advantages of MS-HRM and bisulfite sequencing for single locus methylation studies. Exp Rev Mol Diagn. 2010;10(5):575–80. doi: 10.1586/erm.10.46.
  7. Reinders J, Paszkowski J. Bisulfite methylation profiling of large genomes. Epigenomics. 2010;2(2):209–20. doi: 10.2217/epi.10.6.
  8. Thompson CB. Targeting Metabolic Inputs into Epigenetic Regulations of Acute Leukemia. Blood. 2013;122(21):SCI-26.
  9. Зиновкина Л.А., Зиновкин Р.А. Метилирование ДНК, митохондрии и программируемое старение. Биохимия. 2015;80(12):1830–7.
    [Zinovkina LA, Zinovkin RA. DNA methylation, mitochondria, and programmed aging. Biokhimiya. 2015;80(12):1830–7. (In Russ)]
  10. Vanyushin BF, Kiryanov GI, Kudryashova IB, Belozersky AN. DNA & methylase in loach embryos (Misgurnus fossilis). FEBS Lett. 1971;15(4):313–6. doi: 10.1016/0014-5793(71)80646-4.
  11. Vanyushin BF, Kirnos MD. The nucleotide composition and pyrimidine clusters in DNA from beef heart mitochondria. FEBS Lett. 1974;39(2):195–9. doi: 10.1016/0014-5793(74)80049-99.
  12. Vanyushin BF, Kirnos MD. The structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation). Mol Cell Biochem. 1977;14(1–3):31–6. doi: 10.1007/bf01734162.
  13. Byun HM, Panni T, Motta V, et al. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol. 2013;10(1):18. doi: 10.1186/1743-8977-10-18.
  14. Sun C, Reimers LL, Burk RD. Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol. 2011;121(1):59–63. doi: 10.1016/j.ygyno.2011.01.013.
  15. Vanyushin BF, Nemirovsky LE, Klimenko VV, et al. The 5-methylcytosine in DNA of rats. Gerontologia. 1973;19(3):138–52. doi: 10.1159/000211967.
  16. Биология и медицина. Метилирование РНК. [Электронный документ] Доступно по: http://medbiol.ru/medbiol/epigenetica/001a1613.htm. Ссылка активна на 14.05.2013.
    [Biologiya i meditsina. Metilirovanie RNK. (Biology and Medicine. RNA Methylation) [Internet]. Available from: http://medbiol.ru/medbiol/epigenetica/001a1613.htm. (accessed 14.05.2013) (In Russ)]
  17. Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307(5711):932–5. doi: 10.1126/science.1107130.
  18. Goll MG, Kirpekar E, Maggert KA, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311(5759):395–8. doi: 10.1126/science.1120976.
  19. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441–6. doi: 10.1038/nature16998.
  20. Christman J. 5-Azacytidine and 5-aza-2¢-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21(35):5483–95. doi: 10.1038/sj.onc.1205699.
  21. Kumar A, List A. F, Hozo I, et al. Decitabine versus 5-azacitidine for the treatment of myelodysplastic syndrome: adjusted indirect meta-analysis. Haematologica. 2010;95(2):340–2. doi: 10.3324/haematol.2009.017764.
  22. Phase II Decitabine (DAC) Versus Azacitidine (AZA) in Myelodysplastic Syndrome (MDS). [Internet] Available from: http://www.druglib.com/trial/80/NCT02269280.html. (accessed 15.05.2016).
  23. Fenaux P, Gattermann N, Seymour JF, et al. Prolonged survival with improved tolerability in higher-risk myelodysplastic syndromes: azacitidine compared with low dose ara-C. Br J Haematol. 2010;149(2):244–9. doi: 10.1111/j.1365-2141.2010.08082.x.
  24. Al-Ali HK, Jaekel N, Niederwieser D. The role of hypomethylating agents in the treatment of elderly patients with AML. J Geriatr Oncol. 2014;5(1):89–105. doi: 10.1016/j.jgo.2013.08.004.
  25. Burnett AK, Milligan D, Prentice AG, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007;109(6):1114–24. doi: 10.1002/cncr.22496.
  26. Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012;30(21):2670–7. doi: 10.1200/jco.2011.38.9429.
  27. European Medicines Agency: assessment report on Dacogen 19 July 2012. [Internet] Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002221/WC500133571.pdf2012. (accessed 17.05.2016).
  28. Minutes for the February 9 2012 meeting of the FDA Oncologic Drugs Advisory Committee. [Internet] Available from: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/OncologicDrugsAdvisoryCommittee/UCM293710.pdf2012. (accessed 19.05.2016).
  29. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65. doi: 10.1182/blood-2012-03-420489.
  30. Schanz J, Tuchler H, Sole F, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30(8):820–9. doi: 10.1200/jco.2011.35.6394.
  31. Kantarjian H, O’Brien S, Ravandi F, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351–61. doi: 10.1002/cncr.23697.
  32. Garcia-Manero G. Myelodysplastic syndromes: 2015 Update on diagnosis, risk-stratification and management. Am J Hematol. 2015;90(9):831–41. doi: 10.1002/ajh.24102.
  33. Garcia-Manero G, Fenaux P. Hypomethylating agents and other novel strategies in myelodysplastic syndromes. J Clin Oncol. 2011;29(10):516–23. doi: 10.1200/jco.2010.31.0854.
  34. Lyons RM, Cosgriff TM, Modi SS, et al. Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes. J Clin Oncol. 2009;27(11):1850–6. doi: 10.1200/jco.2008.17.1058.
  35. Garcia-Manero G, Gore SD, Cogle C, et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol. 2011;29(18):2521–7. doi: 10.1200/jco.2010.34.4226.
  36. Garcia-Manero G, Jabbour E, Borthakur G, et al. Randomized open-label phase II study of decitabine in patients with low- or intermediate-risk myelodysplastic syndromes. J Clin Oncol. 2013;31(20):2548–53. doi: 10.1200/jco.2012.44.6823.
  37. Wei Y, Dimicoli S, Bueso-Ramos C, et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia. 2013;27(9):1832–40. doi: 10.1038/leu.2013.180.
  38. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32. doi: 10.1016/s1470-2045(09)70003-8.
  39. Blum W, Garzon R, Klisovic RB, et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA. 2010;107(16):7473–8. doi: 10.1073/pnas.1002650107.
  40. Itzykson R, Thepot S, Quesnel B, et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood. 2011;117(2):403–11. doi: 10.1182/blood-2010-06-289280.
  41. Jabbour E, Garcia-Manero G, Batty N, et al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer. 2010;116(16):3830–4. doi: 10.1002/cncr.25247.
  42. Montalban-Bravo G, Garcia-Manero G. Novel drugs for older patients with acute myeloid leukemia. Leukemia. 2015;29(4):760–9. doi: 10.1038/leu.2014.244.
  43. Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with > 30% blasts. Blood. 2015;126(3):291–9. doi: 10.1182/blood-2015-01-621664.
  44. Pleyer L, Burgstaller S, Girschikofsky M, et al. Azacitidine in 302 patients with WHO-defined acute myeloid leukemia: results from the Austrian Azacitidine Registry of the AGMT-Study Group. Ann Hematol. 2014;93(11):1825–38. doi: 10.1007/s00277-014-2126-9.
  45. Radujkovic A, Dietrich S, Bochtler T, et al. Azacitidine and low-dose cytarabine in palliative patients with acute myeloid leukemia and high bone marrow blast counts – a retrospective single-center experience. Eur J Haematol. 2014;93(2):112–7. doi: 10.1111/ejh.12308.
  46. Field T, Perkins J, Huang Y, et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45(2):255–60. doi: 10.1038/bmt.2009.134.
  47. Gerds AT, Gooley TA, Estey EH, et al. Pretransplantation Therapy with Azacitidine vs Induction Chemotherapy and Posttransplantation Outcome in Patients with MDS. Biol Blood Marrow Transplant. 2012;18(8):1211–8. doi: 10.1016/j.bbmt.2012.01.009.
  48. Damaj G, Duhamel A, Robin M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J Clin Oncol. 2012;30(36):4533–40. doi: 10.1200/jco.2012.44.3499.
  49. de Lima M, Giralt S, Thall PF, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogeneous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31. doi: 10.1002/cncr.25500.
  50. Jabbour E, Giralt S, Kantarjian H, et al. Low-dose azacitidine after allogeneic stem cell transplantation for acute leukemia. Cancer. 2009;115(9):1899–905. doi: 10.1002/cncr.24198.
  51. Schroeder T, Czibere A, Platzbecker U, et al. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013 27(6), 1229–35. doi: 10.1038/leu.2013.7.
  52. Lubbert M, Bertz H, Wasch R, et al. Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting. Bone Marrow Transplant. 2010;45:627–32. doi: 10.1038/bmt.2009.222.
  53. Sanchez-Abarca LI, Gutierrez-Cosio S, Santamaria C, et al. Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood. 2010;115(1):107–21. doi: 10.1182/blood-2009-03-210393.
  54. Goodyear О, Agathanggelou A, Novitzky-Basso, et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood. 2010;116(11):1908–18. doi: 10.1182/blood-2009-11-249474.
  55. Atanackovich D, Luetkens T, Kloth B, et al. Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am J Hematol. 2011;86(11):918–22. doi: 10.1002/ajh.22141.
  56. Kroger N, Bacher U, Bader P, et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on disease-specific methods and strategies for monitoring relapse following allogeneic stem cell transplantation: II. Chronic leukemias, myeloproliferative neoplasms, and lymphoid malignancies. Biol Blood Marrow Transplant. 2010;16(10):1325–46. doi: 10.1016/j.bbmt.2010.06.008.
  57. Platzbecker U, Wermke M, Radke J, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2012;26(3):381–9. doi: 10.1038/leu.2011.234.
  58. Sockel K, Wermke M, Radke J, et al. Minimal Residual Disease-Directed Preemptive Treatment With Azacitidine In Patients With NPM1-Mutant Acute Myeloid Leukemia And Molecular Relapse. Haematologica. 2011;96(10):1568–70. doi: 10.3324/haematol.2011.044388.
  59. The MDS Foundation. New MDS Clinical Trials. [Internet] Available from: http://www.mds-foundation.org/clinical-trial-announcements/#New-MDS-Clinical-Trials. (accessed 17.05.2016).