Е.В. Белоцерковская1,2, Е.К. Зайкова1,2, А.В. Петухов1,2,3, О.Н. Демидов2, К.А. Левчук1, И.Г. Будаева1, Д.В. Зайцев1, Ю.Д. Роговая1, А.А. Шатилова1, К.В. Богданов1, Ю.В. Миролюбова1, Т.С. Никулина1, А.Ю. Зарицкий1, Л.Л. Гиршова1
1 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341
2 ФГБУН «Институт цитологии РАН», Тихорецкий пр-т, д. 4, Санкт-Петербург, Российская Федерация, 194064
3 НТУ «Сириус», Олимпийский пр-т, д. 1, Сочи, Российская Федерация, 354340
Для переписки: Екатерина Васильевна Белоцерковская, канд. биол. наук, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; e-mail: belotserkovskaya.ev@gmail.com
Для цитирования: Белоцерковская Е.В., Зайкова Е.К., Петухов А.В. и др. Выявление мутаций генов эпигенетической регуляции генома IDH1/2, DNMT3A, ASXL1 и их сочетания с мутациями FLT3, NPM1, RUNX1 у пациентов с острыми миелоидными лейкозами. Клиническая онкогематология. 2021;14(1):13–21.
DOI: 10.21320/2500-2139-2021-14-1-13-21
РЕФЕРАТ
Цель. Выявление мутаций генов IDH1/IDH2, DNMT3A и ASXL1, ответственных за эпигенетическую регуляцию генома, при впервые диагностированных острых миелоидных лейкозах (ОМЛ) у взрослых и их сочетания с мутациями генов FLT3, NPM1, RUNX1.
Материалы и методы. В исследование включено 56 пациентов с впервые выявленным ОМЛ, проходивших лечение в ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России. Среди них было 34 мужчины и 22 женщины в возрасте 18–76 лет (медиана 46 лет). Мутационный статус генов эпигенетической регуляции IDH1, IDH2, DNMT3A и ASXL1 определяли методом секвенирования по Сэнгеру. Молекулярно-генетический анализ генов FLT3, NPM1, RUNX1-RUNX1T1 выполняли с использованием коммерческих наборов.
Результаты. Мутации генов эпигенетической регуляции обнаружены у 14 (25 %) из 56 пациентов. Распространенность мутаций не была связана с группами риска (p = 0,072). Мутации IDH1/2 выявлены у 15,6 % пациентов и статистически значимо чаще обнаруживались одновременно с мутациями NPM1 (62,5 %; p = 0,01) по сравнению с пациентами с диким типом IDH1/2. У большинства пациентов мутации IDH1/2 были связаны с нормальным кариотипом (p = 0,002). Мутация DNMT3A (R882) определена у 4 (7,1 %) из 56 пациентов анализируемой группы. У 6 (11,1 %) пациентов были идентифицированы мутации ASXL1, которые сочетались мутациями с RUNX1-RUNX1T1 и FLT3-ITD.
Заключение. Мутации генов эпигенетической регуляции часто обнаруживаются у пациентов с ОМЛ и могут сочетаться с нарушениями в генах NPM1, FLT3 и RUNX1.
Ключевые слова: острые миелоидные лейкозы, гены эпигенетической регуляции IDH1, IDH2, DNMT3A и ASXL1, эпигенетические факторы.
Получено: 20 августа 2020 г.
Принято в печать: 2 декабря 2020 г.
Статистика Plumx русскийЛИТЕРАТУРА
- Wang M, Yang C, Zang L, et al. Molecular mutations and their cooccurrences in cytogenetically normal Acute Myeloid Leukemia. Stem Cells Int. 2017;2017:1–11. doi: 10.1155/2017/6962379.
- Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 1182/blood-2016-08-733196.
- Gambacorta V, Gnani D, Vago L, et al. Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Front Cell Dev Biol. 2019;7:207. doi: 10.3389/fcell.2019.00207.
- Santini Hypomethylating agents in the treatment of acute myeloid leukemia: A guide to optimal use. Crit Rev Oncol Hemat. 2009;140:1–7. doi: 10.1016/j.critrevonc.2019.05.013.
- Kim Enasidenib: First Global Approval. Drugs. 2017;77(15):1705–11. doi: 10.1007/s40265-017-0813-2.
- Liu X, Gong Y. Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomark Res. 2019;7(1):22. doi: 10.1186/s40364-019-0173-z.
- Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2018;56(2):84–9. doi: 10.1053/j.seminhematol.2018.08.001.
- Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16. doi: 10.1182/blood-2015-03-631747.
- Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477. doi: 10.1056/nejmoa1409405.
- Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–70. doi: 10.1016/j.stem.2018.01.011.
- Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21. doi: 10.1056/nejmoa1701719.
- Buscarlet M, Provost S, Zada YF, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130(6):753–62. doi: 10.1182/blood-2017-04-777029.
- Yuan X, Peng L, Zeng W, et al. DNMT3A R882 Mutations Predict a Poor Prognosis in AML. Medicine. 2016;95(18):e3519. doi: 10.1097/md.0000000000003519.
- Marcucci G, Maharry K, Wu Y, et al. IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J Clin Oncol. 2010;28(14):2348–55. doi: 10.1200/JCO.2009.27.3730.
- Schnittger S, Eder C, Jeromin S, et al. ASXL1 exon 12 mutations frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013;27(1):82–91. doi: 1038/leu.2012.262.
- Pratcorona M, Abbas S, Sanders MA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica. 2012;97(3):388. doi: 10.3324/haematol.2011.051532.
- Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol. 2010;28(14):2356–64. doi: 10.1200/jco.2009.27.6899.
- Dinardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732–6. doi: 10.1002/ajh.24072.
- Brunetti L, Gundry MC, Goodell MA. DNMT3A in Leukemia. Cold Spring Harb Perspect Med. 2017;7(2):a030320. doi: 10.1101/cshperspect.a030320.
- Park SH, Choi JC, Kim SY, et al. Incidence and Prognostic Impact of DNMT3A Mutations in Korean Normal Karyotype Acute Myeloid Leukemia Patients. BioMed Res Int. 2015;2015:1–11. doi: 10.1155/2015/723682.
- Chotirat S, Thongnoppakhun W, Promsuwicha O, et al. Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol. 2012;5(1):5. doi: 10.1186/1756-8722-5-5.
- Petrova L, Vrbacky F, Lanska M, et al. IDH1 and IDH2 mutations in patients with acute myeloid leukemia: Suitable targets for minimal residual disease monitoring? Clin Biochem. 2018;61:34–9. doi: 10.1016/j.clinbiochem.2018.08.012.
- Waitkus MS, Diplas BH, Yan H. Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell. 2018;34(2):186–95. doi: 10.1016/j.ccell.2018.04.011.
- Clark O, Yen K, Mellinghoff IK. Molecular Pathways: Isocitrate Dehydrogenase Mutations in Cancer. Clin Cancer Res. 2016;22(8):1837–42. doi: 1158/1078-0432.CCR-13-1333.
- Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 Mutations in Gliomas. N Engl J Med 2009;360(8):765–73. doi: 10.1056/NEJMoa0808710.
- Parsons DW, Jones S, Zhang X, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. 2008;321(5897):1807–12. doi: 10.1126/science.1164382.
- Whitehall VLJ, Dumenil TD, McKeone DM, et al. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype. Epigenetics. 2014;9(11):1454–60. doi: 10.4161/15592294.2014.971624.
- Mardis ER, Ding L, Dooling DJ, et al. Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome. N Engl J Med. 2009;361(11):1058–66. doi: 10.1056/NEJMoa0903840.
- Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood. 2011;118(2):409–12. doi: 10.1182/blood-2010-12-322479.
- Berenstein R, Blau IW, Kar A, et al. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res. 2014;33(1):44. doi: 10.1186/1756-9966-33-44.
- Mizuta S, Yamane N, Komai T, et al. Investigation of screening method for DNMT3A mutations by high‐resolution melting analysis in acute myeloid leukemia. Int J Lab Hematol. 2019;41(5):593–600. doi: 10.1111/ijlh.13056.
- МотыкоЕ.В., Блау О.В., Полушкина Л.Б. и др. Прогностическое значение генетических мутаций у больных острыми миелоидными лейкозами: результаты совместного исследования гематологических клиник Санкт-Петербурга (Россия) и клиники Шарите (Германия). Клиническая онкогематология. 2019;12(2):211–9. doi: 10.21320/2500-2139-2019-12-2-211-219.
[Motyko EV, Blau OV, Polushkina LB, et al. Prognostic Value of Genetic Mutations in Patients with Acute Myeloid Leukemias: Results of a Cooperative Study of Hematology Clinics of Saint Petersburg (Russia) and Charite Clinic (Germany). Clinical oncohematology. 2019;12(2):211–9. doi: 10.21320/2500-2139-2019-12-2-211-219. (In Russ)] - ElNahass YH, Badawy RH, ElRefaey FA, et al. IDH Mutations in AML Patients; A higher Association with Intermediate Risk Cytogenetics. Asian Pacif J Cancer Prev. 2020;21(3):721–5. doi: 10.31557/APJCP.2020.21.3.721.
- Ferret Y, Boissel N, Helevaut N, et al. Clinical Relevance Of IDH1/2 Mutant Allele Burden During Follow-Up In Acute Myeloid Leukemia. A Study By The French ALFA Group. Haematologica. 2018;103(5):822–9. doi: 10.3324/haematol.2017.183525.
- Brambati C, Galbiati S, Xue E, et al. Droplet digital polymerase chain reaction for DNMT3A and IDH1/2 mutations to improve early detection of acute myeloid leukemia relapse after allogeneic hematopoietic stem cell transplantation. Haematologica. 2016;101(4):e157–e161. doi: 10.3324/haematol.2015.135467.
- Patel KP, Ravandi F, Ma D, et al. Acute myeloid leukemia with IDH1 or IDH2 mutation: frequency and clinicopathologic features. Am J Clin Pathol. 2011;135(1):35–45. doi: 10.1309/AJCPD7NR2RMNQDVF.
- Zou Y, Bai HX, Wang Z, Yang L. Comparison of immunohistochemistry and DNA sequencing for the detection of IDH1 mutations in gliomas. Neuro Oncol. 2015;17(3):477–8. doi: 10.1093/neuonc/nou351.
- Petiti J, Rosso V, Croce E, et al. Highly Sensitive Detection of IDH2 Mutations in Acute Myeloid Leukemia. J Clin Med. 2020;9(1):271. doi: 10.3390/jcm9010271.
- Aref S, Kamel AS, Abdel AMF, et al. Prevalence and clinical effect of IDH1 and IDH2 mutations among cytogenetically normal acute myeloid leukemia patients. Clin Lymphoma Myel Leuk. 2015;15(9):550–5. doi: 10.1016/j.clml.2015.05.009.
- Boissel N, Nibourel O, Renneville A, et al. Prognostic Impact of Isocitrate Dehydrogenase Enzyme Isoforms 1 and 2 Mutations in Acute Myeloid Leukemia: A Study by the Acute Leukemia French Association Group. J Clin Oncol. 2010;28(23):3717–23. doi: 10.1200/jco.2010.28.2285.
- Xu Q, Li Y, Lv N, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: A systematic review and meta-analysis. Clin Cancer Res. 2017;23(15):4511–22. doi: 10.1158/1078-0432.ccr-16-2628.
- Montalban-Bravo G, DiNardo CD. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018;10(14):979–93. doi: 10.2217/fon-2017-0523.
- Amatangelo MD, Quek L, Shih A, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017;130(6):732–42. doi: 10.1182/blood-2017-04-779447.
- Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):219–20. doi: 10.1038/890.
- Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/NEJMoa1005143.
- Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. doi: 1056/NEJMoa1301689.
- Блау О.В. Мутации генов при острых миелоидных лейкозах. Клиническая онкогематология. 2016;9(3):245–56. doi: 10.21320/2500-2139-2016-9-3-245-256.
[Blau OV. Genetic Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2016;9(3):245–56. doi: 10.21320/2500-2139-2016-9-3-245-256. (In Russ)] - Guryanova OA, Shank K, Spitzer B, et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016;22(12):1488–95. doi: 10.1038/nm.4210.
- Hou HA, Kuo YY, Liu CY, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012;119(2):559–68. doi: 10.1182/blood-2011-07-369934.
- Ploen GG, Nederby L, Guldberg P, et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol. 2014;167(4):478–86. doi: 10.1111/bjh.13062.
- Rothenberg-Thurley M, Amler S, Goerlich D, et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia. 2018;32(7):1598–608. doi: 10.1038/s41375-018-0034-z.
- Gale RE, Lamb K, Allen C, et al. Simpson’s Paradox and the Impact of Different DNMT3A Mutations on Outcome in Younger Adults With Acute Myeloid Leukemia. J Clin Oncol. 2015;33(18):2072–83. doi: 10.1200/jco.2014.59.2022.
- Gaidzik VI, Schlenk RF, Paschka P, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: Results of the AML Study Group (AMLSG). Blood. 2013;121(23):4769–77. doi: 10.1182/blood-2012-10-461624.
- Elsayed GM, Fahmi AEA, Shafiket NF, et al. Study of DNA methyl transferase 3A mutation in acute myeloid leukemic patients. Egypt J Med Hum Genet. 2018;19(4):315–9. doi: 10.1016/j.ejmhg.2018.05.005.
- Berenstein R, Blau IW, Suckert N, et al. Quantitative detection of DNMT3A R882H mutation in acute myeloid leukemia. J Exp Clin Cancer Res. 2015;34(1):55. doi: 10.1186/s13046-015-0173-2.
- Young AL, Challen GA, Birmann BM, et al. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7(1):12484. doi: 10.1038/ncomms12484.
- Asada S, Fujino T, Goyama S, et al. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511–23 doi: 10.1007/s00018-019-03084-7.
- Chou WC, Huang HH, Hou HA, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood. 2010;116(20):4086–94. doi: 10.1182/blood-2010-05-283291.
- Molenaar RJ, Thota S, Nagata Y, et al. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia. 2015;29(11):2134–42. doi: 10.1038/leu.2015.91.
- Asada S, Kitamura T. Aberrant histone modifications induced by mutant ASXL1 in myeloid neoplasms. Int J Hematol. 2019;110(2):179–86. doi: 10.1007/s12185-018-2563-7.
- Shivarov V, Ivanova M, Naumova E. Rapid Detection of DNMT3A R882 Mutations in Hematologic Malignancies Using a Novel Bead-Based Suspension Assay with BNA(NC) Probes. PLoS ONE. 2014;9(6):e99769. doi: 10.1371/journal.pone.0099769.
- Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
- Abbas S, Lugthart S, Kavelaars F, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–6. doi: 10.1182/blood-2009-11-250878.
- Dunlap JB, Leonard J, Rosenberg M, et al. The combination of NPM1, DNMT3A, and IDH1/2 mutations leads to inferior overall survival in AML. Am J Hematol. 2019;94(8):913–20. doi: 10.1002/ajh.25517.
- Virijevic M, Karan-Djurasevic T, Marjanovic I, et al. Somatic mutations of isocitrate dehydrogenases 1 and 2 are prognostic and follow-up markers in patients with acute myeloid leukaemia with normal karyotype. Radiol Oncol. 2016;50(4):385–93. doi: 10.1515/raon-2016-0044.
- Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. doi: 10.1056/NEJMoa1516192.
- Boddu P, Takahashi K, Pemmaraju N, et al. Influence of IDH on FLT3ITD status in newly diagnosed AML. Leukemia. 2017;31(11):2526– doi: 10.1038/leu.2017.244.
- Yan X-J, Xu J, Gu Z-H, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43(4):309–15. doi: 10.1038/ng.788.
- Abdel-Wahab O, Adli M, Saunders L, et al. ASXL1 Mutations Promote Myeloid Transformation Through Inhibition of PRC2-Mediated Gene Repression. Blood. 2011;118(21):405. doi: 10.1182/blood.v118.21.405.405.
- Inoue D, Matsumoto M, Nagase R. Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol. 2016;44(3):172–6.e1. doi: 10.1016/j.exphem.2015.11.011.
- Gelsi-Boyer V, Brecqueville M, Devillier R, et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012;5(1):12. doi: 10.1186/1756-8722-5-12.
- Paschka P, Schlenk RF, Gaidzik VI. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German Austrian Acute Myeloid Leukemia Study Group. Haematologica. 2015;100(3):324–30. doi: 10.3324/haematol.2014.114157.