Значение экспрессии белка PD-L1 в комбинированной прогностической модели диффузной В-крупноклеточной лимфомы

С.В. Самарина1, Н.Ю. Семенова2, Н.В. Минаева1, Д.А. Дьяконов1, В.А. Росин1, Е.В. Ванеева1, С.В. Грицаев2

1 ФГБУН «Кировский НИИ гематологии и переливания крови ФМБА», ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Светлана Валерьевна Самарина, ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027; тел.: +7(8332)25-46-88; e-mail: samarinasv2010@mail.ru

Для цитирования: Самарина С.В., Семенова Н.Ю., Минаева Н.В. и др. Значение экспрессии белка PD-L1 в комбинированной прогностической модели диффузной В-крупноклеточной лимфомы. Клиническая онкогематология. 2021;14(3):308–14.

DOI: 10.21320/2500-2139-2021-14-3-308-314


РЕФЕРАТ

Цель. Изучить значение экспрессии белка PD-L1 в комбинированной прогностической модели диффузной В-крупноклеточной лимфомы (ДВКЛ) у пациентов, получавших индукционную иммунохимиотерапию R-СHOP.

Материалы и методы. Проведен ретроспективный анализ данных 85 пациентов с ДВКЛ. Медиана возраста составила 59 лет (1–3-й квартиль 29–83 года). Каждый пациент получил не менее 2–6 курсов иммунохимиотерапии R-СHOP. Медиана длительности наблюдения составила 17 мес. Оптимальный порог отсечения для оценки доли опухолевых клеток, экспрессирующих белок PD-L1, определяли с помощью метода машинного обучения САRT (Classification and Regression Tree).

Результаты. Пациенты распределены на три группы с учетом риска по прогностическим критериям IPI и иммуногистохимического подтипа (алгоритм Ханса) методом машинного обучения CART. В 1-й группе с иммуногистохимическим подтипом GCB и любым риском по IPI, кроме высокого, низкая экспрессия PD-L1, оцениваемая по числу экспрессирующих опухолевых клеток ДВКЛ, обнаружена у 21 (84 %) пациента, избыточная — у 4 (16 %). 2-летняя выживаемость без прогрессирования (ВБП) составила 76 % при низкой экспрессии PD-L1 (медиана не достигнута). У 4 больных с избыточной экспрессией белка продолжительность жизни от постановки диагноза ДВКЛ составила 4, 16, 2 и 6 мес. соответственно. Во 2-й группе с иммуногистохимическим подтипом non-GCB и любым риском по IPI, кроме высокого, низкая экспрессия PD-L1 выявлена у 27 (67,5 %) пациентов, высокая — у 13 (32,5 %). При анализе 2-летней ВБП не обнаружено статистически значимых различий в группах с разным относительным числом опухолевых клеток, экспрессирующих РD-L1, — 46 и 49 % соответственно (= 0,803). При низкой (< 24,5 % опухолевых клеток) экспрессии PD-L1 показатели 2-летней общей выживаемости (ОВ) были лучше, чем у пациентов с гиперэкспрессией (≥ 24,5 % опухолевых клеток) белка, — 87 vs 52 % соответственно (= 0,049). В 3-й группе c высоким риском по IPI независимо от иммуногистохимического подтипа доля клеток, экспрессирующих биомаркер PD-L1 выше порогового уровня (≥ 24,5 %), выявлена у 9 (45 %) больных, низкая экспрессия белка — у 11 (55 %). У всех пациентов из 3-й группы с гиперэкспрессией PD-L1 зарегистрирован летальный исход. При низкой экспрессии белка доля пациентов, остающихся под наблюдением, составила 46 % (= 0,002). У всех больных из группы с высокой экспрессией PD-L1 продолжительность жизни не превышала 2 лет. У обследуемых с низкой экспрессией PD-L1 2-летняя ОВ составила 66 % (= 0,008).

Заключение. Гиперэкспрессия PD-L1 опухолевыми клетками ДВКЛ в комбинации с высоким риском прогрессирования по IPI и non-GCB-подтипом опухоли коррелирует с худшими показателями ОВ и ВБП. Вероятно, это связано с недостаточной эффективностью индукционной иммунохимиотерапии R-СHOP у пациентов с высоким IPI-риском. Такое предположение дает основание рассматривать число экспрессирующих PD-L1 опухолевых клеток в качестве важного дополнительного критерия стратификации пациентов с ДВКЛ на группы риска. Не исключено, что добавление нового параметра к уже известным позволит дифференцированно подходить к выбору тактики противоопухолевого лечения в дебюте этой агрессивной лимфомы.

Ключевые слова: диффузная В-крупноклеточная лимфома, экспрессия PD-L1, общая выживаемость, выживаемость без прогрессирования.

Получено: 29 января 2021 г.

Принято в печать: 15 мая 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. NCCN Clinical Practice Guidelines in Oncology. Non-Hodgkin’s lymphomas. Version 4. 2020. Available from: https://www.nccn.org/patients/guidelines/content/PDF/nhl-diffuse-patient.pdf (accessed 29.01.2021).
  2. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. (In Russ)]
  3. Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program. 2011;2011(1):498–505. doi: 10.1182/asheducation-2011.1.498.
  4. Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–59. doi: 10.3322/caac.21357.
  5. Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii78–vii82. doi: 10.1093/annonc/mds273.
  6. Wight JC, Chong G, Grigg AP, et al. Prognostication of diffuse large B-cell lymphoma in the molecular era: moving beyond the IPI. Blood Rev. 2018;32(5):400–15. doi: 10.1016/j.blre.2018.03.005.
  7. Shipp MA, Harrington DP, Anderson JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.
  8. Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematology Am Soc Hematol Educ Program. 2016;2016(1):366–78. doi: 10.1182/asheducation-2016.1.366.
  9. Vassilakopoulos TP, Chatzidimitriou C, Asimakopoulos JV, et al. Immunotherapy in Hodgkin Lymphoma: Present Status and Future Strategies. Cancers. 2019;11(8):1071. doi: 10.3390/cancers11081071.
  10. Vardhana S, Younes A. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints. Haematologica. 2016;101(7):794–802. doi: 10.3324/haematol.2015.132761.
  11. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. doi: 10.1146/annurev.immunol.26.021607.090331.
  12. Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193–201. doi: 10.1182/blood-2015-02-629600.
  13. Kwon D, Kim S, Kim PJ, et al. Clinicopathological analysis of programmed cell death 1 and programmed cell death ligand 1 expression in the tumour microenvironments of diffuse large B cell lymphomas. Histopathology. 2016;68(7):1079–89. doi: 10.1111/his.12882.
  14. Wu C, Zhu Y, Jiang J, et al. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 2006;108(1):19–24. doi: 10.1016/j.acthis.2006.01.003.
  15. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv. doi: 10.1126/scitranslmed.aad7118.
  16. Hu L-Y, Xu X-L, Rao H-L, et al. Expression and clinical value of programmed cell death-ligand 1 (PD-L1) in diffuse large B cell lymphoma: a retrospective study. Chin J Cancer. 2017;36(1):94. doi: 10.1186/s40880-017-0262-z.
  17. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27(3):409–16. doi: 10.1093/annonc/mdv615.
  18. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1684.
    [Klyuchagina YuI, Sokolova ZA, Baryshnikova MA. Role of PD-1 receptor and its ligands PD-L1 and PD-L2 in cancer immunotherapy. Onkopediatriya. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]
  19. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi: 10.1038/nrc3239.
  20. Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91. doi: 10.1093/annonc/mdv383.
  21. Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381–5. doi: 10.1158/0008-5472.CAN-05-4303.
  22. Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression in the tumor microenvironment and neoplastic cells for lymphoma. Intern Immunopharmacol. 2019;77:105999. doi: 10.1016/j.intimp.2019.105999.
  23. Самарина С.В., Лучинин А.С., Минаева Н.В. идр. Иммуногистохимический подтип и параметры международного прогностического индекса в новой модели прогноза диффузной B-крупноклеточной лимфомы. Клиническая онкогематология. 2019;12(4):385–90. doi: 10.21320/2500-2139-2019-12-4-385-390.
    [Samarina SV, Luchinin AS, Minaeva NV, et al. Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(4):385–90. doi: 10.21320/2500-2139-2019-12-4-385-390. (In Russ)]
  24. Xing W, Dresser K, Zhang R, et al. PD-L1 expression in EBV-negative diffuse large B-cell lymphoma: clinicopathologic features and prognostic implications. Oncotarget. 201613;7(37):59976–86. doi: 10.18632/oncotarget.11045.
  25. Younes A, Burke J, Cheson B, et al. Safety and efficacy of atezolizumab in combination with rituximab plus chop in previously untreated patients with diffuse large B-cell lymphoma (DLBCL): updated analysis of a phase I/II study. 2018;132(Suppl 1):2969. doi: 10.1182/blood-2018-99-116678.