Мутационный профиль генома нормальных и опухолевых клеток у больного множественной миеломой (клиническое наблюдение)

А.С. Жук1, И.И. Кострома2, Е.И. Степченкова3,4, Д.В. Качкин3, О.Б. Белопольская5, И.В. Зотова3,4, А.Д. Гарифуллин2, С.В. Волошин2,6, С.В. Грицаев2, А.Ю. Аксенова3

1 ФГАОУ ВО «Национальный исследовательский университет ИТМО», Кронверкский пр-т, д. 49, лит. А, Санкт-Петербург, Российская Федерация, 197101

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

3 ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

4 ФГБУН «Институт общей генетики им. Н.И. Вавилова РАН», Санкт-Петербургский филиал, Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

5 РЦ «Центр Биобанк», ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

6 ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Минобороны России, ул. Академика Лебедева, д. 6, Санкт-Петербург, Российская Федерация, 194044

Для переписки: Елена Игоревна Степченкова, канд. биол. наук, Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034; тел.: +7(905)282-57-72; e-mail: stepchenkova@gmail.com

Для цитирования: Жук А.С., Кострома И.И., Степченкова Е.И. и др. Молекулярное профилирование нормальных и опухолевых плазматических клеток у пациента с впервые диагностированной множественной миеломой (собственное клиническое наблюдение). Клиническая онкогематология. 2023;16(3):337–49.

DOI: 10.21320/2500-2139-2023-16-3-337-349


РЕФЕРАТ1


1Редакционная коллегия журнала «Клиническая онкогематология. Фундаментальные исследования и клиническая практика» оставляет за собой право на принципиально иную интерпретацию результатов секвенирования нового поколения (NGS) с учетом международных рекомендаций (ACMG/AMP, doi: 10.1038/gym.2015.30) и отечественного руководства (https://mgs.med-gen.ru/) для клинического применения. Несмотря на существенные расхождения с личной точкой зрения авторов, редколлегия журнала сочла возможным опубликовать представленную статью.


В настоящем исследовании представлено клиническое наблюдение больного с впервые диагностированной множественной миеломой (ММ), у которого до начала лечения проведено секвенирование экзома лимфоцитов периферической крови и опухолевых плазматических клеток CD138+. У пациента выявлено несколько наследуемых вариантов в генах, связанных с предрасположенностью к ММ. В генотипе у пациента обнаружены варианты в генах, отвечающих за репарацию ДНК, в т. ч. наследуемые мутации в генах RFDW3 и TP53. Они участвуют в регуляции стабильности генома, скорости накопления соматических мутаций, в т. ч. структурных перестроек и хромосомных аберраций. На нарушение процессов репарации ДНК у пациента указывает большое количество структурных вариаций и наличие мутационной подписи ID6 в генетическом материале опухоли. Анализ экзома опухолевых клеток позволил определить профиль соматических мутаций, включающий мутации в генах, ранее считавшихся связанными с ММ, а также оценить функциональную значимость выявленных нарушений. Кроме того, среди соматических мутаций мы обнаружили повреждающие мутации и мутации высокой значимости в генах, связанных с развитием других типов опухолей, в частности в генах ASCC3, TET3 и CHD1, а также в генах, кодирующих антимикробные пептиды CAMP и HTN3. За исключением дополнительной копии плеча 1q в геноме опухолевых плазматических клеток, у пациента не установлено других генетических факторов риска, связанных с неблагоприятным течением заболевания. У больного выявлены наследуемые (мутации в гене ABCB1) и соматические (трисомия по хромосоме 3) изменения генетического материала, которые характеризуются, по данным литературы, как факторы положительного прогноза при ММ.

Ключевые слова: множественная миелома, секвенирование нового поколения, экзом, наследуемые мутации, соматические мутации.

Получено: 12 августа 2022 г.

Принято в печать: 20 мая 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Aksenova AY, Zhuk AS, Lada AG, et al. Genome instability in multiple myeloma: Facts and factors. Cancers. 2021;13(23):5949. doi: 10.3390/cancers13235949.
  2. Аксенова А.Ю., Жук А.С., Степченкова Е.И., Грицаев С.В. Стратификация больных множественной миеломой: современное состояние вопроса и дальнейшие перспективы. Клиническая онкогематология. 2022;15(3):259–70. doi: 10.21320/2500-2139-2022-15-3-259-270.
    [Aksenova AYu, Zhuk AS, Stepchenkova EI, Gritsaev SV. Stratification of Patients with Multiple Myeloma: State-of-the-Art and Prospects. Clinical oncohematology. 2022;15(3):259–70. doi: 10.21320/2500-2139-2022-15-3-259-270. (In Russ)]
  3. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132(6):587–97. doi: 10.1182/blood-2018-03-840132.
  4. Fu X, Yucer N, Liu S, et al. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Nat Acad Sci USA. 2010;107(10):4579–84. doi: 10.1073/PNAS.0912094107.
  5. Feeney L, Munoz IM, Lachaud C, et al. RPA-Mediated Recruitment of the E3 Ligase RFWD3 Is Vital for Interstrand Crosslink Repair and Human Health. Mol Cell. 2017;66(5):610–621.e4. doi: 10.1016/j.molcel.2017.04.021.
  6. Mitchell JS, Li N, Weinhold N, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun. 2016;7:12050. doi: 10.1038/ncomms12050.
  7. Went M, Sud A, Forsti A, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018;9(1):3707. doi: 10.1038/s41467-018-04989-w.
  8. Hou P, Su X, Cao W, et al. Whole-exome sequencing reveals the etiology of the rare primary hepatic mucoepidermoid carcinoma. Diagn Pathol. 2021;16(1):29. doi: 10.1186/s13000-021-01086-3.
  9. Huang X, Wu F, Zhang Z, Shao Z. Association between TP53 rs1042522 gene polymorphism and the risk of malignant bone tumors: a meta-analysis. Biosci Rep. 2019;39(3):20181832. doi: 10.1042/BSR20181832.
  10. Akter R, Islam MS, Islam MS, et al. A case-control study investigating the association of TP53 rs1042522 and CDH1 rs16260 polymorphisms with prostate cancer risk. Meta Gene. 2021;30:100962. doi: 10.1016/J.MGENE.2021.100962.
  11. Henner WD, Evans AJ, Hough KM, et al. Association of codon 72 polymorphism of p53 with lower prostate cancer risk. Prostate. 2001;49(4):263–6. doi: 10.1002/PROS.10021.
  12. Dunna NR, Vure S, Sailaja K, et al. TP53 codon 72 polymorphism and risk of acute leukemia. Asian Pacif J Cancer Prevent. 2012;13(1):347–50. doi: 10.7314/APJCP.2012.13.1.349.
  13. Kochethu G, Delgado J, Pepper C, et al. Two germ line polymorphisms of the tumour suppressor gene p53 may influence the biology of chronic lymphocytic leukaemia. Leuk Res. 2006;30(9):1113–8. doi: 10.1016/J.LEUKRES.2005.12.014.
  14. Bergamaschi D, Samuels Y, Sullivan A, et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet. 2006;38(10):1133–41. doi: 10.1038/ng1879.
  15. Dumont P, Leu JIJ, Della Pietra AC, et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33(3):357–65. doi: 10.1038/ng1093.
  16. Weng Y, Lu L, Yuan G, et al. p53 codon 72 polymorphism and Hematological Cancer Risk: An Update Meta-Analysis. PLoS ONE. 2012;7(9):e45820. doi: 10.1371/journal.pone.0045820.
  17. Ortega MM, Honma HN, Zambon L, et al. GSTM1 and codon 72 P53 polymorphism in multiple myeloma. Ann Hematol. 2007;86(11):815–9. doi: 10.1007/S00277-007-0347-X/TABLES/3.
  18. Hattori Y, Ikeda Y, Suzuki Y, et al. Codon 72 polymorphism of TP53 gene is a novel prognostic marker for therapy in multiple myeloma. Br J Haematol. 2014;165(5):728–31. doi: 10.1111/BJH.12784.
  19. Greenberg AJ, Lee AM, Serie DJ, et al. Single-nucleotide polymorphism rs1052501 associated with monoclonal gammopathy of undetermined significance and multiple myeloma. Leukemia. 2013;27(2):515–6. doi: 10.1038/leu.2012.232.
  20. Broderick P, Chubb D, Johnson DC, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat Genet. 2012;44(1):58–61. doi: 10.1038/ng.993.
  21. Ford AQ, Heller NM, Stephenson L, et al. An Atopy-Associated Polymorphism in the Ectodomain of the IL-4Rα Chain (V50) Regulates the Persistence of STAT6 Phosphorylation. J Immunol. 2009;183(3):1607–16. doi: 10.4049/JIMMUNOL.0803266.
  22. Luo Y, Ye Z, Li K, et al. Associations between polymorphisms in the IL-4 and IL-4 receptor genes and urinary carcinomas: a meta-analysis. Int J Clin Exp Med. 2015;8(1):1227–33.
  23. Ivansson EL, Gustavsson IM, Magnusson JJ, et al. Variants of chemokine receptor 2 and interleukin 4 receptor, but not interleukin 10 or Fas ligand, increase risk of cervical cancer. Int J Cancer. 2007;121(11):2451–7. doi: 10.1002/IJC.22989.
  24. Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 2004;3(11):1045–50. doi: 10.4161/cbt.3.11.1172.
  25. Vikova V, Jourdan M, Robert N, et al. Comprehensive characterization of the mutational landscape in multiple myeloma cell lines reveals potential drivers and pathways associated with tumor progression and drug resistance. Theranostics. 2019;9(2):540–53. doi: 10.7150/thno.28374.
  26. Waller RG, Darlington TM, Wei X, et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk Epstein MP, editor. PLOS Genet. 2018;14(2):e1007111. doi: 10.1371/journal.pgen.1007111.
  27. Bolli N, Barcella M, Salvi E, et al. Next-generation sequencing of a family with a high penetrance of monoclonal gammopathies for the identification of candidate risk alleles. Cancer. 2017;123(19):3701–8. doi: 10.1002/cncr.30777.
  28. Greipp P, Cascino G, Kimlinger T, et al. Plasma Cell Folate Receptor Overexpression Differentiates Multiple Myeloma from Monoclonal Gammopathy of Undetermined Significance and Smoldering Myeloma. Blood. 2004;104(11):3649. doi: 10.1182/BLOOD.V104.11.3649.3649.
  29. Song J, Freeman ADJ, Knebel A, et al. Human ANKLE1 Is a Nuclease Specific for Branched DNA. J Mol Biol. 2020;432(21):5825–34. doi: 10.1016/J.JMB.2020.08.022.
  30. Antoniou AC, Wang X, Fredericksen ZS, et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet. 2010;42(10):885–92. doi: 10.1038/NG.669.
  31. Tian J, Ying P, Ke J, et al. ANKLE1 N6-Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability. Int J Cancer. 2020;146(12):3281–93. doi: 10.1002/IJC.32677.
  32. Rhie SK, Coetzee SG, Noushmehr H, et al. Comprehensive functional annotation of seventy-one breast cancer risk Loci. PloS One. 2013;8(5):e63925. doi: 10.1371/journal.pone.0063925.
  33. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–61. doi: 10.1097/FPC.0B013E3283385A1C.
  34. Hassen W, Kassambara A, Reme T, et al. Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. Oncotarget. 2014;6(8):6431–47. doi: 10.18632/ONCOTARGET.3237.
  35. Salama NN, Yang Z, Bui T, Ho RJY. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci. 2006;95(10):2293–308. doi: 10.1002/JPS.20717.
  36. Drain S, Catherwood M, Orr N, et al. ABCB1 (MDR1) rs1045642 is associated with increased overall survival in plasma cell myeloma. Leuk lymphoma. 2009;50(4):566–70. doi: 10.1080/10428190902853144.
  37. Buda G, Ricci D, Huang CC, et al. Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol. 2010;89(11):1133. doi: 10.1007/S00277-010-0992-3.
  38. Maggini V, Buda G, Martino A, et al. MDR1 diplotypes as prognostic markers in multiple myeloma. Pharmacogenet Genomics. 2008;18(5):383–9. doi: 10.1097/FPC.0B013E3282F82297.
  39. Ziccheddu B, Biancon G, Bagnoli F, et al. Integrative analysis of the genomic and transcriptomic landscape of double-refractory multiple myeloma. Blood Adv. 2020;4(5):830–44. doi: 10.1182/bloodadvances.2019000779.
  40. Zheleznyak A, Mixdorf M, Marsala L, et al. Orthogonal targeting of osteoclasts and myeloma cells for radionuclide stimulated dynamic therapy induces multidimensional cell death pathways. Theranostics. 2021;11(16):7735–54. doi: 10.7150/THNO.60757.
  41. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  42. Dementyeva E, Kryukov F, Kubiczkova L, et al. Clinical implication of centrosome amplification and expression of centrosomal functional genes in multiple myeloma. J Transl Med. 2013;11(1):1–9. doi: 10.1186/1479-5876-11-77/FIGURES/5.
  43. Dango S, Mosammaparast N, Sowa ME, et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol Cell. 2011;44(3):373–84. doi: 10.1016/J.MOLCEL.2011.08.039.
  44. Fedeles BI, Singh V, Delaney JC, et al. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem. 2015;290(34):20734–42. doi: 10.1074/JBC.R115.656462.
  45. Jia J, Absmeier E, Holton N, et al. The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations. Nat Commun. 2020;11(1):1–13. doi: 10.1038/s41467-020-19221-x.
  46. Ko M, An J, Pastor WA, et al. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol Rev. 2015;263(1):6–21. doi: 10.1111/IMR.12239.
  47. Bray JK, Dawlaty MM, Verma A, Maitra A. Roles and Regulations of TET Enzymes in Solid Tumors. Trends Cancer. 2021;7(7):635–46. doi: 10.1016/j.trecan.2020.12.011.
  48. Linowiecka K, Foksinski M, Brozyna AA. Vitamin c transporters and their implications in carcinogenesis. Nutrients. 2020;12(12):1–19. doi: 10.3390/nu12123869.
  49. Kari V, Mansour WY, Raul SK, et al. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep. 2016;17(11):1609–23. doi: 10.15252/EMBR.201642352.
  50. Zhou J, Li J, Serafim RB, et al. Human CHD1 is required for early DNA-damage signaling and is uniquely regulated by its N terminus. Nucleic Acids Res. 2018;46(8):3891–905. doi: 10.1093/nar/gky128.
  51. Cardoso AR, Lopes-Marques M, Oliveira M, et al. Genetic variability of the functional domains of chromodomains helicase DNA-binding (CHD) proteins. Genes. 2021;12(11):1–15. doi: 10.3390/genes12111827.
  52. Burkhardt L, Fuchs S, Krohn A, et al. CHD1 Is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 2013;73(9):2795–805. doi: 10.1158/0008-5472.CAN-12-1342.
  53. Li Y, Roberts ND, Wala JA, et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020;578(7793):112–21. doi: 10.1038/s41586-019-1913-9.
  54. Chretien ML, Corre J, Lauwers-Cances V, et al. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood. 2015;126(25):2713–9. doi: 10.1182/blood-2015-06-650242.
  55. Perrot A, Lauwers-Cances V, Tournay E, et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 2019;37(19):1657–65. doi: 10.1200/JCO.18.00776.
  56. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLOS Comput Biol. 2016;12(4):e1004873. doi: 10.1371/JOURNAL.PCBI.1004873.
  57. Lee J, Lee AJ, Lee JK, et al. Mutalisk: A web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures. Nucleic Acids Res. 2018;46(W1):W102–W108. doi: 10.1093/nar/gky406.
  58. Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25(23):2436. doi: 10.1101/GAD.179184.111.
  59. Schmidt TM, Barwick BG, Joseph N, et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 2019;9(12):94. doi: 10.1038/s41408-019-0254-0.

 

Клиническое значение полноэкзомных исследований миелоидных опухолей методом секвенирования следующего поколения

С.А. Смирнихина1, А.В. Лавров1, Э.П. Адильгереева1, А.Г. Туркина2, С.И. Куцев1,3

1 ФГБУ «Медико-генетический научный центр» РАМН, Москва, Российская Федерация

2 ФГБУ «Гематологический научный центр» Министерства здравоохранения РФ, Москва, Российская Федерация

3 ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Министерства здравоохранения РФ, Москва, Российская Федерация


РЕФЕРАТ

В обзоре рассматривается применение секвенирования следующего поколения (next-generation sequencing) для изучения патогенеза миелоидных опухолей. Исследования экзомов опухолевых клеток у пациентов с разными формами миелоидных опухолей позволили выявить новые рекуррентные мутации, имеющие значение для понимания молекулярных механизмов патогенеза, определения прогноза эффективности лечения, разработки новых подходов к таргетной терапии этих заболеваний.


Ключевые слова: экзом, секвенирование следующего поколения, миелоидные опухоли.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Hochhaus A., O’Brien S.G., Guilhot F. et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 2009; 23(6): 1054–61.
  2. Choi M., Scholl U.I., Ji W. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA 2009; 106(45): 19096–101.
  3. Rothberg J.M., Hinz W., Rearick T.M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011; 475(7356): 348–52.
  4. Ng S.B., Turner E.H., Robertson P.D. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009; 461(7261): 272–6.
  5. Ng S.B., Buckingham K.J., Lee C. et al. Exome sequencing identifies the cause of a Mendelian disorder. Nat. Genet. 2010; 42(1): 30–5.
  6. Kahvejian A., Quackenbush J., Thompson J.F. What would you do if you could sequence everything? Nat. Biotechnol. 2008; 26(10): 1125–33.
  7. Biesecker L.G. Exome sequencing makes medical genomics a reality. Nat. Genet. 2010; 42(1): 13–4.
  8. Gregory T.K., Wald D., Chen Y. et al. Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J. Hematol. Oncol. 2009; 2: 23.
  9. Riva L., Luzi L., Pelicci P.G. Genomics of acute myeloid leukemia: the next generation. Front Oncol. 2012; 2: 40.
  10. Walter M.J., Payton J.E., Ries R.E. et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc. Natl. Acad. Sci. USA 2009; 106(31): 12950–5.
  11. Walter M.J., Graubert T.A., Dipersio J.F. et al. Next-generation sequencing of cancer genomes: back to the future. Per. Med. 2009; 6(6): 653.
  12. Mrozek K., Heerema N.A., Bloomfield C.D. Cytogenetics in acute leukemia. Blood Rev. 2004; 18: 115–36.
  13. Kelly L.M., Kutok J.L., Williams I.R. et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc. Natl. Acad. Sci. USA 2002; 99: 8283–8.
  14. Ley T.J., Mardis E.R., Ding L. et al. DNA sequencing of a cytogenetically normal acute myeloid leukemia genome. Nature 2008; 456(7218): 66–72.
  15. Arber D.A., Brunning R.D., Le Beau M.M. et al. Acute myeloid leukaemia with recurrent genetic abnormalities. In: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue. Ed. by S. Swerdlow, E. Campo, N.L. Harris. Geneva: IARC Press, 2008: 110–23.
  16. Mardis E.R., Ding L., Dooling D.J. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 2009; 361(11): 1058–66.
  17. Ley T.J., Ding L., Walter M.J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 2010; 363(25): 2424–33.
  18. Grossmann V., Tiacci E., Holmes A.B. et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 2011; 118(23): 6153–63.
  19. Jan M., Snyder T.M., Corces-Zimmerman M.R. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 2012; 4(149): 149ra118.
  20. Thol F., Kolking B., Damm F. et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromos. Cancer 2012; 51(7): 689–95.
  21. Duncavage E.J., Abel H.J., Szankasi P. et al. Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Mod. Pathol. 2012; 25(6): 795–804.
  22. Mardis E.R., Wilson R.K. Cancer genome sequencing: a review. Hum. Mol. Genet. 2009; 18(R2): R163–8.
  23. Papaemmanuil E., Cazzola M., Boultwood J. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 2011; 365(15): 1384–95.
  24. Malcovati L., Papaemmanuil E., Bowen D.T. et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 2011; 118(24): 6239–46.
  25. Visconte V., Rogers H.J., Singh J. et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 2012 Jul 23. [Epub ahead of print]
  26. Yoshida K., Sanada M., Shiraishi Y. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478(7367): 64–9.
  27. Makishima H., Visconte V., Sakaguchi H. et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 2012; 119(14): 3203–10.
  28. Graubert T.A., Shen D., Ding L. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 2011; 44(1): 53–7.
  29. Albert B.J., McPherson P.A., O’Brien K. et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrugresistant cells. Mol. Cancer Ther. 2009; 8(8): 2308–18.
  30. Visconte V., Makishima H., Maciejewski J.P., Tiu R.V. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 2012 May 15. doi: 10.1038/leu.2012.130. [Epub ahead of print]
  31. Tallman M.S., Kim H.T., Paietta E. et al. Acute monocytic leukemia (French-American-British classification M5) does not have a worse prognosis than other subtypes of acute myeloid leukemia: a report from the Eastern Cooperative Oncology Group. J. Clin. Oncol. 2004; 22: 1276–86.
  32. Yan X.J., Xu J., Gu Z.H. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat. Genet. 2011; 43(4): 309–15.
  33. Grimwade D., Biondi A., Mozziconacci M.J. et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action «Molecular Cytogenetic Diagnosis in Haematological Malignancies». Blood 2000; 96(4): 1297–308.
  34. Greif P.A., Yaghmaie M., Konstandin N.P. et al. Somatic mutations in acute promyelocytic leukemia (APL) identified by exome sequencing. Leukemia 2011; 25(9): 1519–22.
  35. Welch J.S., Westervelt P., Ding L. et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 2011; 305(15): 1577–84.
  36. Spector M.S., Iossifov I., Kritharis A. et al. Mast-cell leukemia exome chain and KITbsequencing reveals a mutation in the IgE mast-cell receptor V654A. Leukemia 2012; 26(6): 1422–5.
  37. Kohlmann A., Grossmann V., Klein H.U. et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J. Clin. Oncol. 2010; 28(24): 3858–65.
  38. Kohlmann A., Klein H.U., Weissmann S. et al. The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia 2011; 25(12): 1840–8.