А.А. Силютина, Н.М. Матюхина, Е.Г. Лисина, В.И. Хван, С.Н. Лелеко, Н.Т. Сиордия, О.В. Сироткина, П.А. Бутылин
ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341
Для переписки: Павел Андреевич Бутылин, канд. биол. наук, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; e-mail: butylinp@gmail.com
Для цитирования: Силютина А.А., Матюхина Н.М., Лисина Е.Г. и др. Спектр про- и антифибротических факторов в сыворотке у пациентов с хроническими миелопролиферативными заболеваниями. Клиническая онкогематология. 2017;10(4):479–84.
DOI: 10.21320/2500-2139-2017-10-4-479-484
РЕФЕРАТ
Актуальность. Изучение спектра про- и антифибротических факторов в сыворотке у пациентов с Ph-негативными хроническими миелопролиферативными заболеваниями (ХМПЗ) позволит лучше понять механизмы развития миелофиброза, а также выявить новые маркеры, имеющие дифференциально-диагностическое значение.
Цель. Оценить уровень классических (TGF-β, bFGF, ММП-2, -9, -13 и VEGF) и новых провоспалительных (галектин-3) факторов в сыворотке, участвующих в развитии миелофиброза при различных нозологических Ph-негативных формах ХМПЗ, с учетом выявленных генетических нарушений.
Материалы и методы. В исследование включено 55 пациентов с ХМПЗ (13 — с истинной полицитемией, 17 — с эссенциальной тробоцитемией, 25 — с первичным миелофиброзом) и 8 здоровых доноров. Для определения мутаций JAK2V617F, CALR (делеции и инсерции), MPLW515L, MPLW515K использовали геномную ДНК, выделенную из цельной крови. С целью определить уровень про- и антифибротических факторов в сыворотке был проведен иммуноферментный анализ галектина-3, TGF-β, bFGF, VEGF, MMП-2, MMП-9 и MMП-13 c иммобилизованными антителами.
Результаты. Показаны изменения уровней ММП-9, VEGF, TGF-β и галектина-3 в сыворотке у пациентов с различными ХМПЗ. Отмечена тенденция к снижению уровня ММП-9 в сыворотке пациентов с мутациями в гене CALR.
Заключение. Обнаруженные различия в группах пациентов с различными нозологическими формами ХМПЗ могут послужить основой для усовершенствования диагностических протоколов в спорных в дифференциально-диагностическом отношении клинических ситуациях при ХМПЗ.
Ключевые слова: Ph-негативные хронические миелопролиферативные заболевания, про- и антифибротические факторы, JAK2V617F, CALR, MPLW515L, MPLW515K, ММП-2, ММП-9, ММП-13, галектин-3.
Получено: 26 апреля 2017 г.
Принято в печать: 5 июля 2017 г.
ЛИТЕРАТУРА
- Kiladjian J-J. The spectrum of JAK2-positive myeloproliferative neoplasms. Hematology. 2012;2012:561–6. doi: 10.1182/asheducation-2012.1.561.
- Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.
- Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
- Li J, Kent DG, Chen E, Green AR. Mouse models of myeloproliferative neoplasms: JAK of all grades. Dis Model Mech. 2011;4(3):311–7. doi: 10.1242/dmm.006817.
- Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–95. doi: 10.1016/s0092-8674(00)81167-8.
- Barosi G, Mesa RA, Thiele J, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22(2):437–8. doi: 10.1038/sj.leu.2404914.
- Hoffman R, Rondelli D. Biology and treatment of primary myelofibrosis. Hematology. 2007;2007(1):346–54. doi: 10.1182/asheducation-2007.1.346.
- Jacobson RJ, Salo A, Fialkow PJ. Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood. 1978;51(2):189–94.
- Reeder TL, Bailey RJ, Dewald GW, et al. Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood. 2003;101(5):1981–3. doi: 10.1182/blood-2002-07-2341.
- Reilly JT. Idiopathic myelofibrosis: pathogenesis, natural history and management. Blood Rev. 1997;11(4):233–42. doi: 10.1016/S0268-960X(97)90022-9.
- Mesa RA, Hanson CA, Rajkumar SV, et al. Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia. Blood. 2000;96:3374–80.
- Tefferi A. The pathogenesis of chronic myeloproliferative diseases. Int J Hematol. 2001;73(2):170–6. doi: 10.1007/BF02981934.
- Chagraoui H, Komura E, Tulliez M, et al. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100(10):3495–503. doi: 10.1182/blood-2002-04-1133.
- Martyre MC, Le Bousse-Kerdiles C, Romquin N, et al. Elevated levels of basic growth factor in megakaryocytes and platelets from patients with idiopathic myelofibrosis. Br J Haematol. 1997;97(2):441–8. doi: 10.1046/j.1365-2141.1997.292671.x.
- Boiocchi L, Vener C, Savi F, et al. Increased expression of vascular endothelial growth factor receptor 1 correlates with VEGF and microvessel density in Philadelphia chromosome-negative myeloproliferative neoplasms. J Clin Pathol. 2011;64(3):226–31. doi: 10.1136/jcp.2010.083386.
- Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Mod Mechan. 2014;7(2):193–203. doi: 10.1242/dmm.012062.
- Jensen MK, Holten-Andersen MN, Riisbro R, et al. Elevated plasma levels of TIMP-1 correlate with plasma suPAR/uPA in patients with chronic myeloproliferative disorders. Eur J Haematol. 2003;71(5):377–84. doi: 10.1034/j.1600-0609.2003.00096.x.
- Wang JC, Novetsky A, Chen C, Novetsky AD. Plasma matrix metalloproteinase and tissue inhibitor of metalloproteinase in patients with agnogenic myeloid metaplasia or idiopathic primary myelofibrosis. Br J Haematol. 2002;119(3):709–12. doi: 10.1046/j.1365-2141.2002.03874.x.
- Kim SY, Im K, Park SN, et al. CALR, JAK2, and MPL Mutation Profiles in Patients With Four Different Subtypes of Myeloproliferative Neoplasms: Primary Myelofibrosis, Essential Thrombocythemia, Polycythemia Vera, and Myeloproliferative Neoplasm, Unclassifiable. Am J Clin Pathol. 2015;143(5):635–44. doi: 10.1309/AJCPUAAC16LIWZMM.
- Gianelli U, Vener C, Raviele PR, et al. VEGF Expression Correlates With Microvessel Density in Philadelphia Chromosome–Negative Chronic Myeloproliferative Disorders. Am J Clin Pathol. 2007;128(6):966–73. doi: 10.1309/FP0N3LC8MBJUFFA6.
- Le Bousse-Kerdiles MC, Chevillard S, Charpentier A, et al. Differential expression of transforming growth factor-beta, basic fibroblast growth factor, and their receptors in CD34+ hematopoietic progenitor cells from patients with myelofibrosis and myeloid metaplasia. Blood. 1996;88:4534–46.
- Campanelli R, Rosti V, Villani L, et al. Evaluation of the bioactive and total transforming growth factor β1 levels in primary myelofibrosis. Cytokine. 2011;53(1):100–6. doi: 10.1016/j.cyto.2010.07.427.
- Силютина А.А., Гин И.И., Матюхина Н.М. и др. Модели миелофиброза (обзор литературы и собственные данные). Клиническая онкогематология. 2017;10(1):75–84. doi: 10.21320/2500-2139-2017-10-1-75-84.[Silyutina AA, Gin II, Matyukhina NM, et al. Myelofibrosis Models: Literature Review and Own Data. Clinical oncohematology. 2017;10(1):75–84. doi: 10.21320/2500-2139-2017-10-1-75-84. (In Russ)]
- Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Nat Acad Sci USA. 2006;103(13):5060–5. doi: 10.1073/pnas.0511167103.
- Brand C, Oliveira F, Takiya C, et al. The involvement of the spleen during chronic phase of Schistosoma mansoni infection in galectin-3-/- mice. Histol Histopathol. 2012;27(8):1109–20. doi: 10.14670/HH-27.1109.
- Koopmans SM, Bot FJ, Schouten HC, et al. The involvement of Galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia. Am J Blood Res. 2012;2(2):119–27.