Сравнительная патоморфологическая характеристика изменений в лимфатических узлах при болезни Кикучи—Фуджимото и аутоиммунных заболеваниях, протекающих с лимфаденопатией (собственные данные)

А.М. Ковригина

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Алла Михайловна Ковригина, д-р биол. наук, профессор, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: kovrigina.alla@gmail.com

Для цитирования: Ковригина А.М. Сравнительная патоморфологическая характеристика изменений в лимфатических узлах при болезни Кикучи—Фуджимото и аутоиммунных заболеваниях, протекающих с лимфаденопатией (собственные данные). Клиническая онкогематология. 2021;14(1):80–90.

DOI: 10.21320/2500-2139-2021-14-1-80-90


РЕФЕРАТ

Актуальность. Патоморфологическое исследование ткани лимфатических узлов при иммуноопосредованных лимфаденопатиях нередко предполагает проведение дифференциальной диагностики с опухолями лимфоидной и миелоидной тканей с частичным поражением лимфатического узла. Кроме того, патогенетическая взаимосвязь между аутоиммунными заболеваниями, протекающими с лимфаденопатией, и болезнью Кикучи—Фуджимото (БКФ), морфологический субстрат которой характеризуется некротизирующим гистиоцитарным лимфаденитом, к настоящему времени в полной мере не изучена.

Цель. На основе изучения биопсийного материала сопоставить морфоиммуногистохимические характеристики изменений в ткани лимфатических узлов у пациентов с патоморфологическим диагнозом БКФ и у пациентов с аутоиммунными заболеваниями, протекающими с лимфаденопатией: системной красной волчанкой (СКВ) и болезнью Стилла взрослых (БСВ).

Материалы и методы. Морфологическое и иммуногистохимическое исследования проведены на биопсийном материале лимфатических узлов 20 пациентов, из них 16 с БКФ (соотношение мужчин/женщин 15:1, медиана возраста 26,5 года, диапазон 18–47 лет; в 44 % случаев единственной зоной поражения были шейные лимфатические узлы). У 2 пациенток (19 и 33 года) по клинико-лабораторным данным установлена СКВ, еще у 2 (женщина 43 года и мужчина 25 лет) — БСВ.

Результаты. При морфологическом и иммуногистохимическом исследованиях выявлены три основные клеточные популяции, сходные между БКФ и СКВ и, возможно, отражающие патогенетическую взаимосвязь этих заболеваний: гистиоциты с экспрессией миелопероксидазы (MPO+), плазмоцитоидные дендритные клетки CD123+, цитотоксические Т-клетки CD8+ и гранзим B+. В 55 % наблюдений БКФ и 2 случаях СКВ отмечалось значительное количество активированных лимфоидных клеток CD30+, расположенных в скоплениях и разрозненно в зонах цитотоксических Т-клеток.

Заключение. С целью исключить СКВ при последующем дообследовании пациентов с морфологическим субстратом некротизирующего гистиоцитарного лимфаденита целесообразно использование термина «Кикучи-подобные изменения» вместо БКФ. При сопоставлении данных иммуногистохимического исследования у пациентов с БКФ, СКВ и БСВ гистиоциты MPO+ в ткани лимфатического узла могут служить диагностическими иммуногистохимическими маркерами иммуновоспалительного процесса. Их обнаружение обусловливает необходимость проведения дифференциальной диагностики с миелоидной саркомой. Экспрессия CD30 активированными цитотоксическими лимфоидными клетками обнаружена при СКВ и в 55 % наблюдений БКФ, что является еще одной важной общей диагностической характеристикой субстрата двух заболеваний (БКФ и СКВ) и предполагает проведение дифференциальной диагностики с анапластической крупноклеточной лимфомой, лимфомой Ходжкина. В исследованной группе из 20 пациентов морфологический субстрат лимфатических узлов у 2 пациентов с БСВ отличался по морфологическим и иммуногистохимическим признакам от БКФ и СКВ и характеризовался расширением паракортикальной зоны, а также морфоиммуногистохимическими признаками экстрафолликулярной В-клеточной активации.

Ключевые слова: морфология, иммуногистохимия, болезнь Кикучи—Фуджимото, некротизирующий гистиоцитарный лимфаденит, системная красная волчанка, болезнь Стилла взрослых, CD30, миелопероксидаза.

Получено: 30 июля 2020 г.

Принято в печать: 2 декабря 2020 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Jeon YK, Paik JH, Park SS, et al. Spectrum of lymph node pathology in adult onset Still’s disease; analysis of 12 patients with one follow up biopsy. J Clin Pathol. 2004;57(10):1052–6. doi: 10.1136/jcp.2004.018010.
  2. Cush JJ, Medsger TA, Christy WC, et al. Adult-onset Still’s disease. Arthrit Rheum. 1987;30(2):186–94. doi: 10.1002/art.1780300209.
  3. Kojima M, Nakamura S, Itoh H, et al Systemic Lupus Erythematosus (SLE) Lymphadenopathy Presenting with Histopathologic Features of Castleman’ Disease: A Pathologic Study of Five Cases. Pathol Res Pract. 1997;193(8):565–71 doi: 10.1016/S0344-0338(97)80015-5.
  4. Graef E, Magliulo D, Hollie N, et al. Clinical Characteristics of Lymphadenopathy in Systemic Lupus Erythematous: A Case Control Study from a Tertiary Care Center. Arthrit Rheumatol. 2019;71(Suppl 10): Abstract.
  5. Kikuchi M. Lymphadenitis showing focal reticulum cell hyperplasia with nuclear debris and phagocytosis. Nippon Ketsueki Gakkai Zasshi. 1972;35:379–80.
  6. Fujimoto Y, Kozima Y, Yamaguchi K. Cervical subacute necrotizing lymphadenitis. A new clinicopathological entity. Naika. 1972;20:920–7.
  7. Pileri S, Kikuchi M, Helbron D, Lennert K. Histiocytic necrotizing lymphadenitis without granulocytic infiltration. Virch Arch Pathol Anat. 1982;395(3):257–71. doi: 10.1007/bf00429352.
  8. Turner RR, Martin J, Dorfman RF. Necrotizing lymphadenitis. A study of 30 cases. Am J Surg Pathol. 1983;7(2):115–23.
  9. Feller AC, Lennert K, Stein H, et al. Immunohistology and etiology of histiocytic necrotizing lymphadenitis: report of three instructive cases. Histopathology. 1983;7(6):825–39. doi: 1111/j.1365–2559.1983.tb02299.x.
  10. Dorfman RF. Histiocytic necrotizing lymphadenitis of Kikuchi and Fujimoto. Arch Pathol Lab Med. 1987;111(11):1026–9.
  11. Sumiyoshi Y, Kikuchi M, Ohshima K, et al Human herpesvirus-6 genomes in histiocytic necrotizing lymphadenitis (Kikuchi’s disease) and other forms of lymphadenitis. Am J Clin Pathol. 1993;99(5):609–14. doi: 10.1093/ajcp/99.5.609.
  12. Huh J, Kang GH, Gong G, et al. Kaposi’s sarcoma associated herpesvirus in Kikuchi’s disease. Hum Pathol. 1998;29(10):1091–6. doi: 10.1016/S0046-8177(98)90419-1.
  13. Chiu CF, Chow KC, Lin TY, et al. Virus infection in patients with histiocytic necrotizing lymphadenitis in Taiwan. Detection of Epstein-Barr virus, type 1 human T-cell lymphotropic virus, and parvovirus B19. Am J Clin Pathol. 2000;113(6):774–81. doi: 10.1309/1A6Y-YCKP-5AVF-QTYR.
  14. Adoue D, Rauzy O, Rigal-Huguet F. Syndrome de Kikuchi, infection a Cytomegalovirus et maladie lupique. Rev Med Intern. 1997;18(4):338–42. doi: 10.1016/s0248-8663(97)84023-4.
  15. Imamura M, Ueno H, Matsuura A, et al. An ultrastructural study of subacute necrotizing lymphadenitis. Am J Pathol. 1982;107(3):292–9.
  16. Meyer O, Kahn MF, Grossin M, et al. Parvovirus B19 infection can induce histiocytic necrotizing lymphadenitis (Kikuchi’s disease) associated with systemic lupus erythematosus. Lupus. 1991;1(1):37–41. doi: 10.1177/096120339100100107.
  17. Lamzaf L, Harmouche H, Maamar M, et al. Kikuchi-Fujimoto disease: Report of 4 cases and review of the literature. Eur Ann Otorhinolaryngol Head Neck Dis. 2014;131(6):329–32. doi: 10.1016/j.anorl.2013.01.007.
  18. Ferrao E, Grade M, Arez L, et al. Kikuchi-Fujimoto’s disease associated to a systemic erythematosus lupus: a clinical case. Eur J Intern Med. 2003;14:S76. doi: 10.1016/S0953-6205(03)91417-8.
  19. Merwald-Fraenk H, Wiesent F, Dorfler R, et al. Lymphadenitis und systemischer Lupus erythematodes. Z Rheumatol. 2016,75(10):1028–31. doi: 10.1007/s00393-016-0170-7.
  20. Dumas G, Prendki V, Haroche J, et al. Kikuchi-Fujimoto disease: retrospective study of 91 cases and review of the literature. Medicine (Baltimore). 2014;93(24):372–82. doi: 10.1097/0000000000000220.
  21. Kishimoto K, Tate G, Kitamura T, et al. Cytologic features and frequency of plasmacytoid dendritic cells in the lymph nodes of patients with histiocytic necrotizing lymphadenitis (Kikuchi-Fujimoto disease). Diagn Cytopathol. 2010;38(7):521–6. doi: 10.1002/dc.21265.
  22. Lennert K, Remmele W. Karyometric research on lymph node cells in man. I. Germinoblasts, lymphoblasts & lymphocytes. Acta Haematol. 1958;19(2):99–113. doi: 10.1159/000205419.
  23. Ronnblom L, Alm GV. A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med. 2001;194(12):F59–F64. doi: 10.1084/jem.194.12.f59.
  24. Pabon-Porras MA, Molina-Rios S, Florez-Suarez JB. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med. 2019;7:1–24. doi: 10.1177/2050312119876146.
  25. Barrat FJ, Su LJ. A pathogenic role of plasmacytoid dendritic cells in autoimmunity and chronic viral infection. Exp Med. 2019;216(9):1974–85. doi: 10.1084/jem.20181359.
  26. Rollins-Raval MA, Marafioti T, Swerdlow SH, Roth CG. The number and growth pattern of plasmacytoid dendritic cells vary in different types of reactive lymph nodes: an immunohistochemical study. Hum Pathol. 2013;44(6):1003–10. doi: 10.1016/j.humpath.2012.08.020.
  27. Katsiari CG, Liossis S-NC, Sfikakis PP. The Pathophysiologic Role of Monocytes and Macrophages in Systemic Lupus Erythematosus: A Reappraisal. Semin Arthrit Rheum. 2010;39(6):491–503. doi: 10.1016/j.semarthrit.2008.11.002.
  28. Ma W-T, Gao F, Gu K, et al. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol. 2019;10:1140. doi: 10.3389/fimmu.2019.01140.
  29. Pileri SA, Facchetti F, Ascani S, et al. Myeloperoxidase expression by histiocytes in Kikuchi’s and Kikuchi-like lymphadenopathy. Am J Pathol. 2001;159(3):915–24. doi: 10.1016/S0002-9440(10)61767-1.
  30. Strzepa A, Pritchard KA, Dittel BN. Myeloperoxidase: A new player in autoimmunity. Cell Immunol. 2017;317:1–8. doi: 10.1016/j.cellimm.2017.05.002.
  31. Pilichowska ME, Pinkus JL, Pinkus GS. Histiocytic Necrotizing Lymphadenitis (Kikuchi-Fujimoto Disease). Am J Clin Pathol. 2009;131(2):174–82. doi: 10.1309/AJCP7V1QHJLOTKKJ.
  32. Jang SJ, Min JH, Kim D, Yang WI. Myeloperoxidase positive histiocytes in subacute necrotizing lymphadenitis express both CD11c and CD163. Basic Appl Pathol. 2011;4(4):110–5. doi: 10.1111/j.1755-9294.2011.01114.x.
  33. Andersen MH, Schrama D, Straten PT, et al. Cytotoxic T cells. J Invest Dermatol. 2006;126(1):32–41. doi: 10.1038/sj.jid.5700001.
  34. Suarez-Fueyo A, Bradley SJ, Tsokos GC. T cells in Systemic Lupus Erythematosus. Curr Opin Immunol. 2016;43:32–8. doi: 10.1016/j.coi.2016.09.001.
  35. Tabata T, Takata K, Miyata-Takata T, et al. Characteristic Distribution Pattern of CD30-positive Cytotoxic T Cells Aids Diagnosis of Kikuchi-Fujimoto Disease. Appl Immunohistochem Mol Morphol. 2018;26(4):274–82. doi: 10.1097/pai.0000000000000411.
  36. Salman-Monte TC, Ruiz JP, Almirall M, et al. Lymphadenopathy syndrome in systemic lupus erythematosus: Is it Kikuchi-Fujimoto disease? Reumatol Clin. 2017;13(1):55–6. doi: 10.1016/j.reumae.2016.04.004.
  37. Sukswai N, Jung HR, Amr SS. Immunopathology of Kikuchi-Fujimoto Disease: A reappraisal using novel immunohistochemistry markers. Histopathology. 2020;77(2):262–74. doi: 10.1111/his.14050.

Диагностика фолликулярной лимфомы педиатрического типа у молодых взрослых (собственные данные)

А.М. Ковригина, Л.В. Пластинина, С.К. Кравченко, Е.С. Нестерова, Т.Н. Обухова

ФГБУ «Гематологический научный центр» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Алла Михайловна Ковригина, д-р биол. наук, профессор, Новый Зыковский пр-д, д. 4а. Москва, Российская Федерация, 125167; тел.: +7(495)612-62-12; e-mail: kovrigina.alla@gmail.com

Для цитирования: Ковригина А.М., Пластинина Л.В., Кравченко С.К. и др. Диагностика фолликулярной лимфомы педиатрического типа у молодых взрослых (собственные данные). Клиническая онкогематология. 2017;10(1):52–60.

DOI: 10.21320/2500-2139-2017-10-1-52-60


РЕФЕРАТ

Цель. Патоморфологическая, иммунофенотипическая и клиническая характеристики выделенной в 2008 г. (классификация ВОЗ) новой клинико-морфологической формы — фолликулярной лимфомы (ФЛ) педиатрического типа у молодых взрослых.

Актуальность. ФЛ — гетерогенная по морфологическим, иммунофенотипическим и молекулярно-генетическим характеристикам нозологическая форма. ФЛ de novo включает трансформированную ФЛ, ФЛ без t(14;18), ФЛ с диффузным ростом, ассоциированную с del(1p.36) и мутацией TNFRSF14. ФЛ педиатрического типа у молодых взрослых мало изучена, представляет особый интерес в спектре клинического разнообразия и молекулярно-биологической разнородности ФЛ в целом.

Методы. Исследован материал биопсии у 5 пациентов (18–25 лет, медиана возраста 22 года, соотношение женщины/мужчины 3:2), прошедших обследование, диагностику и лечение в ФГБУ ГНЦ МЗ РФ в течение 2012–2016 гг. У 4/5 пациентов диагностирована I клиническая стадия с изолированным вовлечением нёбной миндалины или пахового лимфатического узла; у 1/5 — II клиническая стадия с вовлечением нёбной миндалины и шейного лимфатического узла. На парафиновом материале проведено морфологическое, иммунофенотипическое и FISH-исследования.

Результаты. Морфологическая картина характеризовалась как ФЛ типа 3B (n = 2) и ФЛ 3-го типа с бластоидной морфологией ядер (n = 3). Иммунофенотипические признаки занимают промежуточное положение между ФЛ 3-го типа de novo и трансформированной ФЛ 3-го типа. Реаранжировка BCL-2 не была выявлена ни в одном наблюдении.

Заключение. При сопоставлении полученных собственных данных с представленными в литературе характеристиками ФЛ педиатрического типа у детей особенностью исследованной группы молодых взрослых с ФЛ педиатрического типа стало отсутствие или слабая экспрессия (< 30 % клеток опухолевого субстрата) MUM1. Это, в свою очередь, свидетельствует об отсутствии реаранжировки IRF4 и, возможно, о наличии других генетических аномалий. Выявленные клинические, морфологические, иммунофенотипические характеристики расширяют спектр гетерогенности ФЛ у молодых взрослых.

Ключевые слова: фолликулярная лимфома педиатрического типа, фолликулярная лимфома, молодые взрослые, патоморфология, иммуногистохимия, MUM1.

Получено: 14 августа 2016 г.

Принято в печать: 27 ноября 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Lennert K, Stein H, Mohri N, et al. Malignant Lymphomas Other than Hodgkin’s Disease: Histology, Cytology, Ultrastructure, Immunology. Berlin, Heidelberg: Springer-Verlag; 1978. 833 p. doi: 10.1016/0092-8674(79)90172-7.
  2. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  3. Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification. Project Ann Oncol. 1998;9(7):717–20.
  4. Gallagher CJ, Gregory WM, Jones AE, et al. Follicular lymphoma: Prognostic factors for response and survival. J Clin Oncol. 1986;4(10):1470–80.
  5. Bastion Y, Sebban C, Berger F, et al. Incidence, predictive factors, and outcome of lymphoma transformation in follicular lymphoma patients. J Clin Oncol. 1997;15(4):1587–94.
  6. Montoto S, Davies AJ, Matthews J, et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol. 2007;25(17):2426–33. doi: 10.1200/jco.2006.09.3260.
  7. Montoto, S., Fitzgibbon J. Transformation of indolent B-cell lymphomas. J Clin Oncol. 2011;29(4):1827–34. doi: 10.1200/JCO.2010.32.7577.
  8. Hirt C, Weitmann K, Schuler F, et al. Circulating t(14;18)-positive cells in healthy individuals: association with age and sex but not with smoking. Leuk Lymphoma. 2013;54(12):2678–84. doi: 10.3109/10428194.2013.788177.
  9. Weigert O, Kopp N, Lane AA, et al. Molecular ontogeny of donor derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer Discov. 2012;2(1):47–55. doi: 10.1158/2159-8290.cd-11-0208.
  10. Leich E, Salaverria I, Bea S, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114(4):826–34. doi: 10.1182/blood-2009-01-198580.
  11. Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122(10):3424–31. doi: 10.1172/jci63186.
  12. Katzenberger T, Kalla J, Leich E, et al. A distinctive subtype of t(14;18)-negative nodal follicular non- Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113(5):1053–61. doi: 10.1182/blood-2008-07-168682.
  13. Pasqualucci L, Khiabanian H, Fangazio M, et al. Genetics of Follicular Lymphoma Transformation. Cell Reports. 2014;6(1):130–40. doi: 10.1016/j.celrep.2013.12.027.
  14. Bouska A, McKeithan TW, Deffenbacher KE, et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood. 2014;123(11):1681–90. doi: 10.1182/blood-2013-05-500595.
  15. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64. doi: 10.1182/blood.v99.6.1959.
  16. Swerdlow SH. Pediatric follicular lymphomas, marginal zone lymphomas, and marginal zone hyperplasia. Am J Clin Pathol. 2004;122(Suppl 1):S98–S109. doi: 10.1309/4bknake4d7ct3c1b.
  17. Oschlies I, Salaverria I, Mahn F, et al. Pediatric follicular lymphoma—a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin’s Lymphoma—Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95(2):253–9. doi: 10.3324/haematol.2009.013177.
  18. Liu Q, Salaverria I, Pittaluga S, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37(3):333–43. doi: 10.1097/pas.0b013e31826b9b57.
  19. Louissaint A, Ackerman A, Dias-Santagata D, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120(12):2395–404. doi: 10.1182/blood-2012-05-429514.
  20. Guo Y, Karube K, Kawano R, et al. Low-grade follicular lymphoma with t(14;18) presents a homogeneous disease entity otherwise the rest comprises minor groups of heterogeneous disease entities with Bcl2 amplification, Bcl6 translocation or other gene aberrances. Leukemia. 2005;19(6):1058–63. doi: 10.1038/sj.leu.2403738.
  21. Katzenberger T, Ott G, Klein T, et al. Cytogenetic alterations affecting BCL6 are predominantly found in follicular lymphomas grade 3B with a diffuse large B-cell component. Am J Pathol. 2004;165(2):481–90. doi: 10.1016/s0002-9440(10)63313-5.
  22. Salaverria I, Siebert R. Follicular lymphoma grade 3B. Best Pract Res Clin Haematol. 2011;24(2):111–9. doi: 10.1016/j.beha.2011.02.002.
  23. Ngan BY, Chen-Levy Z, Weiss LM, et al. Expression in non- Hodgkin lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med. 1988;318(25):1638–44. doi: 10.1056/nejm198806233182502.
  24. Adam P, Baumann R, Schmidt J, et al. The BCL2 E17 and SP66 antibodies discriminate 2 immunophenotypically and genetically distinct subgroups of conventionally BCL2-“negative” grade 1/2 follicular lymphomas. Hum Pathol. 2014;44(9):1817–26. doi: 10.1016/j.humpath.2013.02.004.
  25. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64. doi: 10.1182/blood.v99.6.1959.
  26. Willis SN, Good-Jacobson KL, Curtis J, et al. Transcription Factor IRF4 Regulates Germinal Center Cell Formation through a B Cell–Intrinsic Mechanism. J Immunol. 2014;192(7):3200–6. doi: 10.4049/jimmunol.1303216.
  27. Karube K, Guo Y, Suzumiya J, et al. CD10- MUM1+ follicular lymphoma lacks BCL2 gene translocation and shows characteristic biologic and clinical features. Blood. 2007;109(7):3076–9. doi: 10.1182/blood-2006-09-045989.
  28. Sweetenham JW, Goldman B, LeBlanc ML, et al. Prognostic value of regulatory T cells, lymphoma-associated macrophages, and MUM-1 expression in follicular lymphoma treated before and after the introduction of monoclonal antibody therapy: a Southwest Oncology Group Study. Ann Oncol. 2010;21(6):1196–202. doi: 10.1093/annonc/mdp460.
  29. Xerri L, Bachy E, Fabiani B, et al; LYSA study. Identification of MUM1 as a prognostic immunohistochemical marker in follicular lymphoma using computerized image analysis. Hum Pathol. 2014;45(10):2085–93. doi: 10.1016/j.humpath.2014.06.019.
  30. Salaverria I, Philipp C, Oschlies I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47. doi: 10.1182/blood-2011-01-330795.
  31. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.
  32. Quintanilla-Martinez L, Sander B, Chan JK, et al. Indolent lymphomas in the pediatric population: follicular lymphoma, IRF4/MUM1+ lymphoma, nodal marginal zone lymphoma and chronic lymphocytic leukemia. Virchows Arch. 2016;468(2):141–57. doi: 10.1007/s00428-015-1855-z.
  33. Jaffe ES. Follicular lymphomas: a tapestry of common and contrasting threads. Haematologica. 2013;98(8):1163–5. doi: 10.3324/haematol.2013.086678.
  34. Martin-Guerrero I, Salaverria I, Burkhardt B, et al. Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas. Haematologica 2013;98(8):1237–41. doi: 10.3324/haematol.2012.073916.
  35. Launay E, Pangault C, Bertrand P, et al. High rate of TNFRSF14 gene alterations related to 1p36 region in de novo follicular lymphoma and impact on prognosis. Leukemia. 2012;26(3):559–62. doi: 10.1038/leu.2011.266.

 

 

Патоморфологическая диагностика диффузной мелкоклеточной В-клеточной лимфомы красной пульпы селезенки

А.М. Ковригина, С.М. Коржова, Л.С. Аль-Ради, У.Л. Джулакян, Б.В. Бидерман, И.А. Якутик, А.Б. Судариков

ФГБУ «Гематологический научный центр» Минздрава России, Новый Зыковский пр-д, д. 4a, Москва, Российская Федерация, 125167

Для переписки: Алла Михайловна Ковригина, д-р биол. наук, профессор, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

Для цитирования: Ковригина А.М., Коржова С.М., Аль-Ради Л.С. и др. Патоморфологическая диагностика диффузной мелкоклеточной В-клеточной лимфомы красной пульпы селезенки. Клиническая онкогематология. 2016;9(3):287-95.

DOI: 10.21320/2500-2139-2016-9-3-287-295


РЕФЕРАТ

Актуальность. В-клеточная лимфома селезенки неклассифицируемая — редкая и малоизученная нозологическая форма, впервые введенная в классификацию ВОЗ опухолей кроветворной и лимфоидной тканей в 2008 г. Эта форма лимфомы предполагает проведение дифференциальной диагностики между вариантным волосатоклеточным лейкозом (ВКЛ) и диффузной мелкоклеточной В-клеточной лимфомой красной пульпы селезенки (ДЛКПС).

Цель. Разработать критерии диагностики ДЛКПС путем сопоставления трепанобиоптатов костного мозга и операционного материала селезенки.

Методы. В патологоанатомическом отделении ГНЦ МЗ РФ проведено сопоставление трепанобиоптатов костного мозга и операционного материала селезенки (2013–2015 гг.) у 71 пациента (мужчины/женщины 1:2,6, возрастной диапазон 44–81 год, медиана 58 лет) с использованием морфологического и расширенного иммуногистохимического исследования. В целях анализа мутационного статуса IgHV и выявления мутаций MAP2K1, NOTCH, BRAF использован метод секвенирования по Сэнгеру, а также ПЦР-исследование. У 5 пациентов на образцах операционного материала селезенки проведено молекулярное исследование.

Результаты. У 5 (7 %) из 71 пациента установлен диагноз ДЛКПС. В двух группах пациентов (с нормальным и высоким числом лейкоцитов) в ткани селезенки морфологическая картина была сходной с опухолевым субстратом ВКЛ. При иммуногистохимическом исследовании во всех случаях отмечалась мономорфная экспрессия опухолевыми клетками CD20, DBA.44 при вариабельности экспрессии CD11c, TRAP, CD103, CD123. Ни в одном из 5 наблюдений не выявлено экспрессии CD25, CD27, Cyclin D1, Annexin-1. В костном мозге в отличие от ВКЛ и его вариантной формы отмечалась преимущественно интерстициально-внутрисосудистая скудная CD20+ лимфоидная инфильтрация (4 из 5 случаев) без различимых ядрышек в ядрах небольших лимфоидных клеток. В 1 наблюдении лимфоидная инфильтрация носила смешанный характер — CD20+ мелкоочагово-интерстициальная с внутрисосудистым компонентом. Устойчивых молекулярных мутаций в исследованных образцах ткани селезенки не обнаружено.

Заключение. ДЛКПС составляет 7 % всех В-клеточных лимфом селезенки, является редкой нозологической формой, верификация которой требует комплексного подхода с учетом клинико-лабораторных данных, результатов проточной цитометрии, цитологического, морфологического, расширенного иммуногистохимического и молекулярно-биологического исследований.


Ключевые слова: иммуногистохимия, диффузная мелкоклеточная В-клеточная лимфома красной пульпы селезенки, спленэктомия, биопсия костного мозга.

Получено: 28 апреля 2016 г.

Принято в печать: 29 апреля 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Kanellis G, Mollejo M, Montes-Moreno S, et al. Splenic diffuse red pulp small B-cell lymphoma: revision of a series of cases reveals characteristic clinico-pathological features. Haematologica. 2010;95(7):1122–9. doi: 10.3324/haematol.2009.013714.
  2. Traverse-Glehen A, Baseggio L, Callet-Bauchu E, et al. Hairy cell leukaemia-variant and splenic red pulp lymphoma: a single entity? Br J Haematol. 2010;150:113–5. doi: 10.1111/j.1365-2141.2010.08153.x.
  3. Raess PW, Mintzer D, Husson M, Nakashima MO. BRAF V600E is also seen in unclassifiable splenic B-cell lymphoma/leukemia, a potential mimic of hairy cell leukemia. Blood. 2013;122(17):84–5. doi: 10.1182/blood-2013-07-513523.
  4. Jain P, Pemmaraju N, Ravandi F. Update on the Biology and Treatment Options for Hairy Cell Leukemia. Curr Treat Opt Oncol. 2014;15(2):187–209. doi: 10.1007/s11864-014-0285-5.
  5. Naresh K. Grey zone lymphoid neoplasms with features overlapping between splenic marginal zone lymphoma and hairy cell leukaemia: splenic B-cell lymphoma/leukaemia, unclassifiable. J Haematopathol. 2011;4(2):93–100. doi: 10.1007/s12308-011-0092-x.
  6. Mollejo M, Algara P, Mateo MS, et al. Splenic small B-cell lymphoma with predominant red pulp involvement: a diffuse variant of splenic marginal zone lymphoma? Histopathology. 2002;40(1):22–30. doi: 10.1046/j.1365-2559.2002.01314.x.
  7. Traverse-Glehen A, Baseggio L, Bauchu EC, et al. Splenic red pulp lymphoma with numerous basophilic villous lymphocytes: a distinct clinicopathologic and molecular entity? Blood. 2008;111(4):2253–60. doi: 10.1182/blood-2007-07-098848.
  8. Behdad A, Bailey NG. Diagnosis of Splenic B-Cell Lymphomas in the Bone Marrow. Arch Pathol Lab Med. 2014;138(10):1295–301. doi: 10.5858/arpa.2014-0291-cc.
  9. Tiacci E, Trifonov V, Schiavoni G, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15. doi: 10.1056/nejmoa1014209.
  10. Xi L, Arons E, Navarro W, et al. Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood. 2012;119(14):3330–2. doi: 10.1182/blood-2011-09-379339.
  11. Bikos V, Darzentas N, Hadzidimitriou A, et al. Over 30% of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications. Leukemia. 2012;26(7):1638–46. doi: 10.1038/leu.2012.3.
  12. Якутик И.А., Аль-Ради Л.С., Бидерман Б.В. и др. Применение аллель-специфичной ПЦР-РВ для определения мутации B-RAF V600E у больных волосатоклеточным лейкозом. Гематология и трансфузиология 2014;59(2):16–9.
    [Yakutik IA, Al-Radi LS, Biderman BV, et al. Detection of В-RAF V600E mutation in patients with hairy cell leukemia by allele-specific RT-PCR. Gematologiya i transfuziologiya. 2014;59(2):16–9. (In Russ)]
  13. Якутик И.А., Аль-Ради Л.С., Джулакян У.Л. и др. Мутации в генах BRAF и MAP2K1 при волосатоклеточном лейкозе и селезеночной В-клеточной лимфоме из клеток маргинальной зоны. Онкогематология. 2016;11(1):34–6. doi: 10.17650/1818-8346-2016-11-1-34-36.
    [Yakutik IA, Al’-Radi LS, Julhakyan HL, et al. BRAF and MAP2K1 mutations in hairy cell leukemia and splenic marginal zone B-cell lymphoma. Oncohematology. 2016;11(1):34–6. doi: 10.17650/1818-8346-2016-11-1-34-36. (In Russ)]
  14. Бидерман Б.В., Никитин Е.А., Сергиенко Т.Ф. и др. Репертуар генов тяжелой цепи иммуноглобулинов при В-клеточном хроническом лимфолейкозе в России и Беларуси. Онкогематология. 2012;7(3):38–42.
    [Biderman BV, Nikitin EA, Sergienko TF, et al. The repertoire of heavy chain immunoglobulin genes in B-cell chronic lymphocytic leukemia in Russia and Belarus. Onkogematologiya. 2012;7(3):38–42. (In Russ)]
  15. Waterfall JJ, Arons E, Walker RL, et al. High prevalence of MAP2K1 mutations in variant and IGHV4-34–expressing hairy-cell leukemias. Nat Genet. 2014;46(1):8–10. doi: 10.1038/ng.2828.
  16. Martinez D, Navarro A, Martinez-Trillos A, et al. NOTCH1, TP53, and MAP2K1 Mutations in Splenic Diffuse Red Pulp Small B-cell Lymphoma Are Associated With Progressive Disease. Am J Surg Pathol. 2016;40(2):192–201. doi: 10.1097/pas.0000000000000523.
  17. Hockley SL, Giannouli S, Morilla A, et al. Insight into the molecular pathogenesis of hairy cell leukaemia, hairy cell leukaemia variant and splenic marginal zone lymphoma, provided by the analysis of their IGH rearrangements and somatic hypermutation patterns. Br J Haematol. 2010;148(4):666–9. doi: 10.1111/j.1365-2141.2009.07962.x.
  18. Navarro A, Clot G, Royo C, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 2012;72(20):5307–16. doi: 10.1158/0008-5472.can-12-1615.
  19. Джулакян У.Л., Бидерман Б.В., Гемджян Э.Г. и др. Молекулярный анализ генов иммуноглобулина в опухолевых В-клетках при лимфоме селезенки из клеток маргинальной зоны. Терапевтический архив. 2015;87(7):58–63.
    [Julakyan UL, Biderman BV, Gemdzhian EG, et al. Molecular analysis of immunoglobulin genes in the tumor B cells in splenic marginal zone lymphoma. Terapevticheskii arkhiv. 2015;87(7):58–63. (In Russ)]
  20. El-Habr EA, Levidou G, Trigka E-A, et al. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch. 2014;465:473–85. doi: 10.1007/s00428-014-1641-3.

Экспрессия белков MYC и BCL2 у больных диффузной В-крупноклеточной лимфомой

Мисюрина А.Е. 1, Ковригина А.М.1, Барях Е.А.1, Мисюрин В.А. 2, Кравченко С.К.1,  Куликов С.М.1,  Гемджян Э.Г.1, Обухова Т.Н. 1, Копылов А.Н. 2, Магомедова А.У. 1, Воробьев А.И. 1

1 ФГБУ «Гематологический научный центр» МЗ РФ, Новый Зыковский пр-д., д. 4а, Москва, Российская Федерация, 125167

2 ФГБНУ «Российский онкологический научный центр им. Н.Н. Блохина», Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Анна Евгеньевна Мисюрина, Новый Зыковский пр-д., д. 4а, Москва, Российская Федерация, 125167; тел.: +7(909)637-32-49; e-mail: anna.lukina1@gmail.com

Для цитирования: Мисюрина А.Е., Ковригина А.М., Барях Е.А. и др. Экспрессия белков MYC и BCL2 у больных диффузной В-крупноклеточной лимфомой. Клиническая онкогематология. 2015;8(1):44–53.


РЕФЕРАТ

Цель. Анализ частоты и роли экспрессии белков MYC и BCL2 у больных диффузной В-крупноклеточной лимфомой (ДВКЛ), сопоставление результатов гистологического, иммуногистохимического, генетического и молекулярно-биологического исследований с клиническими характеристиками.

Методы. В исследование включено 62 пациента с подтвержденным диагнозом ДВКЛ, получавших лечение в ФГБУ «Гематологический научный центр» МЗ РФ по оригинальному модифицированному протоколу m-NHL-BFM-90 ± R. Контрольную группу составили 13 больных ДВКЛ, которым лечение проводилось по СНОР-подобным программам ± R. Во всех наблюдениях гистологическое и иммуногистохимическое исследования проводились на архивном материале биопсии фрагмента опухолевой ткани или лимфатического узла (парафиновые блоки) с использованием антител к BCL2 (клон 124, Dako), MYC (клон Y69, Epitomics). На основании алгоритма C.P. Hans (2004) был установлен GCB или non-GCB иммуногистохимический подтип ДВКЛ. В работе проводились стандартные цитогенетические исследования (n = 22), FISH (n = 52) для выявления перестройки локуса гена с-MYC, гена IgH, t(8;14)(q24;q32), гена BCL2, t(14;18)(q32;q21) и количественная ПЦР в реальном времени на парафиновых блоках биоптата опухоли/лимфатического узла с целью определить количество мРНК генов с-MYC и BCL2 (n = 18).

Результаты. Экспрессия MYC выявлена у 24 (39 %) из 62 больных ДВКЛ, BCL2 — у 36 (58 %) из 62 (пороговые значения 40 и 50 % опухолевых клеток соответственно). Коэкспрессия MYC/BCL2 обнаружена у 15 (24 %) из 62 больных ДВКЛ. У 4 (27 %) из 15 пациентов с коэкспрессией MYC/BCL2 установлен GCB-подтип ДВКЛ, у 73 % человек с коэкспрессией указанных выше белков диагностирован non-GCB-подтип ДВКЛ (< 0,02). Перестройка гена с-MYC установлена у 2 (3 %) больных, у одного из них уровень экспрессии белка MYC составлял более 40 %. У 10 (19 %) пациентов выявлен один или более дополнительный сигнал от локуса 8q24 гена с-MYC. Мы не обнаружили корреляции между наличием дополнительных сигналов от гена с-MYC и уровнем иммуногистохимической экспрессии белка MYC ³ 40 % (< 0,05). Перестройка гена BCL2 определена в 1 случае, что сопровождалось иммуногистохимической экспрессией BCL2 ³ 50 %. Амплификация BCL2 наблюдалась у 17 (40 %) больных. Выявлена корреляция между амплификацией гена BCL2 и экспрессией белка BCL2 при иммуногистохимическом исследовании (пороговое значение 50 % положительных клеток и более) (= 0,0053). Наблюдалась прямая связь между количеством мРНК и белка MYC (коэффициент корреляции 0,86; < 0,0001). Не было обнаружено корреляции между уровнем экспрессии гена BCL2 и количеством белка (коэффициент корреляции составил 0,14; = 0,57). Общая 4-летняя выживаемость в группе больных, которым проводилось лечение по протоколу m-NHL-BFM-90 ± R, без коэкспрессии MYC и BCL2 составила 71 vs 57 % в группе c коэкспрессией MYC/BCL2 (= 0,39). Вероятность развития рецидивов/прогрессирования у больных ДВКЛ c коэкспрессией MYC/BCL2 статистически значимо выше, чем в группе без коэкспрессии (65 vs 15 %; = 0,0029).

Выводы. Коэкспрессия MYC/BCL2 встречается преимущественно у пациентов с ДВКЛ иммуногистохимического подтипа non-GCB. У больных ДВКЛ, получающих интенсивную химиотерапию по протоколу m-NHL-BFM-90 ± R, коэкспрессия MYC/BCL2 имеет прогностическое значение в отношении риска развития рецидивов/прогрессирования заболевания. Учитывая более стабильную структуру белкового субстрата, полученные в работе данные могут служить основанием для разработки диагностического иммуногистохимического алгоритма стратификации пациентов с ДВКЛ.


Ключевые слова: ДВКЛ, интенсивная терапия, коэкспрессия MYC/BCL2, иммуногистохимия, фактор неблагоприятного прогноза.

Получено: 8 ноября 2014 г.

Принято в печать: 11 ноября 2014 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  2. A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329(14):987–94.
  3. Frick M, Dorken B, Lenz G. New insights into the biology of molecular subtypes of diffuse large B-cell lymphoma and Burkitt lymphoma. Best Pract Res Clin Haematol. 2012;25(1):3–12. doi: 10.1016/j.beha.2012.01.003.
  4. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.
  5. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47. doi: 10.1056/nejmoa012914.
  6. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8(1):68–74. doi: 10.1038/nm0102-68.
  7. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313–23. doi: 10.1056/nejmoa0802885.
  8. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  9. Savage KJ, Monti S, Kutok JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102(12):3871–9. doi: 10.1007/s00795-013-0038-8.
  10. Wright G, Tan B, Rosenwald A, et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA. 2003;100(17):9991–6. doi: 10.1073/pnas.1732008100.
  11. Мисюрина А.Е., Мисюрин В.А., Барях Е.А и др. Роль экспрессии c-MYC, BCL-2, BCL-6 в патогенезе диффузной В-крупноклеточной лимфомы. Клиническая онкогематология. 2014;7(4):512–21.
    [Misyurina AE, Misyurin VA, Baryakh EA, et al. Role of c-MYC, BCL-2, and BCL-6 expression in pathogenesis of diffuse large B-cell lymphoma. Klinicheskaya onkogematologiya. 2014;7(4):512–21. (In Russ)]
  12. Savage KJ, Johnson NA, Ben-Neriah S, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114(17):3533–7. doi: 10.1182/blood-2009-05-220095.
  13. Horn H, Ziepert M, Becher C, et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 2013;121(12):2253–63. doi: 10.1182/blood-2012-06-435842.
  14. Barrans S, Crouch S, Smith A, et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol. 2010;28(20):3360–5. doi: 10.1200/jco.2009.26.3947.
  15. Iqbal J, Sanger WG, Horsman DE, et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol. 2004;165(1):159–66. doi: 10.1016/s0002-9440(10)63284-1.
  16. Ohno H, Fukuhara S. Significance of rearrangement of the BCL6 gene in B-cell lymphoid neoplasms. Leuk Lymphoma. 1997;27(1–2):53–63. doi: 10.3109/10428199709068271.
  17. Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96(3):808–22.
  18. Hu S, Xu-Monette ZY, Tzankov A, et al. MYC/BCL2 protein co-expression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2013;121(20):4021–31. doi: 10.1182/blood-2012-10-460063.
  19. Green TM, Young KH, Visco C, et al. Immunohistochemical Double-Hit Score Is a Strong Predictor of Outcome in Patients With Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J Clin Oncol. 2012;30(28):3460–7. doi: 10.1200/jco.2011.41.4342.
  20. Johnson NA, Slack GW, Savage K, et al. Concurrent Expression of MYC and BCL2 in Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J Clin Oncol. 2012;30(28):3452–9. doi: 10.1200/jco.2011.41.0985.
  21. Valera A, Lopez-Guillermo A, Cardesa-Salzmann T. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica. 2013;98(10):1554–62. doi: 10.3324/haematol.2013.086173.
  22. Магомедова А.У., Кравченко С.К., Кременецкая AM. и др. Модифицированная программа NHL-BFM-90 в лечении больных диффузной В-крупноклеточной лимфосаркомой. Терапевтический архив. 2006;10:44–7.
    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. Modified NHL-BFM-90 protocol in treatment of diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2006;10:44–7. (In Russ)]
  23. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82. doi: 10.1182/blood-2003-05-1545.
  24. Green TM, Nielsen O, de Stricker K, et al. High levels of nuclear MYC protein predict the presence of MYC rearrangement in diffuse large B-cell lymphoma. Am J Surg Pathol. 2012;36(4):612–9. doi: 10.1097/pas.0b013e318244e2ba.
  25. Cook JR, Goldman B, Tubbs RR. Clinical significance of MYC expression and/or “high-grade” morphology in non-Burkitt, diffuse aggressive B-cell lymphomas: a SWOG S9704 correlative study. Am J Surg Pathol. 2014;38(4):494–501. doi: 10.1097/PAS.0000000000000147.
  26. Leucci E, Cocco M, Onnis A, et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol. 2008;216(4):440–50. doi: 10.1002/path.2410.
  27. Onnis A, De Falco G, Antonicelli G, et al. Аlteration of microRNAs regulated by c-MYC in Burkitt lymphoma. PLoS One. 2010;5(9);e12960. doi: 10.1371/journal.pone.0012960.
  28. Kluin PM. Origin And Migration of Follicular Lymphoma Cells. Haematologica. 2013;98(9):1331–3. doi: 10.3324/haematol.2013.091546.
  29. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14(8):475–88. doi: 10.1038/nrm3611.
  30. Мангасарова Я.К., Мисюрин А.В., Магомедова А.У. и др. Молекулярная диагностика первичной медиастинальной В-клеточной лимфомы и диффузной В-крупноклеточной лимфомы с первичным вовлечением лимфоузлов средостения. Клиническая онкогематология. 2011;4(2):142–5.
    [Mangasarova YaK, Misyurin AV, Magomedova AU, et al. Molecular diagnostics of primary mediastinal B-cell lymphoma and diffuse large B-cell lymphoma with primary involvement of mediastinal lymph nodes. Klinicheskaya onkogematologiya. 2011;4(2):142–5. (In Russ)]
  31. Liu Y, Hernandez AM, Shibata D, Cortopassi GA. BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA. 1994;91(19):8910–4. doi: 10.1073/pnas.91.19.8910.
  32. Harries LW, Hernandez D, Henley W. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011;10(5):868–78. doi: 10.1111/j.1474-9726.2011.00726.x.
  33. Dunleavy K, Pittaluga S, Shovlin M. Concurrent Expression Of MYC/BCL2 Protein In Newly Diagnosed DLBCL Is Not Associated With An Inferior Survival Following EPOCH-R Therapy. Blood. 2013;122(21):3029.