Современный взгляд на патогенез, диагностику и лечение отдельных редких вариантов острых лейкозов

О.Ю. Баранова, А.Д. Ширин

ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Ольга Юрьевна Баранова, канд. мед. наук, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(925)837-27-08; e-mail: baranova-crc@mail.ru

Для цитирования: Баранова О.Ю., Ширин А.Д. Современный взгляд на патогенез, диагностику и лечение отдельных редких вариантов острых лейкозов. Клиническая онкогематология. 2022;15(4):307–26.

DOI: 10.21320/2500-2139-2022-15-4-307-326


РЕФЕРАТ

Фундаментальные открытия в области иммунобиологии нормального кроветворения, формирование современных представлений о механизмах злокачественного роста наряду с совершенствованием диагностических возможностей позволили принципиально изменить представления о лейкозологии как одном из важных самостоятельных направлений в современной клинической онкогематологии. К настоящему времени разработана детальная молекулярно-генетическая классификация острых лейкозов, которая продолжает дополняться новыми вариантами болезни. Выделены новые категории острых лейкозов и опухолей из клеток-предшественниц. Вместе с тем многие вопросы патогенеза, классификации отдельных вариантов этого гетерогенного заболевания остаются открытыми и требуют дальнейшего изучения. В настоящем обзоре дан всесторонний анализ отдельных редких вариантов острых лейкозов, представляющих наибольшие сложности с точки зрения патогенеза, диагностики и выбора лечебных подходов.

Ключевые слова: редкие варианты острых лейкозов, опухоль из бластных плазмоцитоидных дендритных клеток, лимфобластный лейкоз из ранних Т-клеточных предшественников, острые лейкозы неопределенной линии дифференцировки, истинный эритроидный лейкоз, переключение линейности.

Получено: 2 июня 2022 г.

Принято в печать: 1 сентября 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Воробьев А.И., Дризе Н.И., Чертков И.Л. Схема кроветворения: 2005. Терапевтический архив. 2006;78(7):5–12.
    [Vorob’ev AI, Drize NI, Chertkov IL. Diagram of hematopoiesis: 2005. Terapevticheskii arkhiv. 2006;78(7):5–12. (In Russ)]
  2. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16(1):395–419. doi: 10.1146/annurev.immunol.16.1.395.
  3. Ashkenazi A, Dixit VM. Death Receptors: Signaling and Modulation. Science. 1998;281(5381):1305–8. doi: 10.1126/science.281.5381.1305.
  4. Domen J, Weissman I. Hematopoietic Stem Cells Need Two Signals to Prevent Apoptosis; Bcl-2 Can Provide One of These, Kitl/C-KIT Signaling the Other. J Exp Med. 2000;192(12):1707–18. doi: 1084/jem.192.12.1707.
  5. Akashi K, He X, Chen J, et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood. 2003;101(2):383–9. doi: 10.1182/blood-2002-06-1780.
  6. Фрадкин В. Перепрограммирование живых клеток: новые успехи [электронный документ]. Доступно по: https://www.dw.com/ru/%D0%BF%D0%B5%D1%80%D0%B5%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5-%D0%B6%D0%B8%D0%B2%D1%8B%D1%85-%D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D0%BA-%D0%BD%D0%BE%D0%B2%D1%8B%D0%B5-%D1%83%D1%81%D0%BF%D0%B5%D1%85%D0%B8/a-15194138. Ссылка активна на 02.06.2022.
    [Fradkin V. Reprogramming of living cells: new achievements (Internet). Available from: https://www.dw.com/ru/%D0%BF%D0%B5%D1%80%D0%B5%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5-%D0%B6%D0%B8%D0%B2%D1%8B%D1%85-%D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D0%BA-%D0%BD%D0%BE%D0%B2%D1%8B%D0%B5-%D1%83%D1%81%D0%BF%D0%B5%D1%85%D0%B8/a-15194138. Accessed 06.2022. (In Russ)]
  7. Копнин Б.П. Современные представления о механизмах злокачественного роста: сходства и различия солидных опухолей и лейкозов. Клиническая онкогематология. 2012;5(3):165–83.
    [Kopnin BP. Modern concepts of the mechanisms of tumor growth: similarities and differences between solid tumors and leukemia. Klinicheskaya onkogematologiya. 2012;5(3):165–83. (In Russ)]
  8. Киселевский М.В., Самойленко И.В., Жаркова О.В. и др. Прогностические биомаркеры эффективности иммунотерапии злокачественных новообразований ингибиторами контрольных точек иммунного ответа. Российский журнал детской гематологии и онкологии. 2021;8(2):73–83. doi: 10.21682/2311-1267-2021-8-2-73-83.
    [Kiselevskii MV, Samoilenko IV, Zharkova OV, et al. Predictive biomarkers of inhibitors immune checkpoints therapy in malignant tumors. Russian Journal of Pediatric Hematology and Oncology. 2021;8(2):73–83. doi: 10.21682/2311-1267-2021-8-2-73-83. (In Russ)]
  9. Voelkerding KV, Dames SA, Durtschi JD. Next-generation Sequencing: From Basic Research to Diagnostics. Clin Chem. 2009;55(4):641–8. doi: 10.1373/clinchem.2008.112789.
  10. Ansorge WJ. Next-generation DNA sequencing techniques. New Biotechnol. 2009;25(4):195–203. doi: 10.1016/j.nbt.2008.12.009.
  11. Kchouk M, Gibrat JF, Elloumi M. Generations of Sequencing Technologies: From First to Next Generation. Biol Med. 2017;9(03). doi: 10.4172/0974-8369.1000395.
  12. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. doi: 10.1056/NEJMoa1516192.
  13. Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol. 2011;136(4):527–39. doi: 10.1309/ajcpr1svt1vhugxw.
  14. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the Classification of the Acute Leukaemias. Br J Haematol. 1976;33(4):451–8. doi: 10.1111/j.1365-2141.1976.tb03563.x.
  15. Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103(4):620–5. doi: 10.7326/0003-4819-103-4-620.
  16. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51(2):189–99. doi: 10.1111/j.1365-2141.1982.tb02771.x.
  17. Bennett JM, Catovsky D, Daniel MT, et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-M0). Br J Haematol. 1991;78(3):325–9. doi: 10.1111/j.1365-2141.1991.tb04444.x.
  18. Jaffe ES, Harris NL, Stein H, et al, eds. Pathology and Genetics: Tumours of Haematopoietic and Lymphoid Tissues (WHO Classification of Tumours). Lyon: IARC Press; 2001.
  19. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. 4th edition. Lyon: WHO Press; 2008.
  20. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press;
  21. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56. doi: 10.1016/S1470-2045(08)70314-0.
  22. Neumann M, Heesch S, Schlee C, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121(23):4749–52. doi: 10.1182/blood-2012-11-465138.
  23. Neumann M, Coskun E, Fransecky L, et al. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors. PLoS One. 2013;8(1):e53190. doi: 10.1371/journal.pone.0053190.
  24. Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63. doi: 10.1038/nature10725.
  25. Di Guglielmo G. Le Maltase Eritremiche Ed Eritroleucemiche. II Pensiero Scientifico. Haematologica. 1928;9:301–47.
  26. Boddu P, Benton CB, Wang W, et al. Erythroleukemia – Historical perspectives and recent advances in diagnosis and management. Blood Rev. 2018;32(2):96–105. doi: 10.1016/j.blre.2017.09.002.
  27. Liu W, Hasserjian RP, Hu Y, et al. Pure erythroid leukemia: a reassessment of the entity using the 2008 World Health Organization classification. Mod Pathol. 2010;24(3):375–83. doi: 10.1038/modpathol.2010.194.
  28. Grossmann V, Bacher U, Haferlach C, et al. Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics. Leukemia. 2013;27(9):1940–3. doi: 10.1038/leu.2013.144.
  29. Lessard M, Struski S, Leymarie V, et al. Cytogenetic study of 75 erythroleukemias. Cancer Genet Cytogenet. 2005;163(2):113–22. doi: 10.1016/j.cancergencyto.2005.05.006.
  30. Guillermo M, Benton C, Wang S, et al. More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood. 2017;129(18):2584–7. doi: 10.1182/blood-2016-11-749903.
  31. Almeida A, Prebet T, Itzykson R, et al. Clinical Outcomes of 217 Patients with Acute Erythroleukemia According to Treatment Type and Line: A Retrospective Multinational Study. Int J Mol Sci. 2017;18(4):837. doi: 10.3390/ijms18040837.
  32. Taylor J, Kim SS, Stevenson KE, et al. Loss-Of-Function Mutations In The Splicing Factor ZRSR2 Are Common In Blastic Plasmacytoid Dendritic Cell Neoplasm and Have Male Predominance. Blood. 2013;122(21):741. doi: 10.1182/blood.v122.21.741.741.
  33. Voelkl A, Flaig M, Roehnisch T, et al. Blastic plasmacytoid dendritic cell neoplasm with acute myeloid leukemia successfully treated to a remission currently of 26 months duration. Leuk Res. 2011;35(6):61–3. doi: 10.1016/j.leukres.2010.11.019.
  34. Facchetti F, Wolf-Peeters CD, Kennes C, et al. Leukemia-associated lymph node infiltrates of plasmacytoid monocytes (so-called plasmacytoid T-cells). Evidence for two distinct histological and immunophenotypical patterns. Am J Surg Pathol. 1990;14(2):101–12. doi: 10.1097/00000478-199002000-00001.
  35. Fitzgerald-Bocarsly P. Human natural interferon-alpha producing cells. Pharmacol Ther. 1993;60(1):39–62. doi: 10.1016/0163-7258(93)90021-5.
  36. Liu Y-J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors Annu Rev Immunol. 2005;23(1):275–306. doi: 10.1146/annurev.immunol.23.021704.115633.
  37. Colonna M, Trinchieri G, Liu Y-J. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5(12):1219–26. doi: 10.1038/ni1141.
  38. Gill MА, Bajwa G, George TA, et al. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol. 2010;184(11):5999–6006. doi: 10.4049/jimmunol.0901194.
  39. Shi Y, Wang E. Blastic Plasmacytoid Dendritic Cell Neoplasm: A Clinicopathologic Review. Arch Pathol Lab Med. 2014;138(4):564–9. doi: 10.5858/ 2013–0101-rs.
  40. Zheng YY, Chen G, Zhou XG, et al. Retrospective analysis of 4 cases of the so-called blastic NK-cell lymphoma, with reference to the 2008 WHO classification of tumors of haematopoietic and lymphoid tissues. Zhonghua Bing Li Xue Za Zhi. 2010;39(9):600–5.
  41. Takiuchi Y, Maruoka H, Aoki K, et al. Leukemic manifestation of blastic plasmacytoid dendritic cell neoplasm lacking skin lesion: a borderline case between acute monocytic leukemia. J Clin Exp Hematopathol. 2012;52(2):107–11. doi: 10.3960/jslrt.52.107.
  42. Petrella T, Comeau MR, Maynadie M, et al. Agranular CD4+ CD56+ hematodermic neoplasm’ (blastic NK-cell lymphoma) originates from a population of CD56+ precursor cells related to plasmacytoid monocytes. Am J Surg Pathol. 2002;26(7):852–62. doi: 10.1097/00000478-200207000-00003.
  43. Petrella T, Bagot M, Willemze R, et al. Blastic NK-cell lymphomas (agranular CD4+CD56+ hematodermic neoplasms). Am J Clin Pathol. 2005;123(5):662–75. doi: 10.1309/gjwnpd8hu5maj837.
  44. Garnache-Ottou F, Vidal C, Biichle S, et al. How should we diagnose and treat blastic plasmacytoid dendritic cell neoplasm patients. Blood Adv. 2019;3(24):4238–51. doi: 10.1182/bloodadvances.2019000647.
  45. Lucioni M, Novara F, Fiandrino G, et al. Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion. Blood. 2011;118(17):4591–4. doi: 10.1182/blood-2011-03-337501.
  46. Dijkman R, Doorn R, Szuhai K, et al. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood. 2007;109(4):1720–7. doi: 10.1182/blood-2006-04-018143.
  47. Sapienza MR, Fuligni F, Agostinelli C, et al. Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition. Leukemia. 2014;28(8):1606–16. doi: 10.1038/leu.2014.64.
  48. Menezes J, Acquadro F, Wiseman M, et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2014;28(4):823–9. doi: 10.1038/leu.2013.283.
  49. Stenzinger A, Endris V, Pfarr N, et al. Targeted ultra-deep sequencing reveals recurrent and mutually exclusive mutations of cancer genes in blastic plasmacytoid dendritic cell neoplasm. Oncotarget. 2014;5(15):6404–13. doi: 10.18632/oncotarget.2223.
  50. Cota C, Vale E, Viana I, et al. Cutaneous manifestations of blastic plasmacytoid dendritic cell neoplasm-morphologic and phenotypic variability in a series of 33 patients. Am J Surg Pathol. 2010;34(1):75–87. doi: 10.1097/PAS.0b013e3181c5e26b.
  51. Jacob MC, Chaperot L, Mossuz P, et al. CD4+ CD56+ lineage negative malignancies: a new entity developed from malignant early plasmacytoid dendritic cells. Haematologica. 2003;88(8):941–55.
  52. Julia F, Petrella T, Beylot-Barry M, et al. Blastic plasmacytoid dendritic cell neoplasm: clinical features in 90 patients. Br J Dermatol. 2013;169(3):579–86. doi: 10.1111/bjd.12412.
  53. Pagano L, Valentini CG, Pulsoni A, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica. 2013;98(2):239–46. doi: 10.3324/haematol.2012.072645.
  54. Trottier AM, Cerquozzi S, Owen CJ. Blastic plasmacytoid dendritic cell neoplasm: challenges and future prospects. Blood Lymphat Cancer. 2017;7:85–93. doi: 10.2147/blctt.s132060.
  55. Riaz W, Zhang L, Horna P, Sokol L. Blastic plasmacytoid dendritic cell neoplasm: update on molecular biology, diagnosis, and therapy. Cancer Control. 2014;21(4):279–89. doi: 10.1177/107327481402100404.
  56. Kharfan-Dabaja MA, Lazarus HM, Nishihori T, et al. Diagnostic and therapeutic advances in blastic plasmacytoid dendritic cell neoplasm: A focus on hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19(7):1006–12. doi: 10.1016/j.bbmt.2013.01.027.
  57. Gruson B, Vaida I, Merlusca L, et al. L-asparaginase with methotrexate and dexamethasone is an effective treatment combination in blastic plasmacytoid dendritic cell neoplasm. Br J Haematol. 2013;163(4):543–5. doi: 10.1111/bjh.12523.
  58. Gilis L, Lebras L, Bouafia-Sauvy F, et al. Sequential combination of high dose methotrexate and L-asparaginase followed by allogeneic transplant: A first-line strategy for CD4+/CD56+ hematodermic neoplasm. Leuk Lymphoma. 2012;53(8):1633–7. doi: 10.3109/10428194.2012.656627.
  59. Pagano L, Valentini CG, Pulsoni A, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: An Italian multicenter study. Haematologica. 2013;98(2):239–46. doi: 10.3324/haematol.2012.072645.
  60. Tsagarakis NJ, Kentrou NA, Papadimitriou K, et al. Acute lymphoplasmacytoid dendritic cell (DC2) leukemia: Results from the Hellenic Dendritic Cell Leukemia Study Group. Leuk Res. 2010;34(4):438–46. doi: 10.1016/j.leukres.2009.09.006.
  61. Deotare U, Yee KWL, Le LW, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: 10-Color flow cytometry diagnosis and HyperCVAD therapy: BPDCN Diagnosis and Therapy. Am J Hematol. 2016;91(3):283–6. doi: 10.1002/ajh.24258.
  62. Bekkenk MW, Jansen PM, Meijer CJLM, Willemze R. CD56+ hematological neoplasms presenting in the skin: A retrospective analysis of 23 new cases and 130 cases from the literature. Ann Oncol. 2004;15(7):1097–108. doi: 10.1093/annonc/mdh268.
  63. Khwaja R, Daly A, Wong M, et al. Azacitidine in the treatment of blastic plasmacytoid dendritic cell neoplasm: A report of 3 cases. Leuk Lymphoma. 2016;57(11):2720–2. doi: 10.3109/10428194.2016.1160084.
  64. Laribi K, Denizon N, Ghnaya, H, et al. Blastic plasmacytoid dendritic cell neoplasm: The first report of two cases treated by 5-azacytidine. Eur J Haematol. 2014;93(1):81–5. doi: 10.1111/ejh.12294.
  65. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. doi: 10.1182/blood-2018-08-868752.
  66. DiNardo CD, Rausch CR, Benton C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol. 2018;93(3):401–7. doi: 10.1002/ajh.25000.
  67. Agha ME, Monaghan SA, Swerdlow SH, et al. Venetoclax in a Patient with a Blastic Plasmacytoid Dendritic-Cell Neoplasm. N Engl J Med. 2018;379(15):1479–81. doi: 10.1056/NEJMc1808354.
  68. Pemmaraju N, Lane AA, Sweet K, et al. Results of pivotal phase 2 clinical trial of tagraxofusp (sl-401) in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). HemaSphere. 2019;3(S1):481. doi: 10.1097/01.hs9.0000562548.32991.bc.
  69. Dubois SG, Etzell JE, Matthay KK, et al. Pediatric acute blastic natural killer cell leukemia. Leuk Lymphoma. 2002;43(4):901–6. doi: 10.1080/10428190290017088.
  70. Hyakuna N, Toguchi S, Higa T, et al. Childhood blastic NK cell leukemia successfully treated with L-asparaginase and allogeneic bone marrow transplantation. Pediatr Blood Cancer. 2004;42(7):631–4. doi: 10.1002/pbc.20034.
  71. Liang X, Greffe B, Garrington T, Graham DK. Precursor natural killer cell leukemia. Pediatr Blood Cancer. 2008;50(4):876–8. doi: 10.1002/pbc.21189.
  72. Matano S, Nakamura S, Nakamura S, et al. Monomorphic agranular natural killer cell lymphoma/leukemia with no Epstein-Barr virus association. Acta Haematol. 1999;101(4):206–8. doi: 10.1159/000040955.
  73. Suzuki Y, Kato S, Kohno K, et al. Clinicopathological analysis of 46 cases with CD4+ and/or CD56+ immature haematolymphoid malignancy: reappraisal of blastic plasmacytoid dendritic cell and related neoplasms. 2017;71(6):972–84. doi: 10.1111/his.13340.
  74. Khoury JD. Blastic Plasmacytoid Dendritic Cell Neoplasm. Curr Hematol Malig Rep. 2018;13(6):477–83. doi: 10.1007/s11899-018-0489-z.
  75. Julia F, Dalle S, Duru G, et al. Blastic plasmacytoid dendritic cell neoplasms: clinico-immunohistochemical correlations in a series of 91 patients. Am J Surg Pathol. 2014;38(5):673–80. doi: 10.1097/pas.0000000000000156.
  76. Massone C, Chott A, Metze D, et al. Subcutaneous, blastic natural killer (NK), NK/T-cell, and other cytotoxic lymphomas of the skin: a morphologic, immunophenotypic, and molecular study of 50 patients. Am J Surg Pathol. 2004;28(6):719–35. doi: 10.1097/01.pas.0000126719.71954.4f.
  77. Santucci M, Pimpinelli N, Massi D, et al. Cytotoxic/natural killer cell cutaneous lymphomas. Report of EORTC Cutaneous Lymphoma Task Force Workshop. Cancer. 2003;97(3):610–27. doi: 10.1002/cncr.11107.
  78. Sanchez MJ, Muench MO, Roncarolo MG, et al. Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med. 1994;180(2):569–76. doi: 10.1084/jem.180.2.569.
  79. Oshimi K. Progress in understanding and managing natural killer-cell malignancies. Br J Haematol. 2007;139(4):532–44. doi: 10.1111/j.1365-2141.2007.06835.x.
  80. Grzywacz B, Kataria N, Kataria N, et al. Natural killer-cell differentiation by myeloid progenitors. Blood. 2011;117(13):3548–58. doi: 10.1182/blood-2010-04-281394.
  81. Suzuki R, Nakamura S, Suzumiya J, et al. Blastic natural killer cell lymphoma/leukemia (CD56-positive blastic tumor). Cancer. 2005;104(5):1022–31. doi: 10.1002/cncr.21268.
  82. Sedick Q, Alotaibi S, Alshieban S, et al. Natural Killer Cell Lymphoblastic Leukaemia/Lymphoma: Case Report and Review of the Recent Literature. Case Rep Oncol. 2017;10(2):588–95. doi: 10.1159/000477843.
  83. Spits H, Lanier LL, Phillips JH. Development of human T and natural killer cells. Blood. 1995;85(10):2654–70. doi: 10.1182/blood.v85.10.2654.bloodjournal85102654.
  84. Marquez C, Trigueros C, Franco JM, et al. Identification of a common developmental pathway for thymic natural killer cells and dendritic cells. Blood. 1998;91(8):2760–71. doi: 1182/blood.v91.8.2760.2760_2760_2771.
  85. Hanna J, Gonen-Gross T, Fitchett J, et al. Novel APC-like properties of human NK cells directly regulate T cell activation. J Clin Invest. 2004;114(11):1612–23. doi: 10.1172/jci22787.
  86. Spits H, Lanier LL. Natural killer or dendritic: what’s in a name? Immunity. 2007;26(1):11–6. doi: 10.1016/j.immuni.2007.01.004.
  87. Френкель М.А., Баранова О.Ю., Антипова А.С. и др. NK-клеточный лимфобластный лейкоз/лимфома (обзор литературы и собственные наблюдения). Клиническая онкогематология. 2016;9(2):208–17. doi: 10.21320/2500-2139-2016-9-2-208-217.
    [Frenkel’ MA, Baranova OYu, Antipova AS, et al. NK-Cell Lymphoblastic Leukemia/Lymphoma (Literature Review and Authors’ Experience). Clinical oncohematology. 2016;9(2):208–17. doi: 10.21320/2500-2139-2016-9-2-208-217. (In Russ)]
  88. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56. doi: 10.1016/S1470-2045(08)70314-0.
  89. Inukai T, Kiyokawa N, Campana D, et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children’s Cancer Study Group Study L99-15. Br J Haematol 2012;156(3):358–65. doi: 10.1111/j.1365-2141.2011.08955.x.
  90. Wood B, Winter S, Dunsmore K, et al. Patients with early T-сell precursor (ETP) acute lymphoblastic leukemia (ALL) have high levels of minimal residual disease (MRD) at the of induction-A Children’s Oncology Group (COG) Study. Blood. 2009;114(22):9. doi: 10.1182/blood.v114.22.9.9.
  91. Sin C-F, Man PM. Early T-Cell Precursor Acute Lymphoblastic Leukemia: Diagnosis, Updates in Molecular Pathogenesis, Management, and Novel Therapies. Front Oncol. 2021;11:750789. doi: 10.3389/fonc.2021.750789.
  92. Neumann M, Coskun E, Fransecky L, et al. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors. PLoS One. 2013;8(1):e53190. doi: 10.1371/journal.pone.0053190.
  93. Neumann M, Heesch S, Schlee C, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121(23):4749–52. doi: 10.1182/blood-2012-11-465138.
  94. Van Vlierberghe P, Ambesi-lmpiombato A, Perez-Garcia A, et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med. 2011;208(13):2571–9. doi: 10.1084/jem.20112239.
  95. Conter V, Valsecchi MG, Buldini B, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol. 2016;3(2):e80–е86. doi: 10.1016/S2352-3026(15)00254-9.
  96. Ma M, Wang X, Tang J, et al. Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia. Front Med. 2012;6(4):416–20. doi: 10.1007/s11684-012-0224-4.
  97. Wood BL, Winter SS, Dunsmore KP, et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s Oncology Group (COG) Study AALL0434. Blood. 2014;124(21):1. doi: 10.1182/blood.v124.21.1.1.
  98. Bond J, Marchand T, Touzart A, et al. An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. Haematologica. 2016;101(6):732–40. doi: 10.3324/haematol.2015.141218.
  99. McEwan A, Pitiyarachchi O, Viiala Relapsed/Refractory ETP-ALL Successfully Treated With Venetoclax and Nelarabine as a Bridge to Allogeneic Stem Cell Transplant. HemaSphere 2020;4(3):e379. doi: 10.1097/hs9.0000000000000379.
  100. Mullighan C, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. doi: 10.1056/NEJMoa0808253.
  101. Mullighan C, Zhang J, Harvey R, еt al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2009;106(23):9414–8. doi: 10.1073/pnas.0811761106.
  102. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. doi: 10.1016/S1470-2045(08)70339-5.
  103. Корзик А.В., Вшивкова О.С. BCR-ABL1-подобный острый лимфобластный лейкоз: от биологии к перспективным методам терапии. Гематология. Трансфузиология. Восточная Европа. 2021;7(3):313–27. doi: 10.34883/PI.2021.7.3.005.
    [Korzik AV, Vshyukova OS. BCR-ABL1-like acute lymphoblastic leukemia: from biology to promising therapies. Hematology. Transfusiology. Eastern Europe. 2021;7(3):313–27. doi: 10.34883/PI.2021.7.3.005. (In Russ)]
  104. Цаур Г.А., Ольшанская Ю.В., Друй А.Е. BCR-ABL1-подобный острый лимфобластный лейкоз у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019;18(1):112‒26. doi: 10.24287/1726-1708-2019-18-1-112-126.
    [Tsaur GA, Olshanskaya YuV, Druy AE. BCR-ABL1-like pediatric acute lymphoblastic leukemia. Pediatric Hematology/Oncology and Immunopathology. 2019;18(1):112–126. doi: 10.24287/1726-1708-2019-18-1-112-126. (In Russ)]
  105. Boer JM, Koenders JE, van der Holt B, et al. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL 1-like subgroup characterized by high non-response and relapse rates. Haematologica. 2015;100(7):e261–е264. doi: 10.3324/haematol.2014.117424.
  106. Boer JM, Marchante JR, Evans WE, et al. (2015). BCR-ABL 1-like cases in pediatric acute lymphoblastic leukemia: a comparison between DCOG/Erasmus MC and COG/St. Jude signatures. Haematologica. 2015;100(9):e354–е357. doi: 10.3324/haematol.2015.124941.
  107. Roberts KG, Pei D, Campana D, et al. Outcomes of children with BCR-ABL 1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012–20. doi: 10.1200/JCO.2014.55.4105.
  108. Weston BW, Hayden MA, Roberts KG, et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–е416. doi: 10.1200/JCO.2012.47.6770.
  109. Xu X-Q, Wang J-M, Lu S-Q, et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica. 2009;94(7):919–27. doi: 10.3324/haematol.2008.003202.
  110. Rubnitz JE, Onciu M, Pounds S, et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood. 2009;113(21):5083–9. doi: 10.1182/blood-2008-10-187351.
  111. Mirro J, Zipf TF, Pui HC, et al. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood. 1985;66(5):1115–23. doi: 1182/blood.v66.5.1115.bloodjournal6651115.
  112. Gale RP, Ben Bassat I. Hybrid acute leukaemia. Br J Haematol. 1987;65(3):261–4. doi: 10.1111/j.1365-2141.1987.tb06851.x.
  113. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.
  114. Catovsky D, Matutes E, Buccheri V, et al. A classification of acute leukaemia for the 1990s. Ann Hematol. 1991;62(1):16–21. doi: 10.1007/BF01714978.
  115. Bene MC, Bernier M, Casasnovas RO, et al. The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). Blood. 1998;92(2):596–9.1182/blood.v92.2.596.414k05_596_599.
  116. Manola KN. Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview. Br J Haematol. 2013;163(1):24–39. doi: 1111/bjh.12484.
  117. Matutes E, Pickl WF, Van’t Veer M, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. 2011;117(11):3163–71. doi: 10.1182/blood-2010-10-314682.
  118. Gerr H, Zimmermann M, Schrappe M, et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J 2010;149(1):84–92. doi: 10.1111/j.1365-2141.2009.08058.x.
  119. Maruffi M, Sposto R, Oberley MJ, et al. Therapy for children and adults with mixed phenotype acute leukemia: a systematic review and meta-analysis. Leukemia. 2018;32(7):1515–28. doi: 10.1038/s41375-018-0058-4.
  120. Al-Seraihy AS, Owaidah TM, Ayas M, et al. Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica. 2009;94(12):1682–90. doi: 10.3324/haematol.2009.009282.
  121. Orgel E, Alexander TB, Wood BL, et al. Mixed-phenotype acute leukemia: a cohort and consensus research strategy from the Children’s oncology group acute leukemia of ambiguous lineage task force. Cancer. 2020;126(3):593–601. doi: 10.1002/cncr.32552.
  122. Hrusak O, de Haas V, Stancikova J, et al. International cooperative study identifies treatment strategy in childhood ambiguous lineage leukemia. Blood. 2018;132(3):264–76. doi: 1182/blood-2017-12-821363.
  123. Wolach O, Stone RM. Optimal therapeutic strategies for mixed phenotype acute leukemia. Curr Opin Hematol. 2020;27(2):95–102. doi: 1097/moh.0000000000000570.
  124. Shimizu H, Yokohama A, Hatsumi N, et al. Philadelphia chromosome-positive mixed phenotype acute leukemia in the imatinib era. Eur J Haematol. 2014;93(4):297–301. doi: 10.1111/ejh.12343.
  125. Qasrawi A, Ramlal R, Munker R, Hildebrandt GC. Prognostic impact of Philadelphia chromosome in mixed phenotype acute leukemia (MPAL): A cancer registry analysis on real-world outcome. Am J Hematol. 2020;95(9):1015–21. doi: 10.1002/ajh.25873.
  126. Park JA, Ghim TT, Bae K, et al. Stem cell transplant in the treatment of childhood biphenotypic acute leukemia. Pediatr Blood Cancer. 2009;53(3):444–52. doi: 10.1002/pbc.22105.
  127. Tian H, Xu Y, Liu L, et al. Comparison of outcomes in mixed phenotype acute leukemia patients treated with chemotherapy and stem cell transplantation versus chemotherapy alone. Leuk Res. 2016;45:40–6. doi: 10.1016/j.leukres.2016.04.002.
  128. Munker R, Brazauskas R, Wang HL, et al. Allogeneic hematopoietic cell transplantation for patients with mixed phenotype acute leukemia. Biol Blood Marrow Transplant. 2016;22(6):1024–9. doi: 10.1016/j.bbmt.2016.02.013.
  129. Rossi JG, Bernasconi AR, Alonso CN, et al. Lineage switch in childhood acute leukemia: an unusual event with poor outcome. Am J Hematol. 2012;87(9):890–7. doi: 10.1002/ajh.23266.
  130. Dorantes-Acosta E, Pelayo R. Lineage switching in acute leukemias: a consequence of stem cell plasticity? Bone Marrow Res. 2012;2012:406796. doi: 10.1155/2012/406796.
  131. Rath A, Panda T, Dhawan R, et al. A paradigm shift: lineage switch from T-ALL to B/myeloid MPAL. Blood Res. 2021;56(1):50–3. doi: 10.5045/br.2021.2020268.
  132. Kobayashi S, Teramura M, Mizoguchi H, Tanaka J. Double Lineage Switch from Acute Megakaryoblastic Leukemia (AML-M7) to Acute Lymphoblastic Leukemia (ALL) and Back Again: A Case Report. J Blood Disorders Transf. 2014;5(3):199. doi: 10.4172/2155-9864.1000199.
  133. Lounici A, Cony-Makhoul P, Dubus P, et al. Lineage switch from acute myeloid leukemia to acute lymphoblastic leukemia: report of an adult case and review of the literature. Am J Hematol. 2000;65(4):319–21. doi: 10.1002/1096-8652(200012)65:4<319::aid-ajh13>3.0.co;2-1.
  134. Mantadakis E, Danilatou V, Stiakaki E, et al. T-cell acute lymphoblastic leukemia relapsing as acute myelogenous leukemia. Pediatr Blood Cancer. 2007;48(3):354–7. doi: 10.1002/pbc.20543.
  135. Emami A, Ravindranath Y, Inoue S, et al. Phenotypic change of acute monocytic leukemia to acute lymphoblastic leukemia on therapy. Am J Pediatr Hematol Oncol. 1983;5(4):341–3. doi: 10.1097/00043426-198324000-00004.
  136. Hatae Y, Yagyu K, Yanazume N, et al. Lineage switch on recurrence from minimally differentiated acute leukemia (M0) to acute megakaryocytic leukemia (M7). Rinsho Ketsueki. 2002;43(7):543–7.
  137. Haddox C, Mangaonkar A, Chen D, et al. Blinatumomab-induced lineage switch of B-ALL with t(4:11)(q21;q23) KMT2A/AFF1 into an aggressive AML: pre- and post-switch phenotypic, cytogenetic and molecular analysis. Blood Cancer. 2017;7(9):e607. doi: 10.1038/bcj.2017.89.
  138. Gentles AJ, Plevritis SK, Majeti R, et al. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA. 2010;304(24):2706–15. doi: 10.1001/jama.2010.1862.
  139. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617–28. doi: 10.1056/NEJMoa040465.
  140. Beck K. Plasticity Cell Definition. Available from: https://sciencing.com/plasticity-cell-definition-6239472.html. (accessed 06.2022).
  141. Shannon K, Armstrong SA. Genetics, epigenetics, and leukemia. N Engl J Med. 2010;363(25):2460–1. doi: 10.1056/NEJMe1012071.
  142. He X, Li C, Kapinova A, Nguyen K. Stem cell plasticity: fact or fiction. Available from: https://web.wpi.edu/Pubs/E-project/Available/E-project-082713-220018/unrestricted/8-27-13__Stem-2_Final_IQP_Report.pdf. (accessed 06.2022).
  143. Corbett JL, Tosh D. Conversion of one cell type into another: implications for understanding organ development, pathogenesis of cancer and generating cells for therapy. Biochem Soc Trans. 2014;42(3):609–16. doi: 10.1042/BST2014005.
  144. Kondo M, Scherer DC, Miyamoto T, et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature. 2000;407(6802):383–6. doi: 10.1038/35030112.
  145. Bell JJ, Bhandoola A. The earliest thymic progenitors for T-cells possess myeloid lineage potential. Nature. 2008;452(7188):764–7. doi: 10.1038/nature06840.
  146. Зеркаленкова Е.А., Илларионова О.И., Казакова А.Н. и др. Смена линейной дифференцировки в рецидиве острого лейкоза с перестройкой гена MLL (KMT2A). Обзор литературы и описание случаев. Онкогематология. 2016;11(2):21–9. doi: 10.17650/1818-8346-2016-11-2-21-29.
    [Zerkalenkova EA, Illarionova OI, Kazakova AN, et al. Lineage switch in relapse of acute leukemia with rearrangement of MLL gene (KMT2A). Literature review and case reports. Oncohematology. 2016;11(2):21–9. doi: 10.17650/1818-8346-2016-11-2-21-29. (In Russ)]
  147. Представление о кроветворении и стволовых кроветворных клетках [электронный документ]. Доступно по: http://www.ispms.ru/files/Publications/sharkeev_2013/pdf/4_19.pdf. Ссылка активна на 02.06.2022.
    [A view on hematopoiesis and hematopoietic stem cells (Internet). Available from: http://www.ispms.ru/files/Publications/sharkeev_2013/pdf/4_19.pdf. Accessed 02.06.2022. (In Russ)]
  148. Ramesh T, Lee SH, Lee CS, et al. Somatic cell dedifferentiation/reprogramming for regenerative medicine. Int J Stem Cells. 2009;2(1):18–27. doi: 10.15283/ijsc.2009.2.1.18.
  149. Oliveri RS. Epigenetic dedifferentiation of somatic cells into pluripotency: cellular alchemy in the age of regenerative medicine? Regen Med. 2007;2(5):795–816. doi: 2217/17460751.2.5.795.