Использование достижений современных геномных технологий при лимфомах

М.В. Немцова1, М.В. Майорова2

1 Российская медицинская академия последипломного образования Минздрава России, ул. Баррикадная, д. 2/1, Москва, Российская Федерация, 125993

2 Московский научно-исследовательский онкологический институт им. П.А. Герцена, 2-й Боткинский пр-д, д. 3, Москва, Российская Федерация, 125284

Для переписки: Марина Вячеславовна Немцова, д-р биол. наук, профессор, ул. Баррикадная, д. 2/1, Москва, Российская Федерация, 125993; тел.: +7(499)252-21-04; e-mail: nemtsova_m_v@mail.ru

Для цитирования: Немцова М.В., Майорова М.В. Использование достижений современных геномных технологий при лимфомах. Клиническая онкогематология. 2016;9(3):265-70.

DOI: 10.21320/2500-2139-2016-9-3-265-270


РЕФЕРАТ

Современные достижения в области геномики и биологии рака позволили значительно расширить объем знаний о молекулярном патогенезе лимфом. С использованием полногеномных методов исследования и современных компьютерных технологий удалось доказать, что разнообразные гистологические и иммуноморфологические подтипы лимфом различаются на молекулярном уровне и возникают в результате действия различных онкогенных механизмов. Стало понятно, что в основе вариабельности клинических симптомов, которые наблюдаются у пациентов с лимфомами, лежат как гетерогенность опухолевых клеток, так и особенности молекулярного патогенеза. Основываясь на полученных данных, предложены стратегии для разработки новых препаратов, которые сегодня используются в лечении лимфом. Они включают определение молекулярных этапов патогенеза, оценку значимости каждого этапа для развития опухоли и получение препарата с направленным действием на этот этап. В результате предложено несколько новых классов молекулярных таргетных агентов для лечения лимфом, которые сегодня изучаются в клинических исследованиях. В современную эпоху персонализированной медицины одной из основных задач при лечении пациентов с лимфомами является определение правильной таргетной терапии для каждого типа лимфоидной опухоли, характеризующейся уникальными молекулярными механизмами опухолеобразования.


Ключевые слова: лимфомы, профиль экспрессии генов, микроРНК, сигнальные пути, NF-kB.

Получено: 13 февраля 2016 г.

Принято в печать: 14 марта 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Intlekofer AM, Younes A. Precision therapy for lymphoma—current state and future directions. Nat Rev Clin Oncol. 2014;11(10):585–96. doi: 10.1038/nrclinonc.2014.137.
  2. Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma—treatment approaches in the molecular era. Nat Rev Clin Oncol. 2014;11(1):12–23. doi: 10.1038/nrclinonc.2013.197.
  3. Borchmann P, Eichenauer DA, Engert A. State of the art in the treatment of Hodgkin lymphoma. Nat Rev Clin Oncol. 2012;9(8):450–9. doi: 10.1038/nrclinonc.2012.91.
  4. Campo E, Swerdlow SH, Harris NL, et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–32. doi: 10.1182/blood-2011-01-293050.
  5. Немцова М.В., Кушлинский Н.Е. Достижения высокотехнологичных геномных методов для практической онкологии. Медицинский алфавит. 2015;1(2):10–3.
    [Nemtsova MV, Kushlinskii NE. The achievement of high-genomic methods for practical oncology. Meditsinskii alfavit. 2015;1(2):10–3. (In Russ)]
  6. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.
  7. Lenz G, Dave SS, Xiao W, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313–23. doi: 10.1056/NEJMoa0802885.
  8. Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature. 2006;441(7089):106–10. doi: 10.1038/nature04687.
  9. Compagno M, Lim WK, Grunn A, et al. Mutations of multiple genes cause deregulation of NF-kappa B in diffuse large B-cell lymphoma. Nature. 2009;459(7247):717–21. doi: 10.1038/nature07968.
  10. Lenz G, Davis RE, Ngo VN, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319(5870):1676–9. doi: 10.1126/science.1153629.
  11. Wilson WH. The Bruton’s tyrosine kinase (BTK) inhibitor, ibrutinib (PCI-32765), has preferential activity in the ABC subtype of relapsed/refractory de novo diffuse large B-cell lymphoma (DLBCL): interim results of a multicentre, open-label, phase 2 study. Blood. 2012;120: Abstract 686.
  12. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16. doi: 10.1056/NEJMoa1306220.
  13. Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303. doi: 10.1038/nature10351.
  14. Chi P, Allis CD, Wang GG. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010;10(7):457–69. doi: 10.1038/nrc2876.
  15. Pasqualucci L, Dominguez-Sola D, Chiarenza A, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95. doi: 10.1038/nature09730.
  16. Lane AA, Chabner BA. Histone deacetylase inhibitors in cancer therapy. J Clin Oncol. 2009;27(32):5459–68. doi: 10.1200/jco.2009.22.1291.
  17. Yap DB, Chu J, Berg T, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011;117(8):2451–9. doi: 10.1182/blood-2010-11-321208.
  18. Beguelin W, Popovic R, Teater M, et al. EZH2 is required for germinal centre formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013;23(5):677–92. doi: 10.1016/j.ccr.2013.04.011.
  19. Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood. 2012;119(8):1901–3. doi: 10.1182/blood-2011-11-391748.
  20. Wang F, Travins J, DeLaBarre B, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013;340(6132):622–6. doi: 10.1126/science.1234769.
  21. Pasqualucci L, Khiabanian H, Fangazio M, et al. Genetics of follicular lymphoma transformation. Cell Rep., 2014;6(1):130–40. doi: 10.1016/j.celrep.2013.12.027.
  22. Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490(7418):116–20. doi: 10.1038/nature11378.
  23. Bea S, Valdes-Mas R, Navarro A, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci USA. 2013;110(45):18250–5. doi: 10.1073/pnas.1314608110.
  24. Rossi D, Trifonov V, Fangazio M, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209(9):1537–51. doi: 10.1084/jem.20120904.
  25. Новикова М.В., Рыбко В.А., Хромова Н.В. и др. Роль белков Notch в процессах канцерогенеза. Успехи молекулярной онкологии. 2015;2(3):30–42. doi: 10.17650/2313-805X-2015-2-3-30-42.
    [Novikova MV, Rybko VA, Khromova NV, et al. The role of Notch pathway in carcinogenesis. Advances in molecular oncology. 2015;2(3):30–42. doi: 10.17650/2313-805X-2015-2-3-30-42. (In Russ)]
  26. Zhang J, Grubor V, Love CL, et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA. 2013;110(4):1398–403. doi: 10.1073/pnas.1205299110.
  27. Rahal R, Frick M, Romero R, et al. Pharmacological and genomic profiling identifies NF-kappaB-targeted treatment strategies for mantle cell lymphoma. Nat Med. 2014;20(1):87–92. doi: 10.1038/nm.3435.
  28. Anderson K, Lutz C, van Delft FW, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469(7330):356–61. doi: 10.1038/nature09650.
  29. Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–10. doi: 10.1038/nature10738.
  30. Arcaini L, Rossi D. Nuclear Factor-kB Dysregulation In Splenic Marginal Zone Lymphoma: New Therapeutic Opportunities. Haematologica. 2012;97(5):638–40. doi: 10.3324/haematol.2011.058362.

 

МикроРНК: малые молекулы с большим значением

В.Н. Аушев

ФГБНУ «Российский онкологический научный центр им. Н.Н. Блохина», Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для цитирования: Аушев В.Н. МикроРНК: малые молекулы с большим значением. Клиническая онкогематология. 2015;8(1):1–12.

Для переписки: Василий Николаевич Аушев, канд. биол. наук, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-17-64; e-mail: vaushev@gmail.com


РЕФЕРАТ

Обоснование. МикроРНК были впервые обнаружены как антисмысловые транскрипты у нематоды Caenorhabditis elegans, где они подавляли экспрессию генов, содержащих в мРНК комплементарные последовательности. Таким образом, данные молекулы наряду с короткими интерферирующими микроРНК являются основными медиаторами РНК-интерференции — универсального механизма регуляции экспрессии.

Результаты. МикроРНК представляют собой небольшие молекулы, транскрибируемые с геномной ДНК и подвергающиеся дальнейшему процессингу и экспорту в цитоплазму. Они могут входить в состав транскриптов, кодирующих белки, либо транскрибироваться с белок-некодирующих участков. Первичный процессинг может осуществляться с участием специализированного ферментного комплекса либо в ходе стандартного сплайсинга мРНК. После экспорта в цитоплазму промежуточный продукт подвергается окончательному процессингу с образованием активного РНК-белкового комплекса, способного связываться с комплементарными участками мРНК-«мишеней». Результатом такого связывания является подавление трансляции с данной мРНК. Сама мРНК во многих случаях может быть расщеплена за счет РНКазной активности комплекса.

Выводы. В геноме человека закодировано несколько тысяч микроРНК, образующих обширную регуляторную сеть, которая задействована в самых разных сигнальных путях и клеточных процессах. Нарушения микроРНК-регуляции вовлечены в развитие широкого спектра заболеваний, включая все типы неоплазий. МикроРНК имеют большое значение в онкологии, в частности в онкогематологии, как перспективные маркеры и потенциальные терапевтические агенты. К настоящему времени показано участие отдельных микроРНК в патогенезе большинства заболеваний системы крови. В ряде случаев предлагается использовать данные молекулы в качестве средств молекулярной диагностики и для определения прогноза заболевания.


Ключевые слова: микроРНК, регуляция экспрессии, онкомаркеры.

Получено: 16 июля 2014 г.

Принято в печать: 7 октября 2014 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12(11):847–65. doi: 10.1038/nrd4140.
  2. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. doi: 10.1016/0092-8674(93)90529-y.
  3. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62. doi: 10.1016/0092-8674(93)90530-4.
  4. Lee R, Feinbaum R, Ambros V. A short history of a short RNA. Cell. 2004;116(2 Suppl):S89–S92. doi: 10.1016/s0092-8674(04)00035-2.
  5. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31. doi: 10.1038/nrg1379.
  6. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6. doi: 10.1038/35002607.
  7. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs. Science. 2001;294(5543):853–8. doi: 10.1126/science.1064921.
  8. Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62. doi: 10.1126/science.1065062.
  9. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs. Science. 2001;294(5543):855–8. doi: 10.1126/science.1064921.
  10. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–9.
  11. Ambros V. A uniform system for microRNA annotation. RNA. 2003;9(3):277–9. doi: 10.1261/rna.2183803.
  12. Griffiths-Jones S, Grocock RJ, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res. 2006;34(Database issue):D140–4. doi: 10.1093/nar/gkj112.
  13. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucl Acids Res. 2011;39(Database issue):D152–7. doi: 10.1093/nar/gkq1027.
  14. Lei EP, Silver PA. Protein and RNA export from the nucleus. Dev Cell. 2002;2(3):261–72. doi: 10.1016/s1534-5807(02)00134-x.
  15. Behm-Ansmant I, Rehwinkel J, Doerks T, et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20(14):1885–98. doi: 10.1101/gad.1424106.
  16. Nishihara T, Zekri L, Braun JE, et al. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucl Acids Res. 2013;41(18):8692–705. doi: 10.1093/nar/gkt619.
  17. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4. doi: 10.1126/science.1149460.
  18. Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Ann Rev Biophys. 2013;42:217–39. doi: 10.1146/annurev-biophys-083012-130404.
  19. Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. doi: 10.1101/gr.082701.108.
  20. Cobb BS, Hertweck A, Smith J, et al. A role for Dicer in immune regulation. J Exp Med. 2006;203(11):2519–27. doi: 10.1084/jem.20061692.
  21. O’Carroll D, Mecklenbrauker I, Das PP, et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 2007;21(16):1999–2004. doi: 10.1101/gad.1565607.
  22. Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA. 2005;102(50):18081–6. doi: 10.1073/pnas.0506216102.
  23. Wang Q, Huang Z, Xue H, et al. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood. 2008;111(2):588–95. doi: 10.1182/blood-2007-05-092718.
  24. Elton TS, Selemon H, Elton SM, et al. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1–12. doi: 10.1016/j.gene.2012.12.009.
  25. Dagan LN, Jiang X, Bhatt S, et al. miR-155 regulates HGAL expression and increases lymphoma cell motility. Blood. 2012;119(2):513–20. doi: 10.1182/blood-2011-08-370536.
  26. Teng G, Hakimpour P, Landgraf P, et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 2008;28(5):621–9. doi: 10.1016/j.immuni.2008.03.015.
  27. Bissels U, Bosio A, Wagner W. MicroRNAs are shaping the hematopoietic landscape. Haematologica. 2012;97(2):160–7. doi: 10.3324/haematol.2011.051730.
  28. Listowski MA, Heger E, Boguslawska DM, et al. microRNAs: fine tuning of erythropoiesis. Cell Mol Biol Lett. 2013;18(1):34–46. doi: 10.2478/s11658-012-0038-z.
  29. Lawrie CH. MicroRNAs in hematological malignancies. Blood Rev. 2013;27(3):143–54. doi: 10.1016/j.blre.2013.04.002.
  30. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102(39):13944–9. doi: 10.1073/pnas.0506654102.
  31. Fabbri M, Bottoni A, Shimizu M, et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011;305(1):59–67. doi: 10.1001/jama.2010.1919.
  32. Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66(24):11590–3. doi: 10.1158/0008-5472.can-06-3613.
  33. Starczynowski DT, Morin R, McPherson A, et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood. 2011;117(2):595–607. doi: 10.1182/blood-2010-03-277012.
  34. Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010;16(1):49–58. doi: 10.1038/nm.2054.
  35. Bousquet M, Quelen C, Rosati R, et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med. 2008;205(11):2499–506. doi: 10.1084/jem.20080285.
  36. Chapiro E, Russell LJ, Struski S, et al. A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia. 2010;24(7):1362–4. doi: 10.1038/leu.2010.93.
  37. Bousquet M, Harris MH, Zhou B, et al. MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA. 2010;107(50):21558–63. doi: 10.1073/pnas.1016611107.
  38. Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6(12):1830–40. doi: 10.1158/1541-7786.mcr-08-0167.
  39. Bueno MJ, Perez de Castro I, Gomez de Cedron M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6):496–506. doi: 10.1016/j.ccr.2008.04.018.
  40. Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007;109(10):4399–405. doi: 10.1182/blood-2006-09-045104.
  41. Xu C, Fu H, Gao L, et al. BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene. 2014:33(1):44–54. doi: 10.1038/onc.2012.557.
  42. Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA. 2007;104(50):19971–6. doi: 10.1073/pnas.0709313104.
  43. Schotte D, De Menezes RX, Akbari Moqadam F, et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica. 2011;96(5):703–11. doi: 10.3324/haematol.2010.026138.
  44. Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156(6):744–56. doi: 10.1111/j.1365-2141.2011.09013.x.
  45. Dorsett Y, McBride KM, Jankovic M, et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 2008;28(5):630–8. doi: 10.1016/j.immuni.2008.04.002.
  46. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006;103(18):7024–9. doi: 10.1073/pnas.0602266103.
  47. Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005;207(2):243–9. doi: 10.1002/path.1825.
  48. Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005;102(10):3627–32. doi: 10.1073/pnas.0500613102.
  49. Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer. 2007;121(5):1156–61. doi: 10.1002/ijc.22800.
  50. O’Connell RM, Chaudhuri AA, Rao DS, et al. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA. 2009;106(17):7113–8. doi: 10.1073/pnas.0902636106.
  51. Yamanaka Y, Tagawa H, Takahashi N, et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009;114(15):3265–75. doi: 10.1182/blood-2009-06-222794.
  52. Pedersen IM, Otero D, Kao E, et al. Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas. EMBO Mol Med. 2009;1(5):288–95. doi: 10.1002/emmm.200900028.
  53. O’Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205(3):585–94. doi: 10.1084/jem.20072108.
  54. Roehle A, Hoefig KP, Repsilber D, et al. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol. 2008;142(5):732–44. doi: 10.1111/j.1365-2141.2008.07237.x.
  55. Lawrie CH, Chi J, Taylor S, et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med. 2009;13(7):1248–60. doi: 10.1111/j.1582-4934.2008.00628.x.
  56. Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 2008;105(35):12885–90. doi: 10.1073/pnas.0806202105.
  57. Loffler D, Brocke-Heidrich K, Pfeifer G, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110(4):1330–3.
  58. Wang X, Li C, Ju S, et al. Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation. Leuk Lymphoma. 2011;52(10):1991–8. doi: 10.3109/10428194.2011.591004.
  59. Dimopoulos K, Gimsing P, Gronbaek K. Aberrant microRNA expression in multiple myeloma. Eur J Haematol. 2013;91(2):95–105. doi: 10.1111/ejh.12124.
  60. Chen RW, Bemis LT, Amato CM, et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood. 2008;112(3):822–9. doi: 10.1182/blood-2008-03-142182.
  61. Deshpande A, Pastore A, Deshpande AJ, et al. 3¢UTR mediated regulation of the cyclin D1 proto-oncogene. Cell Cycle. 2009;8(21):3592–600. doi: 10.4161/cc.8.21.9993.
  62. Rao E, Jiang C, Ji M, et al. The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia. 2012;26(5):1064–72. doi: 10.1038/leu.2011.305.
  63. Van Vlierberghe P, De Weer A, Mestdagh P, et al. Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs. Br J Haematol. 2009;147(5):686–90. doi: 10.1111/j.1365-2141.2009.07909.x.
  64. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004;101(32):11755–60. doi: 10.1073/pnas.0404432101.
  65. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801. doi: 10.1056/nejmoa050995.
  66. Moussay E, Palissot V, Vallar L, et al. Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer. 2010;9(1):115. doi: 10.1186/1476-4598-9-115.
  67. Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA. 2008;105(40):15535–40. doi: 10.1073/pnas.0808266105.
  68. Jongen-Lavrencic M, Sun SM, Dijkstra MK, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood. 2008;111(10):5078–85. doi: 10.1182/blood-2008-01-133355.
  69. Maki K, Yamagata T, Sugita F, et al. Aberrant expression of MIR9 indicates poor prognosis in acute myeloid leukaemia. Br J Haematol. 2012;158(2):283–5. doi: 10.1111/j.1365-2141.2012.09118.x.
  70. Ishida M, Selaru FM. miRNA-Based Therapeutic Strategies. Curr Anesth Rep. 2013;1(1):63–70. doi: 10.1007/s40139-012-0004-5.
  71. Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucl Acids Res. 2003;31(11):2705–16. doi: 10.1093/nar/gkg393.
  72. Davis S, Propp S, Freier SM, et al. Potent inhibition of microRNA in vivo without degradation. Nucl Acids Res. 2009;37(1):70–7. doi: 10.1093/nar/gkn904.
  73. Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94. doi: 10.1056/nejmoa1209026.
  74. Qiu Z, Dai Y. Roadmap of miR-122-related clinical application from bench to bedside. Expert Opin Invest Drugs. 2014;23(3):347–55. doi: 10.1517/13543784.2014.867327.
  75. Di Martino MT, Campani V, Misso G, et al. In Vivo Activity of MiR-34a Mimics Delivered by Stable Nucleic Acid Lipid Particles (SNALPs) against Multiple Myeloma. PloS One. 2014;9(2):e90005. doi: 10.1371/journal.pone.0090005.
  76. Velu CS, Chaubey A, Phelan JD, et al. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest. 2014;124(1):222–36. doi: 10.1172/jci66005.
  77. Huang X, Schwind S, Yu B, et al. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res. 2013;19(9):2355–67. doi: 10.1158/1078-0432.CCR-12-3191.
  78. Gong JN, Yu J, Lin HS, et al. The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. Cell Death Differ. 2014;21(1):100–12. doi: 10.1038/cdd.2013.133.
  79. Ito M, Teshima K, Ikeda S, et al. MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6 in advanced cutaneous T-cell lymphoma. Blood. 2014;123:1499–511. doi: 10.1182/blood-2013-09-527739.