Значение дополнительных иммунологических маркеров в диагностике минимальной остаточной болезни при множественной миеломе

Е.Э. Толстых1, О.С. Чувадар2, А.А. Семенова1, Н.А. Купрышина1, О.П. Колбацкая1, Ю.И. Ключагина1, О.А. Коломейцев1, Г.С. Тумян1, Н.Н. Тупицын1

1 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

2 ООО «Центр клинической онкологии и гематологии», ул. Семашко, д. 4а, Симферополь, Республика Крым, Российская Федерация, 295026

Для переписки: Николай Николаевич Тупицын, д-р мед. наук, профессор, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(925)537-15-82; e-mail: nntca@yahoo.com

Для цитирования: Толстых Е.Э., Чувадар О.С., Семенова А.А. и др. Значение дополнительных иммунологических маркеров в диагностике минимальной остаточной болезни при множественной миеломе. Клиническая онкогематология. 2022;15(4):388–95.

DOI: 10.21320/2500-2139-2022-15-4-388-395


РЕФЕРАТ

Актуальность. Известно, что популяция неопухолевых плазматических клеток в костном мозге здоровых лиц весьма гетерогенна. Среди них может обнаруживаться небольшое количество плазмоцитов CD19–, CD56+, CD45–, отличающих их от основной массы нормальных клеток плазмоцитарного ряда отсутствием экспрессии CD19, CD45 и наличием экспрессии CD56. Именно это обстоятельство вносит определенные сложности в мониторинг минимальной остаточной болезни (МОБ) при множественной миеломе (ММ), поскольку необходимо проводить сопоставление аберрантных и нормальных плазматических клеток. По этой причине представляется чрезвычайно актуальным исследование ряда дополнительных диагностических маркеров: CD27, CD28, CD117 и CD81.

Цель. Изучение роли дополнительных диагностических маркеров (CD27, CD28, CD117 и CD81) МОБ у больных ММ на различных этапах течения заболевания.

Материалы и методы. В настоящее исследование включено 62 больных ММ в возрасте 31–76 лет (медиана 58 лет); женщин было 25, мужчин — 37. Анализу подвергнуты морфологические и иммунофенотипические особенности плазматических клеток костного мозга. Методом определения МОБ служила 8-цветная проточная цитометрия на проточном цитометре FACSCanto II (США) в соответствии с критериями EuroFlow.

Результаты. Иммунофенотип плазматических клеток на этапе первичной диагностики ММ оценен у всех 62 больных с использованием двух 8-цветных панелей, рекомендованных консорциумом EuroFlow (2012). В соответствии с данными первичного иммунофенотипирования МОБ определялась на основании изучения как основных диагностических маркеров плазматических клеток (CD38, CD138, CD45, CD56, CD19), так и дополнительных (CD27, CD28, CD117 и CD81). Исследование проводилось в основном после индукционной терапии по достижении ремиссии. Установлено, что частота МОБ-положительных результатов при пороговом уровне аберрантных плазматических клеток более 0,01 % была следующей: по CD27 — 91 %, CD28 — 90,6 %, CD117 — 87 %, CD81 — 96,7 %. Соответственно МОБ-отрицательные случаи по маркеру CD27 составили 9 %, CD28 — 9,4 %, CD117 — 13 %, CD81 — 3,3 %.

Заключение. Применение комплекса дополнительных маркеров CD27, CD28, CD117, CD81 позволяет более достоверно с учетом экспрессии основных антигенов CD38, CD138, CD45, CD56, CD19 установить МОБ-статус при ММ: отрицательный либо положительный.

Ключевые слова: множественная миелома, минимальная остаточная болезнь, плазматические клетки, костный мозг, многоцветная проточная цитометрия.

Получено: 2 марта 2022 г.

Принято в печать: 30 августа 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017.
  2. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–e548. doi: 10.1016/S1470-2045(14)70442-5.
  3. Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020. 252 с.
    [Kaprin AD, Starinskii VV, Shakhzadova AO, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2019 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2019 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 252 p. (In Russ)]
  4. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018. 324 с.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. 324 р. (In Russ)]
  5. van Dongen JJ, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimentional flow cytometric immunophenotyling of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–75. doi: 10.1038/leu.2012.120.
  6. Flores-Montero J, de Tute R, Paiva B, et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications or MRD detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90(1):61–72. doi: 10.1002/cyto.b.21265.
  7. Mateo G, Montalban MA, Vidriales MB, et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol. 2008;26(16):2737–44. doi: 10.1200/JCO.2007.15.4120.
  8. Chen F, Hu Y, Wang X, et al. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018;7(12):5920–7. doi: 10.1002/cam4.1840.

Множественная миелома: нюансы диагностики и мониторинга минимальной остаточной болезни методом многоцветной проточной цитометрии

И.В. Гальцева, К.А. Никифорова, Ю.О. Давыдова, Н.М. Капранов, М.В. Соловьев, Е.Н. Паровичникова, Л.П. Менделеева

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Ксения Александровна Никифорова, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(495)612-62-21; e-mail: nikiforovaksenya@gmail.com

Для цитирования: Гальцева И.В., Никифорова К.А., Давыдова Ю.О. и др. Множественная миелома: нюансы диагностики и мониторинга минимальной остаточной болезни методом многоцветной проточной цитометрии. Клиническая онкогематология. 2022;15(4):365–76.

DOI: 10.21320/2500-2139-2022-15-4-365-376


РЕФЕРАТ

Оценка минимальной остаточной болезни (МОБ) методом многоцветной проточной цитометрии (МПЦ) — активно развивающееся направление лабораторных исследований. В последние годы оно приобрело особую ценность для врачей-гематологов. Хотя исследование плазматических клеток у больных множественной миеломой с помощью МПЦ достаточно хорошо стандартизовано, существуют различия в методиках пробоподготовки материала для исследования, в используемых сочетаниях моноклональных антител, а также анализе цитометрических данных. В настоящей статье обобщены основные международные и отечественные данные об исследовании плазматических клеток методом МПЦ; представлен собственный опыт анализа МОБ при множественной миеломе за последние несколько лет.

Ключевые слова: минимальная остаточная болезнь, множественная миелома, многоцветная проточная цитометрия, гейтирование, иммунофенотипирование.

Получено: 24 мая 2022 г.

Принято в печать: 10 августа 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–e548. doi: 10.1016/S1470-2045(14)70442-5.
  2. Каприн А.Д., Старинский В.В., Шахзадова А.О. и др. Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020.
    [Kaprin AD, Starinskii VV, Shakhzadova AO, et al. Zlokachestvennye novoobrazovaniya v Rossii v 2019 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2019 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 2020. (In Russ)]
  3. Соловьев М.В., Менделеева Л.П., Алексеева А.Н. и др. Эффективность терапии множественной миеломы в России (результаты многоцентрового проспективного исследования). Гематология и трансфузиология. 2020;65(1):103–4.
    [Solov’ev MV, Mendeleeva LP, Alekseeva AN, et al. The efficacy of multiple myeloma therapy in Russia (results of a multi-center prospective study). Gematologiya i transfuziologiya. 2020;65(1):103–4. (In Russ)]
  4. Rajkumar SV. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91(7):719–34. doi: 10.1002/ajh.24402.
  5. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346. doi: 10.1016/S1470-2045(16)30206-6.
  6. Paiva B, Vidriales M-B, Mateo G, et al. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood. 2009;114(20):4369–72. doi: 10.1182/blood-2009-05-221689.
  7. Rawstron AC, Child JA, de Tute RM, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol. 2013;31(20):2540–7. doi: 10.1200/JCO.2012.46.2119.
  8. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9. doi: 10.1182/blood-2014-01-550020.
  9. Korde N, Mailankody S, Roschewski M, et al. Minimal Residual Disease (MRD) Testing in Newly Diagnosed Multiple myeloma (MM) Patients: A Prospective Head-to-Head Assessment of Cell-Based, Molecular, and Molecular-Imaging Modalities. Blood. 2014;124(21):2105. doi: 10.1182/blood.V124.21.2105.2105.
  10. Avet-Loiseau H, Corre J, Lauwers-Cances V, et al. Evaluation of Minimal Residual Disease (MRD) By Next Generation Sequencing (NGS) Is Highly Predictive of Progression Free Survival in the IFM/DFCI 2009 Trial. Blood. 2015;126(23):191. doi: 10.1182/blood.V126.23.191.191.
  11. Гальцева И.В., Менделеева Л.П., Давыдова Ю.О. и др. Исследование минимальной остаточной болезни методом многоцветной проточной цитофлуориметрии у больных множественной миеломой после трансплантации аутологичных гемопоэтических стволовых клеток. Онкогематология. 2017;12(2):62–9. doi: 10.17650/1818-8346-2017-12-2-62-69.
    [Galtseva IV, Mendeleeva LP, Davydova YuO, et al. Study of minimal residual disease by multicolor flow cytometry in multiple myeloma after autologous hematopoietic stem cell transplantation. Oncohematology. 2017;12(2):62–9. doi: 10.17650/1818-8346-2017-12-2-62-69. (In Russ)]
  12. Соловьев М.В., Менделеева Л.П., Покровская О.С. и др. Множественная миелома: поддерживающая терапия после трансплантации гемопоэтических стволовых клеток в зависимости от минимальной остаточной болезни. Терапевтический архив. 2017;89(7):25–31. doi: 10.17116/terarkh201789725-31.
    [Solovyev MV, Mendeleeva LP, Pokrovskaia OS, et al. Multiple myeloma: Maintenance therapy after autologous hematopoietic stem cell transplantation, depending on minimal residual disease. Terapevticheskii arkhiv. 2017;89(7):25–31. doi: 10.17116/terarkh201789725-31. (In Russ)]
  13. Munshi NC, Avet-Loiseau H, Anderson KC, et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020;4(23):5988–99. doi: 10.1182/BLOODADVANCES.2020002827.
  14. Stetler-Stevenson M, Paiva B, Stoolman L, et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytometry B Clin Cytom. 2016;90(1):26–30. doi: 10.1002/cyto.b.21249.
  15. Менделеева Л.П., Вотякова О.М., Рехтина И.Г. и др. Множественная миелома: Клинические рекомендации [электронный документ]. Доступно по: https://cr.minzdrav.gov.ru/schema/144_1. Ссылка активна на 24.05.2022.
    [Mendeleeva LP, Votyakova OM, Rekhtina IG, et al. Multiple Myeloma: Clinical Guidelines [Internet]. Available from: https://cr.minzdrav.gov.ru/schema/144_1. Accessed 24.05.2022. (In Russ)]
  16. Менделеева Л.П., Покровская О.С. Множественная миелома. Клиническая онкогематология. 2009;2(1):96–8.
    [Mendeleeva LP, Pokrovskaya OS. Multiple myeloma. Klinicheskaya onkogematologiya. 2009;2(1):96–8. (In Russ)]
  17. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]
  18. Bergstrom DJ, Kotb R, Louzada ML, et al. Consensus Guidelines on the Diagnosis of Multiple Myeloma and Related Disorders: Recommendations of the Myeloma Canada Research Network Consensus Guideline Consortium. Clin Lymphoma Myeloma Leuk. 2020;20(7):e352–e367. doi: 10.1016/j.clml.2020.01.017.
  19. Kumar SK, Callander NS, Adekola K, et al. Multiple Myeloma, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2020;18(12):1685–717. doi: 10.6004/jnccn.2020.0057.
  20. Perez-Persona E, Vidriales M-B, Mateo G, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110(7):2586–92. doi: 10.1182/blood-2007-05-088443.
  21. Hogan KA, Chini CCS, Chini EN. The Multi-faceted Ecto-enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases. Front Immunol. 2019;10:1187. doi: 10.3389/FIMMU.2019.01187.
  22. Marti GE, Rawstron AC, Ghia P, et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol. 2005;130(3):325–32. doi: 10.1111/j.1365-2141.2005.05550.x.
  23. Flores-Montero J, de Tute R, Paiva B, et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90(1):61–72. doi: 10.1002/CYTO.B.21265.
  24. Bataille R, Jego G, Robillard N, et al. The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica. 2006;91(9):1234–40.
  25. Tembhare PR, Yuan CM, Venzon D, et al. Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases. Leuk Res. 2014;38(3):371–6. doi: 10.1016/J.LEUKRES.2013.12.007.
  26. Arroz M, Came N, Lin P, et al. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom. 2016;90(1):31–9. doi: 10.1002/cyto.b.21228.
  27. Peceliunas V, Janiulioniene A, Matuzeviciene R, Griskevicius L. Six color flow cytometry detects plasma cells expressing aberrant immunophenotype in bone marrow of healthy donors. Cytometry B Clin Cytom. 2011;80B(5):318–23. doi: 10.1002/cyto.b.20601.
  28. Rawstron AC, Orfao A, Beksac M, et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93(3):431–8. doi: 10.3324/HAEMATOL.11080.
  29. Manasanch EE, Salem DA, Yuan CM, et al. Flow cytometric sensitivity and characteristics of plasma cells in patients with multiple myeloma or its precursor disease: influence of biopsy site and anticoagulation method. Leuk Lymphoma. 2015;56(5):1416. doi: 10.3109/10428194.2014.955020.
  30. Stetler-Stevenson M, Ahmad E, Barnett D, et al. Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells; Approved Guideline, CLSI Document H43-A2. 2nd edn. Wayne: Clinical and Laboratory Standards Institute; 2007.
  31. Гальцева И.В., Давыдова Ю.О., Капранов Н.М. и др. Способ оценки качества аспирата костного мозга в процессе проведения мониторинга минимальной резидуальной болезни при множественной миеломе. Патент РФ № 2639382/21.12.2017. Бюлл. № 36. Доступно по: https://findpatent.ru/patent/263/2639382.html. Ссылка активна на 09.04.2022.
    [Galtseva IV, Davydova YuO, Kapranov NM, et al. Sposob otsenki kachestva aspirata kostnogo mozga v protsesse provedeniya monitoringa minimalnoi rezidualnoi bolezni pri mnozhestvennoi mielome. Patent RUS No. 2639382/21.12.2017. Byul. No. 36. Available from: https://findpatent.ru/patent/263/2639382.html. Accessed 09.04.2022. (In Russ)]
  32. Rawstron AC. Immunophenotyping of Plasma Cells. Curr Protoc Cytom. 2006;36(1). doi: 10.1002/0471142956.cy0623s36.
  33. Britt Z, O’Donahue M, Mills D. Surface staining for kappa and lambda, how many washes are sufficient? You might be surprised. Available from: http://www.cytometry.org/public/newsletters/eICCS-6–3/article2.php. (accessed 24.05.2022).
  34. Flores-Montero J, Sanoja-Flores L, Paiva B, et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–103. doi: 10.1038/LEU.2017.29.
  35. Paiva B, Gutierrez NC, Rosinol L, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood. 2012;119(3):687–91. doi: 10.1182/blood-2011-07-370460.
  36. Puig N, Sarasquete ME, Balanzategui A, et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014;28(2):391–7. doi: 10.1038/leu.2013.217.

Технические аспекты определения минимальной остаточной болезни методом многоцветной проточной цитометрии у пациентов с острыми миелоидными лейкозами

И.В. Гальцева, Ю.О. Давыдова, Н.М. Капранов, К.А. Никифорова, Е.Н. Паровичникова

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Юлия Олеговна Давыдова, канд. мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: 8(495)612-62-21; e-mail: juliya89mur@yandex.ru

Для цитирования: Гальцева И.В., Давыдова Ю.О., Капранов Н.М. и др. Технические аспекты определения минимальной остаточной болезни методом многоцветной проточной цитометрии у пациентов с острыми миелоидными лейкозами. Клиническая онкогематология. 2021;14(4):503–12.

DOI: 10.21320/2500-2139-2021-14-4-503-512


РЕФЕРАТ

Определение и мониторинг минимальной остаточной болезни (МОБ) — необходимые компоненты программной терапии. Они имеют ключевое значение для выбора лечебной тактики и оценки прогноза фактически при всех заболеваниях системы крови. Для установления МОБ часто используют метод многоцветной проточной цитометрии, который обладает достаточно высокой специфичностью и чувствительностью. Однако определение МОБ у больных острыми миелоидными лейкозами представляется одной из самых непростых задач, стоящих перед специалистом по проточной цитометрии. Анализ цитометрических данных требует экспертного знания иммунофенотипа всех созревающих клеток костного мозга. Кроме того, исследование МОБ при острых миелоидных лейкозах не стандартизовано, а предлагаемые в разных исследованиях подходы значительно отличаются. В настоящей статье отражен собственный опыт анализа МОБ с демонстрацией используемой стратегии гейтирования, описанием иммунофенотипа нормальных неопухолевых гемопоэтических клеток и представлением нескольких примеров оценки МОБ. Приводятся также использованные нами панели моноклональных антител с оценкой их достоинств и недостатков.

Ключевые слова: минимальная остаточная болезнь, острые миелоидные лейкозы, проточная цитометрия, гейтирование, иммунофенотипирование.

Получено: 9 июня 2021 г.

Принято в печать: 5 сентября 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21(24):4642–9. doi: 10.1200/JCO.2003.04.036.
  2. Pui CH, Campana D. New definition of remission in childhood acute lymphoblastic leukemia. Leukemia. 2000;14(5):783–5. doi: 10.1038/sj.leu.2401780.
  3. Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275–91. doi: 10.1182/blood-2017-09-801498.
  4. Гальцева И.В., Давыдова Ю.О., Паровичникова Е.Н. Определение минимальной измеримой остаточной болезни у взрослых больных острыми лейкозами. Гематология и трансфузиология. 2020;65(4):460–72. doi: 10.35754/0234-5730-2020-65-4-460-472.
    [Galtseva IV, Davydova YO, Parovichnikova EN. Detection of measurable residual disease in adults with acute leukaemia. Russian journal of hematology and transfusiology. 2020;65(4):460–72. doi: 10.35754/0234-5730-2020-65-4-460-472. (In Russ)]
  5. Shen Z, Gu X, Mao W, et al. Influence of pre-transplant minimal residual disease on prognosis after Allo-SCT for patients with acute lymphoblastic leukemia: Systematic review and meta-analysis. BMC Cancer. 2018;18(1):755. doi: 10.1186/s12885-018-4670-5.
  6. Leung W, Pui C-H, Coustan-Smith E, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2012;120(2):468–72. doi: 10.1182/blood-2012-02-409813.
  7. Norkin M, Katragadda L, Zou F, et al. Minimal residual disease by either flow cytometry or cytogenetics prior to an allogeneic hematopoietic stem cell transplant is associated with poor outcome in acute myeloid leukemia. Blood Cancer J. 2017;7(12):634. doi: 10.1038/s41408-017-0007-x.
  8. Anthias C, Dignan FL, Morilla R, et al. Pre-transplant MRD predicts outcome following reduced-intensity and myeloablative allogeneic hemopoietic SCT in AML. Bone Marrow Transplant. 2014;49(5):679–83. doi: 10.1038/bmt.2014.9.
  9. Buckley SA, Wood BL, Othus M, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102(5):865–73. doi: 10.3324/haematol.2016.159343.
  10. Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom. 2016;90(1):47–53. doi: 10.1002/cyto.b.21239.
  11. Wood BL. Multicolor immunophenotyping: human immune system hematopoiesis. Methods Cell Biol. 2004;75:559–76. doi: 10.1016/s0091-679x(04)75023-2.
  12. Wood BL. Flow cytometric monitoring of residual disease in acute leukemia. In: Czader M, ed. Hematological Malignancies. Methods in Molecular Biology (Methods and Protocols). Vol. 999. Totowa: Humana Press; 2013. pp. 123–36. doi: 10.1007/978-1-62703-357-2_8.
  13. Лобанова Т.И., Гальцева И.В., Паровичникова Е.Н. Исследование минимальной остаточной болезни у пациентов с острыми миелоидными лейкозами методом многоцветной проточной цитофлуориметрии (обзор литературы). Онкогематология. 2018;13(1):83–102. doi: 10.17650/1818-8346-2018-13-1-83-102.
    [Lobanova TI, Galtseva IV, Parovichnikova EN. Minimal residual disease assesment in patients with acute myeloid leukemia by multicolour flow cytometry (literature review). Oncohematology. 2018;13(1):83–102. doi: 10.17650/1818-8346-2018-13-1-83-102. (In Russ)]
  14. Tien HF, Wang CH. CD7 positive hematopoietic progenitors and acute myeloid leukemia and other minimally differentiated leukemia. Leuk Lymphoma. 1998;31(1–2):93–8. doi: 10.3109/10428199809057588.
  15. Jorgensen JL, Chen SS. Monitoring of minimal residual disease in acute myeloid leukemia: methods and best applications. Clin Lymphoma Myeloma Leuk. 2011;11(Suppl 1):S49–53. doi: 10.1016/j.clml.2011.03.023.
  16. Jaso JM, Wang SA, Jorgensen JL, Lin P. Multi-color flow cytometric immunophenotyping for detection of minimal residual disease in AML: past, present and future. Bone Marrow Transplant. 2014;49(9):1129–38. doi: 10.1038/bmt.2014.99.
  17. Buldini B, Maurer-Granofszky M, Varotto E, Dworzak MN. Flow-cytometric monitoring of minimal residual disease in pediatric patients with acute myeloid leukemia: recent advances and future strategies. Front Pediatr. 2019;7:412. doi: 10.3389/fped.2019.00412.
  18. Wood BL. Acute myeloid leukemia minimal residual disease detection: the difference from normal approach. Curr Protoc Cytom. 2020;93(1):e73. doi: 10.1002/cpcy.73.
  19. Ostendorf BN, Flenner E, Florcken A, Westermann J. Phenotypic characterization of aberrant stem and progenitor cell populations in myelodysplastic syndromes. PLoS One. 2018;13(5):e0197823. doi: 10.1371/journal.pone.0197823.
  20. Goardon N, Marchi E, Atzberger A, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19(1):138–52. doi: 10.1016/j.ccr.2010.12.012.
  21. Shameli A, Dharmani-Khan P, Luider J, et al. Exploring blast composition in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms: CD45RA and CD371 improve diagnostic value of flow cytometry through assessment of myeloblast heterogeneity and stem cell aberrancy. Cytom Part B: Clin Cytom. 2020:1–16. doi: 10.1002/cyto.b.21983. Epub ahead of print.
  22. Bill M, van Kooten Niekerk BP, Woll SP, et al. Mapping the CLEC12A expression on myeloid progenitors in normal bone marrow; implications for understanding CLEC12A-related cancer stem cell biology. J Cell Mol Med. 2018;22(4):2311–8. doi: 10.1111/jcmm.13519.
  23. Eissens DN, Spanholtz J, van der Meer A, et al. Defining early human NK cell developmental stages in primary and secondary lymphoid tissues. PLoS One. 2012;7(2):e30930. doi: 10.1371/journal.pone.0030930.
  24. Stetler-Stevenson M, Paiva B, Stoolman L, et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytom Part B: Clin Cytom. 2016;90(1):26–30. doi: 10.1002/cyto.b.21249.
  25. Palmieri R, Piciocchi A, Arena V, et al. Clinical relevance of- limit of detection (LOD) — limit of quantification (LOQ) — based flow cytometry approach for measurable residual disease (MRD) assessment in acute myeloid leukemia (AML). Blood. 2020;136(Suppl 1):37–8. doi: 10.1182/blood-2020-139557.

Диагностика острых лимфобластных лейкозов из Т-линейных предшественников и подходы к мониторингу минимальной остаточной болезни

О.А. Чернышева, Л.Ю. Гривцова, И.Н. Серебрякова, Н.А. Купрышина, Е.Н. Шолохова, М.А. Шервашидзе, А.Д. Палладина, Б.В. Курдюков, А.В. Попа, Н.Н. Тупицын

ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Ольга Алексеевна Чернышева, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-14-30; e-mail: beznos.olga@gmail.com

Для цитирования: Чернышева О.А., Гривцова Л.Ю., Серебрякова И.Н. и др. Диагностика острых лимфобластных лейкозов из Т-линейных предшественников и подходы к мониторингу минимальной остаточной болезни. Клиническая онкогематология. 2019;12(1):79–85.

DOI: 10.21320/2500-2139-2019-12-1-79-85


РЕФЕРАТ

Актуальность. Минимальная остаточная болезнь (МОБ) — независимый фактор прогноза при острых лимфобластных лейкозах (ОЛЛ) у детей. При иммунологической оценке количества клеток МОБ основой является аберрантный иммунофенотип опухолевых лимфобластов, однако в случае ОЛЛ из Т-линейных предшественников (Т-ОЛЛ) четкие критерии аберрантности до сих пор не определены. В основу проточно-цитометрической оценки МОБ при Т-ОЛЛ могут быть положены особенности нормального Т-клеточного онтогенеза, а именно отсутствие в костном мозге нормальных Т-линейных предшественников (Т-ЛП).

Цель. Оценить возможности выявления МОБ иммунологическим методом проточной цитометрии на основании иммунофенотипа Т-ЛП на 15-й и 33-й дни терапии у детей с Т-ОЛЛ.

Материалы и методы. В анализ включены данные по первичному иммунофенотипу и оценке МОБ на 15-й и 33-й дни лечения 31 больного с Т-ОЛЛ в возрасте 2–17 лет. В большинстве случаев (61,3 %) выявлен кортико-тимоцитарный иммуноподвариант ОЛЛ, в остальных (38,7 %) — пре-Т-клеточный. Диагноз устанавливался по совокупности морфоцитохимического и иммунологического исследований костного мозга. При оценке МОБ-статуса морфологическое и иммунологическое исследования пунктата костного мозга проводились параллельно из одной пробирки. Все больные, включенные в исследование, проходили лечение в НИИ детской онкологии и гематологии ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава РФ согласно протоколу ALL IC-BFM 2009.

Результаты. Показано, что для оценки МОБ на всех этапах терапии может применяться единый иммунологический подход, основанный на выявлении клеток с иммунофенотипом cyCD3+CD7+/++smCD3 (Т-ЛП). Важно использование правильных клонов моноклональных антител для выявления цитоплазматической и мембранной молекул CD3 (UCHT1 и SK7 соответственно). В группу стандартного риска не включен ни один больной. Большинство пациентов (76,2 %), проходивших лечение по протоколу ALL IC-BFM 2009, составили группу промежуточного риска на 15-й день терапии. К 33-му дню 25 % из них перешли в группу высокого риска.

Заключение. Возможности многоцветной проточной цитометрии позволяют наиболее полно охарактеризовать первичный иммунофенотип опухолевых Т-лимфобластов для дальнейшего поиска лейкоз-ассоциированных иммунофенотипов. Благодаря особенностям онтогенеза нормальных Т-клеток можно унифицировать иммунологические подходы к оценке МОБ на всех этапах терапии Т-ОЛЛ.

Ключевые слова: Т-линейные острые лимфобластные лейкозы, многоцветная проточная цитометрия, минимальная остаточная болезнь, лейкоз-ассоциированный иммунофенотип.

Получено: 21 июня 2018 г.

Принято в печать: 18 декабря 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Clavell LA, Gelber RD, Cohen HJ. et al. A. Four-agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia. N Engl J Med. 1986;315(11):657–63. doi: 10.1056/nejm198609113151101.

  2. Crist WM, Shuster JJ, Falletta J, et al. Clinical features and outcome in childhood T-cell leukemia-lymphoma according to stage of thymocyte differentiation: a Pediatric Oncology Group Study. Blood. 1988;72(6):1891–7.

  3. Ludwig WD, Harbott J, Bartram CR, et al. Incidence and prognostic significance of immunophenotypic subgroups in childhood acute lymphoblastic leukemia: experience of the BFM study 86. Rec Res Cancer Res. 1993;131:269–82. doi: 10.1007/978-3-642-84895-7_24.

  4. Pui CH, Behm FG, Crist WM. Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood. 1993;82(2):343–62.

  5. Uckun FM, Sensel MG, Sun L, et al. Biology and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood. 1998;91(3):735–46.

  6. Бойченко Э.Г., Попов А.М., Макарова Т.А. и др. Острый лимфобластный лейкоз из ранних предшественников Т-клеток. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2015;14(1):38–45.

    [Boichenko EG, Popov AM, Makarova TA, et al. Early T-cell precursor acute lymphoblastic leukemia. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2015;14(1):38–45. (In Russ)]

  7. Goldberg JM. Silverman LB, Levy DE, et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol. 20031;21(19):3616–22. doi:1200/JCO.2003.10.116.

  8. Moricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood. 2008;111(9):4477–89. doi: 10.1182/blood-2007-09-112920.

  9. Pui C-H, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78. doi: 10.1056/NEJMra052603.

  10. Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukaemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74. doi: 10.1200/JCO.2008.20.8934.

  11. Borowitz M, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s oncology group study. Blood. 2008;111(12):5477–85. doi: 10.1182/blood-2008-01-132837.

  12. Schrappe M, Valsecchi MG, Bartram CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118(8):2077–84. doi: 10.1182/blood-2011-03-338707.

  13. Fronkova E, Mejstrikova E, Avigad S, et al. Minimal residual disease (MRD) analysis in the non-MRD-based ALL IC-BFM 2002 Protocol for childhood ALL: is it possible to avoid MRD testing? Leukemia. 2008;22(5):989–97. doi: 10.1038/leu.2008.22.

  14. van Dongen JJM, Seriu T, Panzer-Grumayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(9142):1731–8. doi: 10.1016/s0140-6736(98)04058-6.

  15. Безнос О.А., Гривцова Л.Ю., Попа А.В. и др. Определение минимальной остаточной болезни при В-линейных острых лимфобластных лейкозах с использованием подходов EuroFlow. Клиническая онкогематология. 2017;10(2):158–68. doi: 21320/2500-2139-2017-10-2-158-168.

    [Beznos OA, Grivtsova LYu, Popa AV, et al. Evaluation of Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia Using EuroFlow Approaches. Clinical oncohematology. 2017;10(2):158–68. doi: 10.21320/2500-2139-2017-10-2-158-168. (In Russ)]

  16. Jaffe ES, Campo E, Harris NL, et al. Introduction and overview of the classification of lymphoid neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. edited by. Lyon: IARC Press; рр. 189–98.

  17. Borowitz MJ, Chan JKC, Bene M-C, Arber DA. T-lymphoblastic leukemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. edited by. Lyon: IARC Press; рр. 209–12.

  18. Gelin, C. Aubrit F, Phalipon A, et al. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J. 1989;8(11):3253–9. doi: 10.1002/j.1460-2075.1989.tb08485.x.

  19. Dworzak MN, Fritsch G, Buchinger P, et al. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood. 1994;83(2):415–25.

  20. Hamilton GA, Fellinger EJ, Schratter I, et al. Characterization of a human endocrine tissue and tumor-associated Ewing’s sarcoma antigen. Cancer Res. 1988;48(21):6127–31.

  21. Levy R, Dilley J, Fox RI, et al. A human thymus-leukemia antigen defined by hybridoma monoclonal antibodies. Proc Natl Acad Sci USA. 1979;76(12):6552–56. doi: 10.1073/pnas.76.12.6552.

  22. Bodger MP, Francis GE, Delia D, et al. A monoclonal antibody specific for immature human hemopoietic cells and T lineage cells. J Immunol. 1981;127(6):2269–74.

  23. Roshal M, Fromm JR, Winter S, et al. Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection. Cytometry B: Clin Cytom. 2010;78B(3):139–46. doi: 10.1002/cyto.b.20511.

  24. Janossy G, Coustan-Smith E, Campana D. The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: a study of 500 Leukemia. 1989;3(3):170–81.

Магнитно-резонансная томография костного мозга и ее результаты как критерий назначения поддерживающей терапии после аутоТГСК при множественной миеломе

М.В. Соловьев, Л.П. Менделеева, Г.А. Яцык, Н.С. Луцик, М.В. Фирсова, Э.Г. Гемджян, В.Г. Савченко

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Максим Валерьевич Соловьев, Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(495)612-31-92; е-mail: maxsolovej@mail.ru

Для цитирования: Соловьев М.В., Менделеева Л.П., Яцык Г.А. и др. Магнитно-резонансная томография костного мозга и ее результаты как критерий назначения поддерживающей терапии после аутоТГСК при множественной миеломе. Клиническая онкогематология. 2018;11(4):360–7.

DOI: 10.21320/2500-2139-2018-11-4-360-367


РЕФЕРАТ

Цель. Оценить эффективность поддерживающей терапии у больных множественной миеломой (ММ) после трансплантации аутологичных гемопоэтических стволовых клеток (аутоТГСК) по результатам МРТ костного мозга.

Материалы и методы. В исследование включено 32 больных ММ в возрасте 36–66 лет (медиана 57 лет), у которых достигнута полная ремиссия в результате одной аутоТГСК. С целью определить характер поражения костного мозга и объем опухолевой ткани на 100-й день после аутоТГСК выполняли МРТ позвоночника и костей таза. В качестве поддерживающей терапии после аутоТГСК 14 больным назначали леналидомид в дозе 15 мг/сут с 1-го по 21-й день 28-дневного курса в течение 1 года. Наблюдение без поддерживающего лечения осуществлялось за 18 больными. Статистический анализ включал определение выживаемости без прогрессирования (ВБП) и зависимости риска рецидивов от клинико-лабораторных параметров.

Результаты. МРТ-положительный статус (объем опухоли более 1 см3) выявлен у 20 больных. Отсутствие изменений МР-сигнала от костного мозга или обнаружение опухоли менее 1 см3 расценивались как МРТ-отрицательный ответ, что было зафиксировано у 12 больных. При достижении МРТ-отрицательного статуса отмечались наилучшие показатели 2-летней ВБП: 100 % при назначении поддерживающей терапии и 84 % без таковой. ВБП 2-летняя в группе пациентов с определяемой при МРТ опухолевой массой статистически значимо (= 0,03) различалась в зависимости от проведения поддерживающей терапии и составила 80 % в группе с поддерживающим лечением vs 33 % в группе без такового. Назначение поддерживающей терапии при выявлении на МР-томограммах остаточной опухолевой массы на 100-й день после аутоТГСК оказывает положительное влияние на показатели ВБП. Многофакторный анализ подтвердил, что наиболее важным параметром, от которого зависела ВБП, оказалось наличие остаточной опухоли на МР-томограммах костного мозга.

Заключение. МРТ-отрицательный статус после аутоТГСК является благоприятным прогностическим фактором, определяющим продолжительный (> 2 лет) период без признаков ММ, несмотря на отсутствие поддерживающей терапии.

Ключевые слова: множественная миелома, магнитно-резонансная томография (МРТ), трансплантация аутологичных гемопоэтических стволовых клеток (аутоТГСК), поддерживающая терапия, минимальная остаточная болезнь.

Получено: 11 мая 2018 г.

Принято в печать: 29 августа 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). (In Russ)]

  2. Kumar SK, Rajkumar SV, Dispenzieri A, et Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20. doi: 10.1182/blood-2007-10-116129.

  3. Mendeleeva LP, Solovev MV, Alexeeva A, at al. Multiple Myeloma in Russia (First Results of the Registration Trial). Blood. 2017;130(Suppl 1):5408.

  4. Passweg JR, Baldomero H, Bader Р, et al. Is the use of unrelated donor transplantation leveling off in Europe? The 2016 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2018. doi: 10.1038/s41409-018-0153-1. [Epub ahead of print]

  5. Passweg JR, Baldomero H, Bader P, et al. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant. 2016;51(6):786–92. doi: 10.1038/bmt.2016.20.

  6. Gay F, Oliva S, Petrucci MT, et al. Autologous transplant vs oral chemotherapy and lenalidomide in newly diagnosed young myeloma patients: a pooled analysis. Leukemia. 2017;31(8):1727–34. doi: 10.1038/leu.2016.381.

  7. Roussel M, Lauwers-Cances V, Robillard N, et al. Front-Line Transplantation Program With Lenalidomide, Bortezomib, and Dexamethasone Combination As Induction and Consolidation Followed by Lenalidomide Maintenance in Patients With Multiple Myeloma: A Phase II Study by the Intergroupe Francophone du Myelome. J Clin Oncol. 2014;32(25):2712–7. doi: 10.1200/JCO.2013.54.8164.

  8. Moreau P, San Miguel J, Sonneveld P, et al. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(Suppl 4):iv52–61. doi: 10.1093/annonc/mdx096.

  9. Syed YY. Lenalidomide: A Review in Newly Diagnosed Multiple Myeloma as Maintenance Therapy After ASCT. Drugs. 2017;77(13):1473–80. doi: 10.1007/s40265-017-0795-0.

  10. Goldschmidt H, Lokhorst HM, Mai EK, et al. Bortezomib before and after high-dose therapy in myeloma: long-term results from the phase III HOVON-65/GMMG-HD4 trial. Leukemia. 2018;32(2):383–90. doi: 10.1038/leu.2017.211.

  11. Rosinol L, Oriol A, Teruel AI, et al. Bortezomib and thalidomide maintenance after stem cell transplantation for multiple myeloma: a PETHEMA/GEM trial. Leukemia. 2017;31(9):1922–7. doi: 10.1038/leu.2017.35.

  12. Mellqvist UH, Gimsing P, Hjertner O, et al. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma: a Nordic Myeloma Study Group randomized phase 3 trial. Blood. 2013;121(23):4647–54. doi: 10.1182/blood-2012-11-464503.

  13. Sonneveld P, Schmidt-Wolf IG, van der Holt B, et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/GMMG-HD4 trial. J Clin Oncol. 2012;30(24):2946–55. doi: 10.1200/JCO.2011.39.6820.

  14. McCarthy PL, Owzar K, Hofmeister C, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1770–81. doi: 10.1056/NEJMoa1114083.

  15. Attal M, Lauwers-Cances V, Marit G, et al. Lenalidomide Maintenance after Stem-Cell Transplantation for Multiple Myeloma. N Engl J Med. 2012;366(19):1782–91. doi: 10.1056/NEJMoa1114138.

  16. Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895–905. doi: 10.1056/NEJMoa1402888.

  17. Solovev MV, Mendeleeva LP, Pokrovskaya OS, et al. Maintenance Therapy after Autologous Haematopoietic Stem Cell Transplantation (auto-HSCT) in Multiple Myeloma Patients with and without Minimal Residual Disease (MRD). Blood. 2016;128(22):2260.

  18. Solovev MV, Mendeleeva LP, Pokrovskaya OS, et al. The Duration of MRD-Negative Status in Multiple Myeloma (MM) Patients after Auto-HSCT Is a Criterion for Prolonged Remission without Maintenance Therapy. Blood. 2017;130(Suppl 1):3294.

  19. Dutoit JC, Verstraete KL. Whole-body MRI, dynamic contrast-enhanced MRI, and diffusion-weighted imaging for the staging of multiple myeloma. Skelet Radiol. 2017;46(6):733–50. doi: 10.1007/s00256-017-2609-6.

  20. Latifoltojar A, Hall‐Craggs M, Rabin N, et al. Whole body magnetic resonance imaging in newly diagnosed multiple myeloma: early changes in lesional signal fat fraction predict disease response. Br J Haematol. 2017;176(2):222–33. doi: 10.1111/bjh.14401.

  21. Lasocki A, Gaillard F, Harrison SJ. Multiple myeloma of the spine. Neuroradiol J. 2017;30(3):259–68. doi: 10.1177/1971400917699426.

  22. Bray TJ, Singh S, Latifoltojar A, et al. Diagnostic utility of whole body Dixon MRI in multiple myeloma: A multi-reader study. PLoS One. 2017;12(7):e0180562. doi: 10.1371/journal.pone.0180562.

  23. Sabour S. Whole-body ultra-low dose computed tomography in comparison with spinal magnetic resonance imaging in the assessment of disease in multiple myeloma; Methodological issues on Diagnostic value. Br J Haematol. 2017. doi: 10.1111/bjh.14849. [Epub ahead of print]

  24. Chantry A, Kazmi M, Barrington S, et al. Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol. 2017;178(3):380–93. doi: 10.1111/bjh.14827.

  25. Moulopoulos LA, Gika D, Anagnostopoulos A, et al. Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol. 2005;16(11):1824–8. doi: 10.1093/annonc/mdi362.

  26. Mai EK, Hielscher T, Kloth JK, et al. Association between magnetic resonance imaging patterns and baseline disease features in multiple myeloma: analyzing surrogates of tumour mass and biology. Eur Radiol. 2016;26(11):3939–48. doi: 10.1007/s00330-015-4195-0.

  27. Walker R, Barlogie B, Haessler J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol. 2007;25(9):1121–8. doi: 10.1200/JCO.2006.08.5803.

  28. Richardson PG, Holstein SA, Schlossman RL, et al. Lenalidomide in combination or alone as maintenance therapy following autologous stem cell transplant in patients with multiple myeloma: a review of options for and against. Expert Opin Pharmacother. 2017;18(18):1975–85. doi: 10.1080/14656566.2017.1409207.

  29. Pulte ED, Dmytrijuk A, Nie L, et al. FDA Approval Summary: Lenalidomide as Maintenance Therapy After Autologous Stem Cell Transplant in Newly Diagnosed Multiple Myeloma. Oncologist. 2018;23(6):734–9. doi: 10.1634/theoncologist.2017-0440.

  30. Sengsayadeth S, Malard F, Savani BN, et al. Posttransplant maintenance therapy in multiple myeloma: the changing landscape. Blood Cancer J. 2017;7(3):e545. doi: 10.1038/bcj.2017.23.

  31. McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide Maintenance After Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: A Meta-Analysis. J Clin Oncol. 2017;35(29):3279–89. doi: 10.1200/JCO.2017.72.6679.

  32. Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood. 2016;127(24):2955–62. doi: 10.1182/blood-2016-01-631200.

  33. Sivaraj D, Green MM, Li Z, et al. Outcomes of Maintenance Therapy with Bortezomib after Autologous Stem Cell Transplantation for Patients with Multiple Myeloma. Biol Blood Marrow Transplant. 2017;23(2):262–8. doi: 10.1016/j.bbmt.2016.11.010.

  34. Jackson GH, Davies FE, Pawlyn C, et al. Lenalidomide Is a Highly Effective Maintenance Therapy in Myeloma Patients of All Ages; Results of the Phase III Myeloma XI Study. Blood. 2016;128(22):1143.

  35. Neben K, Lokhorst HM, Jauch A, et al. Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood. 2012;119(4):940–8. doi: 10.1182/blood-2011-09-379164.

  36. Jackson GH, Davies FE, Pawlyn C, et al. Lenalidomide Maintenance Significantly Improves Outcomes Compared to Observation Irrespective of Cytogenetic Risk: Results of the Myeloma XI Trial. Blood. 2017;130(Suppl 1):436.

  37. Mellqvist UH, Gimsing P, Hjertner O, et al. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma: a Nordic Myeloma Study Group randomized phase 3 trial. Blood. 2013;121(23):4647–54. doi: 10.1182/blood-2012-11-464503.

  38. Phase III Studies Present Additional Evidence for REVLIMID® (lenalidomide) as Maintenance Therapy in Multiple Myeloma. Available from: http://ir.celgene.com/releasedetail.cfm?releaseid=1003026 (accessed 2.05.2018).

  39. Соловьев М.В., Менделеева Л.П., Покровская О.С. и др. Множественная миелома: поддерживающая терапия после трансплантации аутологичных гемопоэтических стволовых клеток в зависимости от минимальной остаточной болезни. Терапевтический архив. 2017;89(7):25–31. doi: 10.17116/terarkh201789725-31.

    [Solovyev MV, Mendeleeva LP, Pokrovskaya OS, et al. Multiple myeloma: Maintenance therapy after autologous hematopoietic stem cell transplantation, depending on minimal residual disease. Terapevticheskii arkhiv. 2017;89(7):25–31. doi: 10.17116/terarkh201789725-31. (In Russ)]

Минимальная остаточная болезнь и мутационный статус IGHV-генов как основные предикторы ответа на терапию первой линии по схеме «бендамустин + ритуксимаб» у больных хроническим лимфолейкозом

Ю.В. Миролюбова, Е.А. Стадник, В.В. Стругов, Т.О. Андреева, Т.С. Никулина, Ю.В. Вирц, П.А. Бутылин, А.Г. Румянцев, А.Ю. Зарицкий

ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

Для переписки: Юлия Владимировна Миролюбова, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; e-mail: juli9702@yandex.ru

Для цитирования: Миролюбова Ю.В., Стадник Е.А., Стругов В.В. и др. Минимальная остаточная болезнь и мутационный статус IGHV-генов как основные предикторы ответа на терапию первой линии по схеме «бендамустин + ритуксимаб» у больных хроническим лимфолейкозом. Клиническая онкогематология. 2018;11(2):167–74.

DOI: 10.21320/2500-2139-2018-11-2-167-174


РЕФЕРАТ

Актуальность. При хроническом лимфолейкозе (ХЛЛ) эрадикация минимальной остаточной болезни (МОБ) служит предиктором улучшения показателей общей (ОВ) и выживаемости без прогрессирования (ВБП). Мутационный статус IGHV-генов также имеет самостоятельное прогностическое значение.

Цель. Подвергнуть анализу влияние мутационного статуса и эрадикации МОБ у пациентов с ХЛЛ, получивших стандартный режим иммунохимиотерапии BR (бендамустин + ритуксимаб) в первой линии терапии.

Материалы и методы. В проспективное исследование включены пациенты без предшествующего противоопухолевого лечения с иммунофенотипически верифицированным диагнозом ХЛЛ. Все пациенты получили лечение комбинацией ВR с 2012 по 2015 г. У 109 больных определен уровень МОБ после 3-го и 6-го курсов терапии. У 98 из них доступны данные по мутационному статусу IGHV-генов. Мутационный статус IGHV-генов оценивался в соответствии с рекомендациями ERIC. МОБ определяли стандартизованным методом 4-цветной проточной цитометрии.

Результаты. МОБ-отрицательность достигнута у 37 (34 %) из 109 пациентов. Эрадикация МОБ коррелировала с лучшей ВБП (= 0,04). Мутационный статус IGHV-генов также статистически значимо влиял на ВБП (= 0,02). У пациентов с МОБ-отрицательным ответом и наличием мутаций в IGHV-генах за время наблюдения не зарегистрировано ни одного неблагоприятного события. В то же время показатели ВБП у МОБ-отрицательных пациентов с отсутствием мутаций в IGHV-генах и у МОБ-положительных с их наличием были значимо хуже. Статистически значимо лучшие показатели ВБП имели место при достижении эрадикации МОБ после 3-го курса терапии в отличие от ситуаций с персистенцией МОБ независимо от уровня остаточного опухолевого клона (= 0,01).

Заключение. При использовании схемы BR в первой линии статистически значимо лучшие показатели ВБП имели пациенты, у которых достигнута МОБ-отрицательная ремиссия после 3-го курса терапии. Кроме того, ВБП была значимо лучше у пациентов с МОБ-отрицательным результатом после 6-го курса BR и наличием мутаций в генах IGHV. Достижение МОБ-отрицательного результата после 6-го курса BR у пациентов с отсутствием мутаций IGHV-генов не сопровождалось улучшением ВБП. Это свидетельствует о том, что МОБ-отрицательный статус сам по себе не является универсальным фактором прогноза.

Ключевые слова: хронический лимфолейкоз, минимальная остаточная болезнь, бендамустин, ритуксимаб, BR, IGHV, мутационный статус.

Получено: 29 декабря 2017 г.

Принято в печать: 27 февраля 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  2. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.
  3. Клинические рекомендации по обследованию и лечению больных хроническим лимфолейкозом. Под ред. И.В. Поддубной, В.Г. Савченко [электронный документ]. Доступно по: https://blood.ru/documents/clinical%20guidelines/26.%20klinicheskie-rekomendacii-2014-xll.pdf. Ссылка активна на 12.2017.[Poddubnaya IV, Savchenko VG, eds. Clinical guidelines in examination and treatment of patients with chronic lymphocytic leukemia [Internet]. Available from: https://blood.ru/documents/clinical%20guidelines/26.%20klinicheskie-rekomendacii-2014-xll.pdf. (accessed 27.12.2017) (In Russ)]
  4. Keating MJ, O’Brien S, Albitar M, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol. 2005;23(18):4079–88. doi: 1200/JCO.2005.12.051.
  5. Eichhorst BF, Busch R, Hopfinger G, et al. Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. 2006;107(3):885–91. doi: 10.1182/blood-2005-06-2395.
  6. Стадник Е.А., Никитин Е.А., Бидерман Б.В. и др. Ретроспективное сравнение эффективности и токсичности режимов лечения FC и FCR у первичных больных В-клеточным хроническим лимфолейкозом. Онкогематология. 2008;1–2:39–46.[Stadnik EA, Nikitin EA, Biderman BV, et al. Comparison of efficacy and toxicity of FC and FCR regimens in the treatment of primary B-cell chronic lymphocytic leukemia: a retrospective study. Onkogematologiya. 2008;1–2:39–46. (In Russ)]
  7. Vuillier F, Claisse JF, Vandenvelde C, et al. Evaluation of residual disease in B-cell chronic lymphocytic leukemia patients in clinical and bone-marrow remission using CD5-CD19 markers and PCR study of gene rearrangements. Leuk Lymphoma. 1992;7(3):195–204. doi: 10.3109/10428199209053623.
  8. Lenormand B, Bizet M, Fruchart C, et al. Residual disease in B-cell chronic lymphocytic leukemia patients and prognostic value. Leukemia. 1994;8(6):1019–26.
  9. Cabezudo E, Matutes E, Ramrattan M, et al. Analysis of residual disease in chronic lymphocytic leukemia by flow cytometry. Leukemia. 1997;11(11):1909–14. doi: 10.1038/sj.leu.2400835.
  10. Rawstron AC, Villamor N, Ritgen M, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007;21(5):956–64. doi: 10.1038/sj.leu.2404584.
  11. Rawstron AC, Bottcher S, Letestu R, et al. Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. 2013;27(1):142–9. doi: 10.1038/leu.2012.216.
  12. Rawstron AC, Fazi C, Agathangelidis A, et al. A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia. 2016;30(4):929–36. doi: 10.1038/leu.2015.313.
  13. Луговская С.А., Почтарь М.Е., Наумова Е.В. Диагностика минимальной остаточной болезни при В-клеточном хроническом лимфолейкозе методом многопараметрической лазерной проточной цитофлюориметрии. Клиническая лабораторная диагностика. 2010;9:20–20а.[Lugovskaya SA, Pochtar’ ME, Naumova EV. Diagnosis of minimal residual diseases in B-cell chronic lympholeukemia by multiparametric laser flow cytofluorometry. Klinicheskaya laboratornaya diagnostika. 2010;9:20–20а. (In Russ)]
  14. Stehlikova O, Chovancova J, Tichy B, et al. Detecting minimal residual disease in patients with chronic lymphocytic leukemia using 8-color flow cytometry protocol in routine hematological practice. Int J Lab Hematol. 2014;36(2):165–71. doi: 10.1111/ijlh.12149.
  15. Bottcher S, Stilgenbauer S, Busch R, et al. Standardized MRD flow and ASO IGH RQ-PCR for MRD quantification in CLL patients after rituximab-containing immunochemotherapy: a comparative analysis. Leukemia. 2009;23(11):2007–17. doi: 10.1038/leu.2009.140.
  16. Thompson PA, Wierda WG. Eliminating minimal residual disease as a therapeutic end point: working toward cure for patients with CLL. Blood. 2016;127(3):279–86. doi: 10.1182/blood-2015-08-634816.
  17. Voena C, Ladetto M, Astolfi M, et al. A novel nested-PCR strategy for the detection of rearranged immunoglobulin heavy-chain genes in B cell tumors. Leukemia. 1997;11(10):1793–8. doi: 10.1038/sj.leu.2400801.
  18. Logan AC, Zhang B, Narasimhan B, et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia. 2013;27(8):1659–65. doi: 10.1038/leu.2013.52.
  19. Pfitzner T, Engert A, Wittor H, et al. A real-time PCR assay for the quantification of residual malignant cells in B cell chronic lymphatic leukemia. Leukemia. 2000;14(4):754–66. doi: 10.1038/sj.leu.2401706.
  20. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.
  21. Guideline on the use of minimal residue disease as an endpoint in chronic lymphocytic leukaemia studies [Internet]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/12/WC500179047.pdf. (accessed 27.12.2017).
  22. Bottcher S, Ritgen M, Fischer K, et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012;30(9):980–8. doi: 10.1200/JCO.2011.36.9348.
  23. Kovacs G, Robrecht S, Fink AM, et al. Minimal Residual Disease Assessment Improves Prediction of Outcome in Patients With Chronic Lymphocytic Leukemia (CLL) Who Achieve Partial Response: Comprehensive Analysis of Two Phase III Studies of the German CLL Study Group. J Clin Oncol. 2016;34(31):3758–65. doi: 10.1200/JCO.2016.67.1305.
  24. Damle RN, Wasil T, Fais F, et al. IgV gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–7.
  25. Thompson PA, Tam CS, O’Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–9. doi: 10.1182/blood-2015-09-667675.
  26. Kwok M, Rawstron A, Varghese A, et al. Minimal residual disease is an independent predictor for 10-year survival in CLL. Blood. 2016;128(24):2770–3. doi: 10.1182/blood-2016-05-714162.
  27. Strati P, Keating MJ, O’Brien SM, et al. Eradication of bone marrow minimal residual disease may prompt early treatment discontinuation in CLL. Blood. 2014;123(24):3727–32. doi: 10.1182/blood-2013-11-538116.
  28. Стругов В.В., Стадник Е.А., Румянцев А.М. и др. Влияние мутационного статуса IGHV-генов и стереотипности строения BCR на эффективность режима BR в первой линии терапии хронического лимфолейкоза. Клиническая онкогематология. 2017;10(2):141–9. doi: 10.21320/2500-2139-2017-10-2-141-149.[Strugov VV, Stadnik EA, Rumyantsev AM, et al. Effect of IGHV Gene Mutation Status and BCR Structure Stereotypy on Effectiveness of BR Regimen in First-Line Therapy of Chronic Lymphocytic Leukemia. Clinical oncohematology. 2017;10(2):141–9. doi: 10.21320/2500-2139-2017-10-2-141-149. (In Russ)]
  29. Никитин Е.А., Стадник Е.А., Лорие Ю.Ю. и др. Прогностическое значение мутационного статуса генов вариабельного региона иммуноглобулинов у больных хроническим лимфолейкозом, получавших комбинированную терапию флударабином и циклофосфаном. Терапевтический архив. 2007;79(7):66–70.[Nikitin EA, Stadnik EA, Lorie YuYu, et al. Prognostic significance of IGHV mutational status in chronic lymphocytic leukemia patients after combination therapy with fludarabine and cyclophosphan. Terapevticheskii arkhiv. 2007;79(7):66–70. (In Russ)]
  30. Cross NCP, White HE, Colomer D, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29(5):999–1003. doi: 1038/leu.2015.29.
  31. Chanan-Khan A, Cramer P, Demirkan F, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17(2):200–11. doi: 10.1016/S1470-2045(15)00465-9.
  32. Seymour JF, Ma S, Brander DM, et al. Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. Lancet Oncol. 2017;18(2):230–40. doi: 10.1016/s1470-2045(17)30012-8.
  33. Stilgenbauer S, Chyla B, Eichhorst B, et al. Venetoclax in relapsed/refractory chronic lymphocytic leukemia (CLL) with 17p deletion: outcome and minimal residual disease from the full population of the pivotal M13-982 trial. Eur Hematol Assoc. 2017: Abstract S771.
  34. Stilgenbauer S, Morschhauser F, Wendtner C-M, et al. Phase Ib study (GO28440) of venetoclax with bendamustine/rituximab or bendamustine/obinutuzumab in patients with relapsed/refractory or previously untreated chronic lymphocytic leukemia. Blood. 2016;128(22): Abstract 4393.

Ибрутиниб в лечении рецидивов хронического лимфолейкоза

Е.А. Стадник, Н.С. Тимофеева, В.В. Стругов, А.Ю. Зарицкий

ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

Для переписки: Елена Александровна Стадник, канд. мед. наук, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197431; тел.: +7(921)575-54-55; e-mail: elena_stadnik@mail.ru

Для цитирования: Стадник Е.А., Тимофеева Н.С., Стругов В.В., Зарицкий А.Ю. Ибрутиниб в лечении рецидивов хронического лимфолейкоза. Клиническая онкогематология. 2018;11(1):42-9.

DOI: 10.21320/2500-2139-2018-11-1-42-49


РЕФЕРАТ

Цель. Оценить эффективность ибрутиниба при первых ранних рецидивах хронического лимфолейкоза (ХЛЛ) и у больных, получивших 2 и более линий предшествующей терапии. Анализ результатов лечения у пациентов с del(17p), мониторинг минимальной остаточной болезни (МОБ) и профиля безопасности ибрутиниба.

Материалы и методы. Анализу подвергнуты результаты терапии ибрутинибом у 31 пациента c ХЛЛ. Бендамустин- и флударабин-содержащие режимы получили 28 человек. Медиана линий предшествующей терапии была 2 (диапазон 1–10). Показанием к началу лечения служил первый ранний рецидив (51 %, n = 16) и рецидив после 2 и более линий (49 %, n = 15). Ибрутиниб использовался в монорежиме (n = 15), в комбинации с ритуксимабом (n = 14) и в сочетании с режимом R-BAC (n = 2). Методом FISH del(17p) выявлена у 9 (34 %) пациентов.

Результаты. При медиане наблюдения 18 мес. (диапазон 7–42+ мес.) общая выживаемость (ОВ) составила 87 %, выживаемость без прогрессирования (ВБП) — 77 %. Наиболее глубокая МОБ через 1 год от начала терапии ибрутинибом отмечалась при комбинированном использовании препарата с режимами иммунохимиотерапии (например, R-BAC). На срок 18 мес. ОВ в группе первых ранних рецидивов составила 100 %, а в группе после 2 линий терапии и более — 66 % (= 0,02). ВБП на этот же срок наблюдения была значимо выше в группе первых ранних рецидивов (94 %) по сравнению с пациентами с предшествующим лечением (60 %) (= 0,034). Наиболее частые нежелательные явления: геморрагический диатез I–II степени (30 %), диарея I–II степени (10 %), пароксизмы фибрилляции предсердий (10 %) и артериальная гипертензия (10 %). У 3 (6 %) пациентов зарегистрированы тяжелые инфекционные осложнения, успешно разрешившиеся на фоне комбинированной антибактериальной и антимикотической терапии.

Заключение. Ибрутиниб эффективен при рецидивах ХЛЛ. Показатели ОВ и ВБП статистически значимо лучше у больных с первыми ранними рецидивами по сравнению с пациентами после 2 и более линий предшествующей ибрутинибу терапии. Наиболее глубокая элиминация опухолевого клона наблюдается при использовании комбинированных режимов иммунохимиотерапии с ибрутинибом. Отмечалась удовлетворительная переносимость препарата при приемлемом профиле токсичности. Летальных исходов от инфекционных осложнений не наблюдалось.

Ключевые слова: хронический лимфолейкоз, первый ранний рецидив, делеция 17p, ибрутиниб, минимальная остаточная болезнь.

Получено: 20 августа 2017 г.

Принято в печать: 16 ноября 2017 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Fornecker LM, Aurran-Schleinitz T, Michallet AS, et al. Salvage outcomes in patients with first relapse after fludarabine, cyclophosphamide, and rituximab for chronic lymphocytic leukemia: the French intergroup experience. Am J Hematol. 2015;90(6):511–4. doi: 10.1002/ajh.23999.
  2. Стадник Е.А., Стругов В.В., Андреева Т.О. и др. Эффективность комбинации бендамустина ритуксимаба в первой линии терапии ХЛЛ: результаты исследования BEN-001. Терапевтический архив. 2017;89(7):57–64. doi: 10.17116/terarkh201789757-64. [Stadnik EA, Strugov VV, Andreeva TO, et al. Efficacy of a bendamustine and rituximab combination in first-line therapy for chronic lymphocytic leukemia: Results of the BEN-001 study. Terapevticheskii arkhiv. 2017;89(7):57–64. doi: 10.17116/terarkh201789757-64. (In Russ)]
  3. Стругов В.В., Стадник Е.А., Вирц Ю.В. и др. Значение возраста и сопутствующих заболеваний в терапии хронического лимфолейкоза. Клиническая онкогематология. 2016;9(2):162–75. doi: 10.21320/2500-2139-2016-9-2-162-175. [Strugov VV, Stadnik EA, Virts YuV, et al. Role of Patient’s Age and Comorbidities in Therapy of Chronic Lymphocytic Leukemia. Clinical oncohematology. 2016;9(2):162–75. doi: 10.21320/2500-2139-2016-9-2-162-175. (In Russ)]
  4. Никитин Е.А., Стадник Е.А., Лорие Ю.Ю. и др. Прогностическое значение мутационного статуса генов вариабельного региона иммуноглобулинов у больных хроническим лимфолейкозом, получавших комбинированную терапию флударабином и циклофосфаном. Терапевтический архив. 2007;79(7):66–70. [Nikitin EA., Stadnik EA, Lorie YuYu, et al. Prognostic significance of immunoglobulin variable region mutations in B-CLL patients treated with combination therapy fludarabine plus cyclophosphamide. Terapevticheskii arkhiv. 2007;79(7):66–70. (In Russ)]
  5. Thompson PA, Tam CS, O’Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–9. doi: 10.1182/blood-2015-09-667675.
  6. Fischer K, Bahlo J, Fink AM, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127(2):208–15. doi: 10.1182/blood-2015-06-651125.
  7. Robbe P, Ridout K, Becq J, et al. Identifying High-Risk CLL to Predict Early Relapse after FCR Based Treatment Using Whole Genome Sequencing: First Results from the Genomics England CLL Pilot. Blood. 2016;128:2022.
  8. Castro JE, James DF, Sandoval-Sus JD, et al. Rituximab in combination with high-dose methylprednisolone for the treatment of chronic lymphocytic leukemia. Leukemia. 2009;23(10):1779–89. doi: 10.1038/leu.2009.133.
  9. Cramer P, Fink A-M, Busch R, et al. Second-line therapies of patients initially treated with fludarabine and cyclophosphamide or fludarabine, cyclophosphamide and rituximab for chronic lymphocytic leukemia within the CLL8 protocol of the German CLL Study Group. Leuk Lymphoma. 2013;54(8):1821–2. doi: 10.3109/10428194.2013.796050.
  10. Brown JR. The Treatment of Relapsed Refractory Chronic Lymphocytic Leukemia. Hematology. 2011;2011(1):110–8. doi: 10.1182/asheducation-2011.1.110.
  11. Tam CS, O’Brien S, Plunkett W. Long-term results of first salvage treatment in CLL patients treated initially with FCR (fludarabine, cyclophosphamide, rituximab). Blood. 2014;124(20):3059–64. doi: 10.1182/blood-2014-06-583765.
  12. Zenz T, Busch R, Fink A, et al. Genetics of patients with F-refractory CLL or early relapse after FC or FCR: Results from the CLL8 trial of the GCLLSG [Abstract]. Blood (ASH Annual Meeting Abstracts) 2010;116(21):2427.
  13. Stilgenbauer S, Zenz T, Winkler D, et al. Genomic Aberrations, VH Mutation Status and Outcome after Fludarabine and Cyclophosphamide (FC) or FC Plus Rituximab (FCR) in the CLL8 Trial. Blood. 2008;112(11): Abstract 781.
  14. Montserrat E, Dreger P. Treatment of Chronic Lymphocytic Leukemia With del(17p)/TP53 Mutation: Allogeneic Hematopoietic Stem Cell Transplantation or BCR-Signaling Inhibitors? Clin Lymph Myel Leuk. 2016;16:S74–S81. doi: 10.1016/j.clml.2016.02.013.
  15. Gladstone DE, Blackford A, Cho E, et al. The Importance of IGHV Mutational Status in del(11q) and del(17p) Chronic Lymphocytic Leukemia. Clin Lymph Myel Leuk. 2012;12(2):132–7. doi: 10.1016/j.clml.2011.12.005.
  16. The International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90. doi: 10.1016/S1470-2045(16)30029-8.
  17. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. doi: 10.1056/nejmoa1400376.
  18. O’Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409–18. doi: 10.1016/s1470-2045(16)30212-1.
  19. Visco C, Finotto S, Pomponi F, et al. The combination of rituximab, bendamustine, and cytarabine for heavily pretreated relapsed/refractory cytogenetically high-risk patients with chronic lymphocytic leukemia. Am J Hematol. 2013;88(4):289–93. doi: 10.1002/ajh.23391.
  20. Castegnaro S, Visco C, Chieregato K. et al. Cytosine arabinoside potentiates the apoptotic effect of bendamustine on several B- and T-cell leukemia/lymphoma cells and cell lines. Leuk Lymphoma. 2012;53(11):2262–8. doi: 10.3109/10428194.2012.688200.
  21. Brown JR, Hillmen P, O’Brien S, et al. Updated Efficacy Including Genetic and Clinical Subgroup Analysis and Overall Safety in the Phase 3 RESONATE TM Trial of Ibrutinib Versus Ofatumumab. Blood. 2014;124(21): Abstract 3331.
  22. Jones J, Coutr S, Byrd JC, et al. Evaluation of 243 patients with deletion 17p chronic lymphocytic leukemia treated with ibrutinib: a cross-study analysis of treatment outcomes. EHA Learning Center. 2016;135185: Abstract S429.
  23. Burger JA, Keating MJ, Wierda WG. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukemia: a single-arm, phase 2 study. Lancet Oncol. 2014;15(10):1090–9. doi: 10.1016/S1470-2045(14)70335-3.
  24. Fraser G, Cramer P, Hallek M, et al. Three-Year Follow-up of Patients With Previously Treated Chronic Lymphocytic Lymphoma (CLL) Receiving Ibrutinib Plus Bendamustine and Rituximab (BR) Versus Placebo Plus BR. An Update of the HELIOS Study. XVII iwCLL. 2017: Abstract 400.
  25. Burger JA, Tedeschi A, Bar PM. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015;373(25):2425–37. doi: 10.1056/NEJMoa1509388.

Определение минимальной остаточной болезни при В-линейных острых лимфобластных лейкозах с использованием подходов EuroFlow

О.А. Безнос, Л.Ю. Гривцова, А.В. Попа, М.А. Шервашидзе, И.Н. Серебрякова, О.Ю. Баранова, Е.А Османов, Н.Н. Тупицын

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Ольга Алексеевна Безнос, младший научный сотрудник, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: 8(916)480-03-35; e-mail: beznos.olga@gmail.com

Для цитирования: Безнос О.А., Гривцова Л.Ю., Попа А.В. и др. Определение минимальной остаточной болезни при В-линейных острых лимфобластных лейкозах с использованием подходов EuroFlow. Клиническая онкогематология. 2017;10(2):158–68.

DOI: 10.21320/2500-2139-2017-10-2-158-168


РЕФЕРАТ

Актуальность и цели. Оценка минимальной остаточной болезни (МОБ) на различных этапах химиотерапии — один из ключевых факторов прогноза и стратификации больных на группы риска при острых лимфобластных лейкозах (ОЛЛ). Основой определения МОБ как на 15-й день, так и на более поздних сроках терапии является выявление бластных клеток с лейкоз-ассоциированным иммунофенотипом. Цель — оценить возможности 8-цветных стандартизованных панелей консорциума EuroFlow и выявить на этапе первичной диагностики индивидуальные критерии мониторинга МОБ.

Материалы и методы. В анализ включены данные по первичному иммунофенотипу и оценке МОБ в процессе химиотерапии у 10 взрослых больных и 35 детей с установленным диагнозом ОЛЛ из B-линейных предшественников.

Результаты. Особенности фенотипа ОЛЛ на этапе первичной диагностики дают возможность наиболее полно охарактеризовать 8-цветные панели EuroFlow. Это позволяет отобрать наиболее информативные комбинации антигенов для дальнейшего мониторинга МОБ. В качестве наиболее часто встречающихся аберрантных иммунофенотипов бластных клеток при ОЛЛ могут быть рекомендованы комбинации с экспрессией антигенов CD58/CD38, CD81/СD9, а также оценка коэкспрессии пан-миелоидных антигенов CD13, CD33. В отношении В-линейных предшественников у детей на 15-й день индукционной химиотерапии кроме оценки количества В-линейных предшественников CD10+ и/или CD34+ целесообразно выявлять популяцию клеток TdT+ сyCD22+.

Заключение. Таким образом, 8-цветные панели EuroFlow позволяют не только детально охарактеризовать первичный иммунофенотип острого лейкоза, но и могут широко использоваться для выявления МОБ на всех этапах химиотерапии.

Ключевые слова: В-линейные острые лимфобластные лейкозы, многоцветная проточная цитометрия, минимальная остаточная болезнь.

Получено: 14 января 2017 г.

Принято в печать: 29 января 2017 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in children acute lymphoblastic leukemia and its relationship to the prognostic factors: a Children’s Oncology Group study. Blood. 2008;111(12):5477–85. doi: 10.1182/blood-2008-01-132837.
  2. Dworzak MN, Froschl G, Printz D, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952–8. doi: 10.1182/blood.V99.6.1952.
  3. Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74. doi: 10.1200/jco.2008.20.8934.
  4. Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100(1);52–8. doi: 10.1182/blood-2002-01-0006.
  5. Coustan-Smith E, Ribeiro RC, Stow P, et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood. 2006;108(1):97–102. doi: 10.1182/blood-2006-01-0066.
  6. Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of antracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood. 2000;95(11):3310–22.
  7. Гривцова Л.Ю., Попа А.В., Купрышина Н.А. и др. Оценка минимальной резидуальной болезни при острых лимфобластных лейкозах из В-линейных предшественников у детей методом трехцветной проточной цитометрии. Иммунология гемопоэза. 2008;5(2):8–33.
    [Grivtsova LYu, Popa AV, Kupryshina NA, et al. Detection of minimal residual disease in children with B-cell precursor acute lymphoblastic leukemia with simplified protocols. Immunologiya gemopoeza. 2008;5(2):8–33. (In Russ)]
  8. Гривцова Л.Ю., Попа А.В., Серебрякова И.Н., Тупицын Н.Н. К дальнейшей стандартизации определения остаточных бластных клеток в костном мозге детей с В-линейными острыми лимфобластными лейкозами на 15-й день индукционной терапии. Иммунология гемопоэза. 2011;8(1):35–54.
    [Grivtsova LYu, Popa AV, Serebryakova IN, Tupitsyn NN. To further standardization in detection of residual blasts in bone marrow of children with B-cell acute lymphoblastic leukemia on Day 15 of induction therapy. Immunologiya gemopoeza. 2011;8(1):35–54. (In Russ)]
  9. van Dongen JJM, van der Velden VHJ, Bruggemann M, et al. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009. doi: 10.1182/blood-2015-03-580027.
  10. van Dongen JJM, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–75. doi: 10.1038/leu.2012.120.
  11. Локен М.Р., Уэлс Д.А. Определение клеток предшественников. Иммунология гемопоэза. 2010;7(1):8–22.
    [Loken MR, Wells DA. Enumeration of progenitor cells. Immunologiya gemopoeza. 2010;7(1):8–22 (In Russ)]
  12. Гривцова Л.Ю., Тупицын Н.Н. Иммунологическая оценка гемодилюции костного мозга при лабораторных исследованиях (на основании теста М. Локен). Медицинский алфавит. 2015;4(18):67–70.
    [Grivtsova LYu, Tupitsyn NN. Immunological evaluation of bone marrow hemodilution in laboratory test (based on M. Loken’s test). Meditsinskii alfavit. 2015;4(18):67–70. (In Russ)]
  13. Тупицын Н.Н., Гривцова Л.Ю., Купрышина Н.А. Иммунодиагностика опухолей крови на основании многоцветных (8-цветных панелей) Европейского консорциума по проточной цитометрии (Euroflow). Иммунология гемопоэза. 2015;13(1):31–62.
    [Tupitsyn NN, Grivtsova LYu, Kupryshina NA. Haematopoietic malignancies immune diagnostics based on Euroflow Consortium proposals: 8-color flow cytometry. Immunologiya gemopoeza. 2015;13(1):31–62. (In Russ)]
  14. Veltroni M, de Zen L, Sanzari MC, et al.; I-BFM-ALL-FCM-MRD-Study Group. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. J Hematol. 2003;88(11):1245–52.
  15. Romero-Ramırez H, Morales-Guadarrama MT, Pelayo R, et al. CD38 expression in early B-cell precursors contributes to extracellular signal-regulated kinase-mediated apoptosis. Immunology. 2014;144(2):271–81. doi: 10.1111/imm.12370.
  16. Tajima F, Deguchi T, Laver JH, et al. Reciprocal expression of CD38 and CD34 by adult murine hematopoietic stem cells. Blood. 2001;97(9):2618–24. doi: 10.1182/blood.V97.9.2618.
  17. Higuchi Y, Zeng H, Ogawa M. CD38 expression by hematopoietic stem cells of newborn and juvenile mice. Leukemia. 2003;17(1):171–4. doi: 10.1038/sj.leu.2402785.
  18. Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev. 2004;197(1):179–91. doi: 10.1111/j.0105-2896.2004.0109.x.
  19. Lamkin T, Brooks J, Annett G, et al. Immunophenotypic differences between putative hematopoietic stem cells and childhood B cell precursor acute lymphoblastic leukemia cells. Leukemia. 1994;8(11):1871–8.
  20. Chen JS, Coustan-Smith E, Suzuki T, et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood. 2001;97(7):2115–20. doi: 10.1182/blood.V97.7.2115.
  21. De Waele M, Renmans W, Jochmans K, et al. Different expression of adhesion molecules on CD34+ cells in AML and B-lineage ALL and their normal bone marrow counterparts. Eur J Haematol. 1999;63(3):192–201. doi: 10.1111/j.1600-0609.1999.tb01767.x.
  22. Dworzak MN, Fritsch G, Froschl G, et al. Four-Color Flow Cytometric Investigation of Terminal Deoxynucleotidyl Transferase–Positive Lymphoid Precursors in Pediatric Bone Marrow: CD79a Expression Precedes CD19 in Early B-Cell Ontogeny. Blood. 1998;92(9):3203–9.
  23. Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267–76. doi: 10.1182/blood-2010-12-324004.
  24. Barrena S, Almeida J, Yunta M, et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia. 2005;19(8):1376–83. doi: 10.1038/sj.leu.2403822.
  25. Тупицын Н.Н., Гривцова Л.Ю., Купрышина Н.А. Проточная цитометрия в онкогематологии. Часть I. Основы и нововведения в диагностике острых лейкозов. Клиническая онкогематология. 2012;5(1):42–7.
    [Tupitsyn NN, Grivtsova LYu, Kupryshina NA. Flow cytometry in hematology malignancies. Part I. ABC and news in acute leukemia diagnostics. Klinicheskaya onkogematologiya. 2012;5(1):42–7. (In Russ)]
  26. Shoham T, Rajapaksa R, Boucheix C, et al. The Tetraspanin CD81 Regulates the Expression of CD19 During B Cell Development in a Postendoplasmic Reticulum Compartment. J Immunol. 2003;171(8):4062–72. doi: 10.4049/jimmunol.171.8.4062.

 

Аллогенная трансплантация гемопоэтических стволовых клеток при миелодиспластических синдромах и клиническое значение гиперэкспрессии гена WT1

Н.Н. Мамаев1, А.В. Горбунова1, Т.Л. Гиндина1, Е.В. Морозова1, Я.В. Гудожникова1, О.А. Слесарчук1, В.Н. Овечкина1, А.А. Рац1, Э.Г. Бойченко2, Е.А. Украинченко3, В.М. Кравцова1, А.В. Евдокимов1, И.М. Бархатов1, С.Н. Бондаренко1, Б.В. Афанасьев1

1 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, ул. Рентгена, д. 12, Санкт-Петербург, Российская Федерация, 197022

2 Детская городская больница № 1, ул. Авангардная, д. 14, Санкт-Петербург, Российская Федерация, 198205

3 Александровская городская больница № 17, пр-т Солидарности, д. 4, Санкт-Петербург, Российская Федерация, 193312

Для переписки: Н.Н. Мамаев, д-р мед. наук, профессор, ул. Рентгена, д. 12, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)233-12-43; e-mail: nikmamaev524@gmail.com

Для цитирования: Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л., Морозова Е.В., Гудожникова Я.В., Слесарчук О.А., Овечкина В.Н., Рац А.А., Бойченко Э.Г., Украинченко Е.А., Кравцова В.М., Евдокимов А.В., Бархатов И.М., Бондаренко С.Н., Афанасьев Б.В. Аллогенная трансплантация гемопоэтических стволовых клеток при миелодиспластических синдромах и клиническое значение гиперэкспрессии гена WT1. Клин. онкогематол. 2014; 7(4): 551–563.


РЕФЕРАТ

Представлены результаты аллогенной трансплантации гемопоэтических стволовых клеток (аллоТГСК) у 17 больных (11 — мужского пола, 6 — женского) с миелодиспластическим синдромом (3 — РА/РАКС/РЦМД, 5 — РАИБ-1, 7 — РАИБ-2 и 2 — ЮММЛ) в возрасте от 1 до 55 лет (средний возраст 26 лет). Цитогенетические исследования были проведены у всех пациентов. У 7 (41 %) из них имела место моносомия 7, которая в 4 наблюдениях была связана с другими нарушениями кариотипа. Кроме того, обнаружены делеции 11q23 (n = 3), трисомии 8 (n = 2) и 21 (n = 2), вовлечение в перестройки 3q (n = 2), транслокация t(6;9) (n = 1) и другие, более редкие нарушения кариотипа. Перед аллоТГСК гипометилирующие агенты (ГА) получило 11 (65 %) из 17 больных. У половины пациентов ГА оказались эффективными. Для подготовки к аллоТГСК были использованы аблативный (бусульфан, циклофосфамид) или с уменьшенной токсичностью (флударабин, циклофосфамид) режимы кондиционирования (4 и 13 больных соответственно). В связи с неприживлением трансплантата или развитием посттрансплантационных рецидивов у 6 больных трансплантации были проведены повторно. Молекулярный мониторинг минимальной остаточной болезни и раннее распознавание возможного посттрансплантационного рецидива осуществляли с помощью серийного измерения уровня экспрессии гена WT1 и донорского химеризма. Максимальные значения WT1 варьировали от 15 до 43 133 копий/104 копий гена ABL, а молекулярные рецидивы заболевания были отмечены у половины, в т. ч. у 5 больных с трансформацией миелодиспластического синдрома (МДС) в острый лейкоз (ОЛ). Для профилактики и лечения рецидивов у 4 (24 %) больных использовали ГА, которые комбинировали с инфузиями донорских лимфоцитов. Стандартные химиотерапевтические средства подключали к лечению рецидивов относительно редко. В настоящем исследовании подтверждено, что гиперэкспрессия гена WT1 является не только важным молекулярным параметром своевременной диагностики посттрансплантационных рецидивов МДС/ОЛ, но и может использоваться для оценки качества лечения пациентов.


Ключевые слова: миелодиспластические синдромы, аллогенная ТГСК, посттрансплантационные рецидивы, минимальная остаточная болезнь, серийная экспрессия гена WT1.

Принято в печать: 30 сентября 2014 г.

Читать статью в PDF pdficon


ЛИТЕРАТУРА

  1. Barrett A.J., Battiwala M. Relapse after allogeneic stem cell transplantation. Exp. Rev. Hematol. 2012; 3(4): 429–41.
  2. Tamura K., Kanazawa T., Suzuki M. et al. Successful rapid discontinuation of immunosuppressive therapy at molecular relapse after allogeneic bone marrow transplantation in a pediatric patient with myelodysplastic syndrome. Am. J. Hematol. 2006; 81: 139–41.
  3. Wertheim G.B., Bagg A. Minimal residual disease testing to predict relapse following transplant for AML and high-grade myelodysplastic syndromes. Exp. Rev. Mol. Diagn. 2011; 11(4): 361–6.
  4. Brieger J., Weidmann E., Fenchel K. et al. The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia. 1994; 8: 2138–43.
  5. Inoue K., Sugiyama H., Ogawa H. et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994; 84: 3071–9.
  6. Inoue K., Ogawa H., Yamagami T. et al. Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood. 1996; 88: 2267–78.
  7. Tamaki H., Ogawa H., Inoue K. et al. Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia. Blood. 1996; 88: 4396–8.
  8. Patmasirivat P., Fraizer G., Kantarjian H. et al. WT1 and GATA1 expression in myelodysplastic syndrome and acute leukemia. Leukemia. 1999; 13: 891–900.
  9. Ogawa H., Ikegame K., Kawakami M., Tamaki H. WT1 gene transcript assay for relapse in acute leukemia after transplantation. Leuk. Lymphoma. 2004; 45: 1747–53.
  10. Cilloni D., Gottardi E., De Micheli D. et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002; 16: 2115–21.
  11. Cilloni D., Messa F., Arruga F. et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008; 93: 921–4.
  12. Candoni A., Tribelli M., Cilloni D. et al. Quantitative assessment of WT1 gene expression after allogeneic stem cell transplantation is a useful tool for monitoring minimal residual disease in acute myeloid leukemia. Eur. J. Haematol. 2009; 82: 61–8.
  13. Miyawaki S., Hatsumi N., Tamaki T. et al. Prognostic potential of detection of WT1 mRNA level in peripheral blood in adult acute myeloid leukemia. Leuk. Lymphoma 2010; 51: 1855–61.
  14. Zhao X.-S., Jin S., Zhu H.-H. et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2012; 47: 499–507.
  15. Nomdedeu J.F., Hoyos M., Carricondo M. et al. Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia. 2013; 27: 2157–64.
  16. Pozzi S., Geroldi S., Tedone E. et al. Leukaemia relapse after allogeneic transplants for acute myeloid leukaemia: predictive role of WT1 expression. Br. J. Haematol. 2013, 160: 503–9.
  17. Frairia Ch., Aydin S., Riera L. et al. WT1 expression in acute myeloid leukemia: a useful marker for improving therapy response evaluation. Blood. 2013; 123(21): 2588.
  18. Tamaki H., Ogawa H., Ohyashiki K. et al. The Wilm’s tumor gene is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia. 1999; 13: 393–9.
  19. Patmasiriwat P., Fraizer G., Kantarjian H. et al. WT1 and GATA1 expression in myelodysplastic syndrome and acute leukemia. Leukemia. 1999; 13: 891–900.
  20. Cilloni D., Gottardi E., Messa F. et al. Significant correlation between the degree of WT1 expression and the international prognostic scoring system score in patients with myelodysplastic syndromes. J. Clin. Oncol. 2003; 21: 1988–95.
  21. Cilloni D., Saglio G. WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Haematologica. 2004; 112: 79–84.
  22. Абдулкадыров К.М., Грицаев С.В., Капустин С.И. и др. Экспрессия гена опухоли Вилмса (WT1) в клетках крови больных миелодиcпластическим синдромом. Вопросы онкологии 2004; 50(6): 668–71. [Abdulkadyrov K.M., Gritsaev S.V., Kapustin S.I. et al. Wilms tumor gene (WT1) expression in blood cells of patients with myelodysplastic syndrome. Voprosy Onkologii. 2004; 50(6): 668–71. (In Russ.)]
  23. Bader P., Niemeyer C., Weber G. et al. WT1 gene expression: useful marker for minimal residual disease in childhood myelodysplastic syndromes and juvenile myelomonocytic leukemia? Eur. J. Haematol. 2004; 73: 25–8.
  24. Iwasaki T., Sugisaki C., Nagata K. et al. Wilms’ tumor 1 message and protein expression in bone marrow failure syndrome and acute leukemia. Pathol. Int. 2007; 57: 645–51.
  25. Qin Y.-Z., Zhu H.-H., Liu Y.-R. et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk. Lymphoma. 2012; DOI: 10.3109/10428194.2012.743656.
  26. Ueda Y., Mizutani C., Nannya Y. et al. Clinical evaluation of WT1 mRNA expression levels in peripheral blood and bone marrow in patients with myelodysplastic syndromes. Leuk. Lymphoma. 2013; 54(7): 1450–8.
  27. Lange T., Hubmann M., Burkhardt R. et al. Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia. 2011; 25: 498–505.
  28. Maurer U., Brieger J., Weidmann E. et al. The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp. Hematol. 1997; 25: 945–50.
  29. Kwon M., Marti nez-Laperche C., Infante M. et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ Tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell transplantation: correlation with flow cytometry and chimerism. Biol. Blood Marrow Transplant. 2012; 18: 1235–42.
  30. Jacobsohn D.A., Tse W.T., Chaleff S. et al. High WT1 gene expression before haematopoietic stem cell transplant in children with acute myeloid leukaemia predicts poor event-free survival. Br. J. Haematol. 2009; 146: 669–74.
  31. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миело- диспластические синдромы с высокой экспрессией гена EVI1: теоретиче- ские и клинические аспекты. Клин. онкогематол. 2012; 5(4): 361–4. [Mamaev N.N., Gorbunova A.V., Gindina T.L. et al. Leukemias and myelodysplastic syndromes with high EVI1 gene expression: theoretical and clinical aspects. Klin. Onkogematol. 2012; 5(4): 361–4. (In Russ.)]
  32. Alonso-Dominguez J.M., Tenorio M., Velasco D. et al. Correlation of WT1 expression with the burden of total and residual leukemic blasts in bone marrow samples of acute myeloid leukemia patients. Cancer Gen. 2012; 205: 190–1.
  33. Gerds A.T., Deeg H.J. Transplantation for myelodysplastic syndrome in the era of hypomethylating agents. Curr. Opin. Hematol. 2012; 19: 71–5.
  34. Nishihori T., Perkins J., Mishra A. et al. Pretransplantation 5-Azacitidine in high-risk myelodysplastic syndrome. Biol. Blood Marrow Transplant. 2014; 20: 776–80.
  35. Raza A., Gezer S., Mundle S. et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood. 1995; 86(1): 268–76.