Тактика выявления частых и редких типов химерного транскрипта BCR-ABL при хроническом миелоидном лейкозе

Никулина О.В. 1,2,  Цаур Г.А.1,2,3,  Ригер Т.О.1,2,  Яковлева Ю.А.1,2,  Демина А.С.1,2,  Семенихина Е.Р.1, Спильник Т.В. 3,  Савельев Л.И.1,2,3, Фечина Л.Г. 1,2

1 ГБУЗ СО «Областная детская клиническая больница № 1», ул. Серафимы Дерябиной, д. 32, Екатеринбург, Российская Федерация, 620149

2 ГАУЗ СО «Институт медицинских клеточных технологий», ул. К. Маркса, д. 22а, Екатеринбург, Российская Федерация, 620026

 3 ГБОУ ВПО «Уральский государственный медицинский университет» Минздрава России, ул. Репина, д. 3, Екатеринбург, Российская Федерация, 620219

Для переписки: Григорий Анатольевич Цаур, канд. мед. наук, ул. Серафимы Дерябиной, д. 32, Екатеринбург, Российская Федерация, 620149; тел.: +7(343)216-25-17; e-mail: tsaur@mail.ru

Для цитирования: Никулина О.В., Цаур Г.А., Ригер Т.О. и др. Тактика выявления частых и редких типов химерного транскрипта BCR-ABL при хроническом миелоидном лейкозе. Клиническая онкогематология. 2015;8(2):161–8.


РЕФЕРАТ

Актуальность и цели. Диагноз хронического миелоидного лейкоза (ХМЛ) считается установленным при обнаружении транслокации t(9;22)(q34;q11) цитогенетическим методом и/или выявлении химерного транскрипта BCR-ABL методом полимеразной цепной реакции с обратной транскрипцией (ОТ-ПЦР). Известно, что у пациентов с ХМЛ наиболее часто проводят определение двух наиболее распространенных вариантов химерного транскрипта BCRABL: e13a2 (b2a2) и e14a2 (b3a2). Однако описаны и редкие варианты химерного транскрипта BCRABL, которые могут остаться незамеченными. Более того, своевременная диагностика и выявление различных вариантов химерного транскрипта представляются важной задачей, т. к. от строения химерного гена BCR-ABL может зависеть клиническое течение заболевания и эффективность проводимой терапии ингибиторами тирозинкиназ. Принимая во внимание, что в ряде случаев диагноз ХМЛ может быть установлен без стандартного цитогенетического исследования, только по данным ОТ-ПЦР, мы посчитали важным создать диагностический алгоритм, который позволял бы выявлять практически любой тип химерного транскрипта BCRABL.

Методы. С января 2004 г. по декабрь 2013 г. в лаборатории молекулярной биологии отдела детской онкологии и гематологии ОДКБ № 1 (г. Екатеринбург) диагноз ХМЛ был подтвержден у 1082 пациентов. Среди них было мужчин — 531 (49 %), женщин — 551 (51 %). Медиана возраста составила 50 лет (диапазон 5–88 лет). Всем пациентам проведены стандартное цитогенетическое и молекулярно-генетическое исследования. Праймеры, комплементарные нуклеотидной последовательности гена ABL, локализуются в экзонах 2 и 3 ABL и используются для выявления всех типов транскриптов. Праймеры, комплементарные нуклеотидной последовательности гена BCR, локализуются либо в экзонах 12 и 13 для выявления наиболее типичных типов транскриптов e13a2, e14a2 (M-bcr), либо в экзоне 1 для обнаружения транскрипта e1a2 (m-bcr). При обнаружении ампликонов, отличных по размеру от e13a2, e14a2 и e1a2, проводилось их прямое секвенирование в двух направлениях c применением праймеров, использовавшихся во втором раунде гнездной ОТ-ПЦР, и набора Big Dye Terminator 3.1.

Результаты. Проанализировав данные 1082 пациентов с верифицированным диагнозом ХМЛ, мы разработали диагностический алгоритм выявления частых и редких типов химерного транскрипта BCRABL при ХМЛ с использованием метода ОТ-ПЦР. Используя данный алгоритм, мы выявили частые варианты BCRABL — e13a2 и e14a2 в 35,89 и 62,53 % случаев соответственно. На долю редких транскриптов — e13a3, e14a3, e19a2, e1a2, e3a2, e6a2, e8a2 — суммарно пришлось 1,57 % случаев.

Заключение. Таким образом, предложенный диагностический алгоритм оказался эффективным для выявления частых и редких типов химерного транскрипта BCRABL у пациентов с ХМЛ.


Ключевые слова: хронический миелоидный лейкоз, молекулярная диагностика, химерный транскрипт BCR-ABL.

Получено: 31 декабря 2014 г.

Принято в печать: 4 февраля 2015 г.

 Читать статью в PDF pdficon


ЛИТЕРАТУРА

  1. Nowell P.C., Hungerford D.A. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 1960; 25: 85–109.
  2. Rowley J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973; 243: 290–3.
  3. Телегеев Г.Д., Дубровская А.Н., Дыбков М.В. и др. Роль белка BCR-ABL в лейкогенезе. Экспериментальная онкология. 1999; 21: 182–94. [Telegeev G.D., Dubrovskaya A.N., Dybkov M.V. et al. The role of BCR-ABL protein in leukomogenesis. Eksperimental’naya onkologiya. 1999; 21: 182–94. (In Russ.)]
  4. Туркина А.Г., Челышева Е.Ю. Стратегия терапии хронического ми- елолейкоза: возможности и перспективы. Терапевтический архив. 2013; 85(7): 4–9. [Turkina A.G., Chelysheva E.Yu. Therapeutic strategy for chronic myeloid leukemia: potentials and prospects. Terapevticheskii arkhiv. 2013; 85(7): 4–9. (In Russ.)]
  5. Dongen van J.J.M., Macintyre E.A., Gabert J.A. et al. Standardized RTPCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia. 1999; 13(12): 1901–28.
  6. Verma D., Kantarjian H.M., Jones D. et al. Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood. 2009; 114: 2232–5.
  7. Beel K.A., Lemmens J., Vranckx H. et al. CML with e6a2 BCR-ABL1 transcript: an aggressive entity? Ann. Hematol. 2011; 90: 1241–3.
  8. Demehri S., Paschka P., Schultheis B. et al. e8a2 BCR–ABL: more frequent than other atypical BCR–ABL variants? Leukemia. 2005; 19: 681–4.
  9. Martin S.E., Sausen M., Joseph A., Kingham B.F. Chronic myeloid leukemia with e19a2 atypical transcript: early Imatinib resistance and complete response to dasatinib. Cancer Gen. Cytogen. 2010; 201(2): 133–4.
  10. Langabeer S.E., McCarron S.L., Carrol P. et al. Molecular response to first line nilotinib in a patient with e19a2 BCR-ABL 1 chronic myeloid leukemia. Leuk. Res. 2011; 35: 169–70.
  11. Baccarani M., Deininger M., Rosti G. et al. European Leukemia Net Recommendations for the Management of Chronic Myeloid Leukemia: 2013. Blood. 2013; 122(6): 872–84.
  12. Цаур Г.А., Друй А.Е., Попов А.М. и др. Возможность использования микроструйных биочипов для оценки качества и количества РНК у па- циентов с онкологическими и онкогематологическими заболеваниями. Вестник Уральской медицинской академической науки. 2011; 4(37): 107–11. [Tsaur G.A., Drui А.Е., Popov А.М. et al. Microfluidic biochips for RNA quantity and quality evaluation in patients with oncological and oncohematological disorders. Vestnik Ural’skoi meditsinskoi akademicheskoi nauki. 2011; 4(37): 107–11. (In Russ.)]
  13. Tabassum N., Saboor M., Moinuddin M. et al. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan. Pakist. J. Med. Sci. 2014; 30(4): 850–3.
  14. Yaghmaie M., Seyed H., Ghaffari H. et al. Frequency of BCR-ABL fusion transcripts in Iranian patients with chronic myeloid leukemia. Arch. Iran. Med. 2008; 11(3): 247–51.
  15. Goh H.-G., Hwang J.-Y., Kim S.-H. et al. Comprehensive analysis of BCRABL transcript types in Korean CML patients using a newly developed multiplex RT-PCR. Transl. Res. 2006; 148(5): 249–56.
  16. Ito T., Tanaka H., Tanaka K. et al. Insertion of a genomic fragment of chromosome 19 between BCR intron 19 and ABL intron 1a in a chronic myeloid leukaemia patient with BCR-ABL (e19a2) transcript. Br. J. Hematol. 2004; 126: 750–5.
  17. Bennour A., Ouahchi I., Achour B. et al. Analysis of the clinico-hematological relevance of the breakpoint location within M-BCR in chronic myeloid leukemia. Med. Oncol. 2013; 30: 348.
  18. Pane F., Frigeri F., Sindona M. et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR-ABL with C3/A2 Junction). Blood 1996; 88 (7): 2410-2414.
  19. Vefring H.K., Gruber F.X.E., Wee L. et al. Chronic myelogenous leukemia with the e6a2 BCR-ABL and lacking Imatinib response: presentation of two cases. Acta Haematol. 2009; 122: 11–6.
  20. Schnittger S., Bacher U., Kern W. et al. A new case with rare e6a2 BCR– ABL fusion transcript developing two new resistance mutations during imatinib mesylate, which were replaced by T315I after subsequent dasatinib treatment. Leukemia. 2008; 22: 856–88.
  21. Breccia M., Cannella L., Diverio D. et al. Isolated thrombocytosis as first sign of chronic myeloid leukemia with e6a2 BCR/ABL fusion transcript, JAK2 negativity and complete response to Imatinib. Leuk. Res. 2008; 32: 177–80.
  22. Schultheis B., Wang L., Clark R.E. et al. BCR-ABL with an e6a2 fusion in a CML patient diagnosed in blast crisis. Leukemia. 2003; 17: 2054–5.
  23. Popovici C., Cailleres S., David M. et al. e6a2 BCR-ABL fusion with BCR exon 5-deleted transcript in a Philadelphia positive CML responsive to Imatinib. Leuk. Lymphoma. 2005; 46(9): 1375–7.
  24. Roti G., Starza R., Gorello P. et al. e6a2 BCR/ABL1 fusion with cryptic der(9)t(9;22) deletions in a patient with chronic myeloid leukemia. Haematologica. 2005; 90: 1139–41.
  25. Branford S., Rudzki Z., Hughes T.P. A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron I b in a patient with Philadelphia-positive chronic myeloid leukaemia. Br. J. Hematol. 2000; 109: 635–7.
  26. Cayuela J.-M., Rousselot P., Nicolini F. et al. Identification of a rare e8a2 BCR-ABL fusion gene in three novel chronic myeloid leukemia patients treated with Imatinib. Leukemia. 2005; 19: 2234–6.
  27. Tchirkov A., Couderc J.-L., Perissel B. et al. Major molecular response to imatinib in a patient with chronic myeloid leukemia expressing a novel form of e8a2 BCR-ABL transcript. Leukemia. 2006; 20: 167–8.
  28. Sugimoto T., Ijima K., Hisatomi H. et al. Second case of CML with aberrant BCR-ABL fusion transcript (e8/a2) with insertion of an inverted ABL intron 1b sequence. Am. J. Hematol. 2004; 77: 164–6.
  29. Martinelli G., Terragna C., Amabile M. et al. Alu and translisin recognition site sequences flank translocation sites in a novel type of chimeric BCR-ABL transcript and suggest a possible general mechanism for BCR-ABL breakpoints. Haematologica. 2000; 85: 40–6.
  30. How G., Lim L., Kulkarni S. et al. Two patients with novel BCR/ABL fusion transcripts (e8/a2 and e13/a2) resulting from translocation breakpoints within BCR exons. Br. J. Haematol. 1999; 105: 434–6.
  31. Qin Y.Z., Jiang B., Jiang Q. et al. Imatinib mesylate resistance in a chronic myeloid leukemia patient with a novel e8a2 BCR-ABL transcript variant. Acta Haematol. 2008; 120: 146–9.
  32. Park I.J., Lim Y.A., Lee W.G. et al. A case of chronic myelogenous leukemia with e8a2 fusion transcript. Cancer Gen. Cytogen. 2008; 185: 106–8.
  33. Burmeister T., Reinhardt R. A multiplex PCR for improved detection of typical and atypical BCR-ABL fusion transcripts. Leuk. Res. 2008; 32: 579–85.
  34. Дубина М.В., Куевда Д.А., Хомякова Т.Е. и др. Молекулярный мони- торинг эффективности терапии больных хроническим миелолейкозом в России (по материалам Всероссийской научно-практической конфе- ренции, Иркутск, 3–4 сентября 2010 г.). Современная онкология. 2010; 4: 9–15. [Dubina M.V., Kuevda D.A., Khomyakova T.E. et al. Molecular monitoring of the treatment efficacy in patients with chronic myeloid leukemia in Russia (Materials of Russian Theoretical and Practical Conference, Irkutsk, September 3–4, 2010). Sovremennaya onkologiya. 2010; 4: 9–15. (In Russ.)]
  35. Hughes T., Deininger M., Hochhaus A. et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors — review and recommendations for ‘harmonizing’ current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006; 108: 28–37.
  36. Schliben S., Borkhardt A., Reinisch J. et al. Incidence and clinical outcome of children with BCR-ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-FM-90 and CoALL-05-92. Leukemia. 1996; 10: 957–63.