Спектр про- и антифибротических факторов в сыворотке у пациентов с хроническими миелопролиферативными заболеваниями

А.А. Силютина, Н.М. Матюхина, Е.Г. Лисина, В.И. Хван, С.Н. Лелеко, Н.Т. Сиордия, О.В. Сироткина, П.А. Бутылин

ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

Для переписки: Павел Андреевич Бутылин, канд. биол. наук, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; e-mail: butylinp@gmail.com

Для цитирования: Силютина А.А., Матюхина Н.М., Лисина Е.Г. и др. Спектр про- и антифибротических факторов в сыворотке у пациентов с хроническими миелопролиферативными заболеваниями. Клиническая онкогематология. 2017;10(4):479–84.

DOI: 10.21320/2500-2139-2017-10-4-479-484


РЕФЕРАТ

Актуальность. Изучение спектра про- и антифибротических факторов в сыворотке у пациентов с Ph-негативными хроническими миелопролиферативными заболеваниями (ХМПЗ) позволит лучше понять механизмы развития миелофиброза, а также выявить новые маркеры, имеющие дифференциально-диагностическое значение.

Цель. Оценить уровень классических (TGF-β, bFGF, ММП-2, -9, -13 и VEGF) и новых провоспалительных (галектин-3) факторов в сыворотке, участвующих в развитии миелофиброза при различных нозологических Ph-негативных формах ХМПЗ, с учетом выявленных генетических нарушений.

Материалы и методы. В исследование включено 55 пациентов с ХМПЗ (13 — с истинной полицитемией, 17 — с эссенциальной тробоцитемией, 25 — с первичным миелофиброзом) и 8 здоровых доноров. Для определения мутаций JAK2V617F, CALR (делеции и инсерции), MPLW515L, MPLW515K использовали геномную ДНК, выделенную из цельной крови. С целью определить уровень про- и антифибротических факторов в сыворотке был проведен иммуноферментный анализ галектина-3, TGF-β, bFGF, VEGF, MMП-2, MMП-9 и MMП-13 c иммобилизованными антителами.

Результаты. Показаны изменения уровней ММП-9, VEGF, TGF-β и галектина-3 в сыворотке у пациентов с различными ХМПЗ. Отмечена тенденция к снижению уровня ММП-9 в сыворотке пациентов с мутациями в гене CALR.

Заключение. Обнаруженные различия в группах пациентов с различными нозологическими формами ХМПЗ могут послужить основой для усовершенствования диагностических протоколов в спорных в дифференциально-диагностическом отношении клинических ситуациях при ХМПЗ.

Ключевые слова: Ph-негативные хронические миелопролиферативные заболевания, про- и антифибротические факторы, JAK2V617F, CALR, MPLW515L, MPLW515K, ММП-2, ММП-9, ММП-13, галектин-3.

Получено: 26 апреля 2017 г.

Принято в печать: 5 июля 2017 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Kiladjian J-J. The spectrum of JAK2-positive myeloproliferative neoplasms. Hematology. 2012;2012:561–6. doi: 10.1182/asheducation-2012.1.561.
  2. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.
  3. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
  4. Li J, Kent DG, Chen E, Green AR. Mouse models of myeloproliferative neoplasms: JAK of all grades. Dis Model Mech. 2011;4(3):311–7. doi: 10.1242/dmm.006817.
  5. Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–95. doi: 10.1016/s0092-8674(00)81167-8.
  6. Barosi G, Mesa RA, Thiele J, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22(2):437–8. doi: 10.1038/sj.leu.2404914.
  7. Hoffman R, Rondelli D. Biology and treatment of primary myelofibrosis. Hematology. 2007;2007(1):346–54. doi: 10.1182/asheducation-2007.1.346.
  8. Jacobson RJ, Salo A, Fialkow PJ. Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood. 1978;51(2):189–94.
  9. Reeder TL, Bailey RJ, Dewald GW, et al. Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood. 2003;101(5):1981–3. doi: 10.1182/blood-2002-07-2341.
  10. Reilly JT. Idiopathic myelofibrosis: pathogenesis, natural history and management. Blood Rev. 1997;11(4):233–42. doi: 10.1016/S0268-960X(97)90022-9.
  11. Mesa RA, Hanson CA, Rajkumar SV, et al. Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia. Blood. 2000;96:3374–80.
  12. Tefferi A. The pathogenesis of chronic myeloproliferative diseases. Int J Hematol. 2001;73(2):170–6. doi: 10.1007/BF02981934.
  13. Chagraoui H, Komura E, Tulliez M, et al. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100(10):3495–503. doi: 10.1182/blood-2002-04-1133.
  14. Martyre MC, Le Bousse-Kerdiles C, Romquin N, et al. Elevated levels of basic growth factor in megakaryocytes and platelets from patients with idiopathic myelofibrosis. Br J Haematol. 1997;97(2):441–8. doi: 10.1046/j.1365-2141.1997.292671.x.
  15. Boiocchi L, Vener C, Savi F, et al. Increased expression of vascular endothelial growth factor receptor 1 correlates with VEGF and microvessel density in Philadelphia chromosome-negative myeloproliferative neoplasms. J Clin Pathol. 2011;64(3):226–31. doi: 10.1136/jcp.2010.083386.
  16. Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Mod Mechan. 2014;7(2):193–203. doi: 10.1242/dmm.012062.
  17. Jensen MK, Holten-Andersen MN, Riisbro R, et al. Elevated plasma levels of TIMP-1 correlate with plasma suPAR/uPA in patients with chronic myeloproliferative disorders. Eur J Haematol. 2003;71(5):377–84. doi: 10.1034/j.1600-0609.2003.00096.x.
  18. Wang JC, Novetsky A, Chen C, Novetsky AD. Plasma matrix metalloproteinase and tissue inhibitor of metalloproteinase in patients with agnogenic myeloid metaplasia or idiopathic primary myelofibrosis. Br J Haematol. 2002;119(3):709–12. doi: 10.1046/j.1365-2141.2002.03874.x.
  19. Kim SY, Im K, Park SN, et al. CALR, JAK2, and MPL Mutation Profiles in Patients With Four Different Subtypes of Myeloproliferative Neoplasms: Primary Myelofibrosis, Essential Thrombocythemia, Polycythemia Vera, and Myeloproliferative Neoplasm, Unclassifiable. Am J Clin Pathol. 2015;143(5):635–44. doi: 10.1309/AJCPUAAC16LIWZMM.
  20. Gianelli U, Vener C, Raviele PR, et al. VEGF Expression Correlates With Microvessel Density in Philadelphia Chromosome–Negative Chronic Myeloproliferative Disorders. Am J Clin Pathol. 2007;128(6):966–73. doi: 10.1309/FP0N3LC8MBJUFFA6.
  21. Le Bousse-Kerdiles MC, Chevillard S, Charpentier A, et al. Differential expression of transforming growth factor-beta, basic fibroblast growth factor, and their receptors in CD34+ hematopoietic progenitor cells from patients with myelofibrosis and myeloid metaplasia. Blood. 1996;88:4534–46.
  22. Campanelli R, Rosti V, Villani L, et al. Evaluation of the bioactive and total transforming growth factor β1 levels in primary myelofibrosis. Cytokine. 2011;53(1):100–6. doi: 10.1016/j.cyto.2010.07.427.
  23. Силютина А.А., Гин И.И., Матюхина Н.М. и др. Модели миелофиброза (обзор литературы и собственные данные). Клиническая онкогематология. 2017;10(1):75–84. doi: 10.21320/2500-2139-2017-10-1-75-84.[Silyutina AA, Gin II, Matyukhina NM, et al. Myelofibrosis Models: Literature Review and Own Data. Clinical oncohematology. 2017;10(1):75–84. doi: 10.21320/2500-2139-2017-10-1-75-84. (In Russ)]
  24. Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Nat Acad Sci USA. 2006;103(13):5060–5. doi: 10.1073/pnas.0511167103.
  25. Brand C, Oliveira F, Takiya C, et al. The involvement of the spleen during chronic phase of Schistosoma mansoni infection in galectin-3-/- mice. Histol Histopathol. 2012;27(8):1109–20. doi: 10.14670/HH-27.1109.
  26. Koopmans SM, Bot FJ, Schouten HC, et al. The involvement of Galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia. Am J Blood Res. 2012;2(2):119–27.