Фармакоэкономический анализ терапии CAR Т-клетками при диффузной В-крупноклеточной лимфоме и В-линейных острых лимфобластных лейкозах

И.В. Грибкова, А.А. Завьялов

ГБУ «НИИ организации здравоохранения и медицинского менеджмента ДЗМ», ул. Шарикоподшипниковская, д. 9, Москва, Российская Федерация, 115088

Для переписки: Ирина Владимировна Грибкова, канд. биол. наук, ул. Шарикоподшипниковская, д. 9, Москва, Российская Федерация, 115088; тел.: +7(916)078-73-90; e-mail: igribkova@yandex.ru

Для цитирования: Грибкова И.В., Завьялов А.А. Фармакоэкономический анализ терапии CAR Т-клетками при диффузной В-крупноклеточной лимфоме и В-линейных острых лимфобластных лейкозах. Клиническая онкогематология. 2022;15(2):205–12.

DOI: 10.21320/2500-2139-2022-15-2-205-212


РЕФЕРАТ

Генетически модифицированные Т-лимфоциты с химерными антигенными рецепторами (CAR T-клетки) представляют собой новую стратегию лечения пациентов с рецидивами или рефрактерным течением В-клеточных злокачественных новообразований. В 2017–2018 гг. два препарата CAR T-клеточной терапии: тисагенлеклейсел и аксикабтаген силолейсел — были одобрены Управлением по контролю за качеством пищевых продуктов и лекарственных средств США (FDA) и Европейским агентством по лекарственным средствам (EMA) для клинического применения у пациентов с рефрактерным острым лимфобластным лейкозом и рецидивами/рефрактерными В-клеточными лимфомами. К настоящему времени CAR Т-клеточная терапия все более становится неотъемлемой частью клинической практики благодаря своей высокой эффективности. Однако стоимость этого метода противоопухолевого воздействия чрезвычайно высока. Средняя стоимость тисагенлеклейсела составляет 475 000 долларов США ($), а аксикабтагена силолейсела — 373 000 $. Следует отметить, что это только цены на лекарственные препараты без учета других затрат, связанных с данным методом терапии. В работах 2018–2020 гг. группы исследователей предприняли попытки оценить затраты, связанные с CAR T-клеточной терапией. Цель настоящего обзора — анализ этих исследований, оценка общей стоимости терапии и структуры затрат, рассмотрение факторов, ведущих к увеличению затрат, обсуждение возможности повышения доступности технологии CAR-T в целом. Результаты показали, что в среднем общая стоимость терапии тисагенлеклейселом при В-клеточной лимфоме составила 515 150 $, аксикабтагеном силолейселом — 503 955 $. Стоимость терапии острого лимфобластного лейкоза составила 580 459 $. Основными факторами, влияющими на общую стоимость лечения, были цены на препараты CAR T-клеток, высокая степень тяжести нежелательных явлений и большая опухолевая нагрузка до инфузии CAR T-клеточного продукта. Признается, что в качестве основных возможностей повышения доступности терапии CAR T-клетками может служить понижение цены на препараты (например, за счет собственного производства на базе медицинского учреждения), дальнейшее совершенствование терапии с целью снизить ее токсичность, а также применение на ранних стадиях опухолевого заболевания.

Ключевые слова: В-клеточная лимфома, острый лимфобластный лейкоз, CAR T-клеточная терапия, химерный антигенный рецептор, тисагенлеклейсел, аксикабтаген силолейсел, затраты, обзор.

Получено: 29 октября 2021 г.

Принято в печать: 15 февраля 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.
  2. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/S1470-2045(14)71170-2.
  3. Roex G, Feys T, Beguin Y, et al. Chimeric Antigen Receptor-T-Cell Therapy for B-Cell Hematological Malignancies: An Update of the Pivotal Clinical Trial Data. Pharmaceutics. 2020;12(2):194. doi: 10.3390/pharmaceutics12020194.
  4. Zheng XH, Zhang XY, Dong QQ, et al. Efficacy and safety of chimeric antigen receptor-T cells in the treatment of B cell lymphoma: a systematic review and meta-analysis. Chin Med J (Engl). 2020;133(1):74–85. doi: 10.1097/CM9.0000000000000568.
  5. Ершов А.В., Демьянов Г.В., Насруллаева Д.А. и др. Новейшие тенденции в совершенствовании CAR-T-клеточной терапии: от лейкозов к солидным злокачественным новообразованиям. Российский журнал детской гематологии и онкологии. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95.
    [Ershov AV, Demyanov GV, Nasrullaeva DA, et al. The latest trends in improving CAR-T cell therapy: from leukemias to solid malignant neoplasms. Russian Journal of Pediatric Hematology and Oncology. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95. (In Russ)]
  6. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза: обзор литературы. Клиническая онкогематология. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230.
    [Gribkova IV, Zavyalov CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review. Clinical oncohematology. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230. (In Russ)]
  7. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360.
    [Gribkova IV, Zavyalov AA. Chimeric Antigen Receptor T-Cell Therapy for B-Cell Non-Hodgkin Lymphoma: Opportunities And Challenges. Voprosy onkologii. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360. (In Russ)]
  8. Orlowski RJ, Porter DL, Frey NV. The promise of chimeric antigen receptor T cells (CARTs) in leukaemia. Br J Haematol. 2017;177(1):13–26. doi: 10.1111/bjh.14475.
  9. Park JH, Riviere I, Gonen M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):449–59. doi: 10.1056/NEJMoa1709919.
  10. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48. doi: 10.1056/NEJMoa1709866.
  11. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017;377(26):2531–44. doi: 10.1056/NEJMoa1707447.
  12. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980.
  13. Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:31–42. doi: 10.1016/S1470-2045(18)30864-7.
  14. Bach PB, Giralt SA, Saltz LB. FDA Approval of Tisagenlecleucel: Promise and Complexities of a $475 000 Cancer Drug. JAMA. 2017;318(19):1861–2. doi: 10.1001/jama.2017.15218.
  15. Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119–28. doi: 10.1200/JCO.19.02104.
  16. de Lima Lopes G, Nahas GR. Chimeric antigen receptor T cells, a savior with a high price. Chin Clin Oncol. 2018;7(2):21. doi: 10.21037/cco.2018.04.02.
  17. Makita S, Imaizumi K, Kurosawa S, Tobinai K. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs Context. 2019;8:212567. doi: 10.7573/dic.212567.
  18. Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. doi: 10.3324/haematol.2019.229781.
  19. Lyman GH, Nguyen A, Snyder S, et al. Economic Evaluation of Chimeric Antigen Receptor T-Cell Therapy by Site of Care Among Patients With Relapsed or Refractory Large B-Cell Lymphoma. JAMA Netw Open. 2020;3(4):e202072. doi: 10.1001/jamanetworkopen.2020.2072.
  20. Lin JK, Muffly LS, Spinner MA, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Multiply Relapsed or Refractory Adult Large B-Cell Lymphoma. J Clin Oncol. 2019;37(24):2105–19. doi: 10.1200/JCO.18.02079.
  21. Harris AH, Hohmann S, Dolan C. Real-World Quality and Cost Burden of Cytokine Release Syndrome Requiring Tocilizumab or Steroids during CAR-T Infusion Encounter. Biol Blood Marrow Transplant. 2020;26(3):S312. doi: 10.1016/j.bbmt.2019.12.389.
  22. Hernandez I, Prasad V, Gellad WF. Total Costs of Chimeric Antigen Receptor T-Cell Immunotherapy. JAMA Oncol. 2018;4(7):994–6. doi: 10.1001/jamaoncol.2018.0977.
  23. Roth JA, Sullivan SD, Lin VW, et al. Cost-effectiveness of axicabtagene ciloleucel for adult patients with relapsed or refractory large B-cell lymphoma in the United States. J Med Econ. 2018;21(12):1238–45. doi: 10.1080/13696998.2018.1529674.
  24. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Cost-effectiveness Associated With Axicabtagene Ciloleucel vs Chemotherapy for Treatment of B-Cell Lymphoma. JAMA Netw Open. 2019;2(2):e190035. doi: 10.1001/jamanetworkopen.2019.0035.
  25. Sarkar RR, Gloude NJ, Schiff D, Murphy JD. Cost-Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Pediatric Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia. J Natl Cancer Inst. 2019;111(7):719–26. doi: 10.1093/jnci/djy193.
  26. Thielen FW, van Dongen-Leunis A, Arons AMM, et al. Cost-effectiveness of anti-CD19 chimeric antigen receptor T-cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. A societal view. Eur J Haematol. 2020;105(2):203–15. doi: 10.1111/ejh.13427.
  27. Yang H, Hao Y, Qi CZ, et al. Estimation of Total Costs in Pediatric and Young Adult Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia Receiving Tisagenlecleucel from a U.S. Hospital’s Perspective. J Manag Care Spec Pharm. 2020;26(8):971–80. doi: 10.18553/jmcp.2020.20052.
  28. Lin JK, Lerman BJ, Barnes JI, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Relapsed or Refractory Pediatric B-Cell Acute Lymphoblastic Leukemia. J Clin Oncol. 2018;36(32):3192–202. doi: 10.1200/JCO.2018.79.0642.
  29. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Value of Chimeric Antigen Receptor T-Cell Therapy for Pediatric Patients With Relapsed or Refractory Leukemia. JAMA Pediatr. 2018;172(12):1161–8. doi: 10.1001/jamapediatrics.2018.2530.
  30. Furzer J, Gupta S, Nathan PC, et al. Cost-effectiveness of Tisagenlecleucel vs Standard Care in High-risk Relapsed Pediatric Acute Lymphoblastic Leukemia in Canada. JAMA Oncol. 2020;6(3):393–401. doi: 10.1001/jamaoncol.2019.5909.
  31. Zhu F, Wei G, Zhang M, et al. Factors Associated with Costs in Chimeric Antigen Receptor T-Cell Therapy for Patients with Relapsed/Refractory B-Cell Malignancies. Cell Transplant. 2020;29:963689720919434. doi: 10.1177/0963689720919434.
  32. Heine R, Thielen FW, Koopmanschap M, et al. Health Economic Aspects of Chimeric Antigen Receptor T-cell Therapies for Hematological Cancers: Present and Future. Hemasphere. 2021;5(2):e524. doi: 10.1097/HS9.0000000000000524.
  33. Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11(1):41. doi: 10.1186/s13045-018-0593-5.
  34. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30. doi: 10.1182/blood-2016-04-703751.
  35. Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017;35(16):1803–13. doi: 10.1200/JCO.2016.71.3024.
  36. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95. doi: 10.1182/blood-2014-05-552729.
  37. Ran T, Eichmuller SB, Schmidt P, Schlander M. Cost of decentralized CAR T-cell production in an academic nonprofit setting. Int J Cancer. 2020;147(12):3438–45. doi: 10.1002/ijc.33156.
  38. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. doi: 10.1016/S0140-6736(20)31366-0.
  39. Benjamin R, Graham C, Yallop D, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet. 2020;396(10266):1885–94. doi: 10.1016/S0140-6736(20)32334-5.
  40. Pfeiffer A, Thalheimer FB, Hartmann S, et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol Med. 2018;10(11):e9158. doi: 10.15252/emmm.201809158.
  41. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5:254. doi: 10.3389/fphar.2014.00254.
  42. Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350(6258):aab4077. doi: 10.1126/science.aab4077.
  43. Mikkilineni L, Kochenderfer JN. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol. 2021;18(2):71–84. doi: 10.1038/s41571-020-0427-6.
  44. Strati P, Ahmed S, Furqan F, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–6. doi: 10.1182/blood.2020008865.
  45. Gauthier J, Hirayama AV, Hay KA, et al. Comparison of efficacy and toxicity of CD19-specific chimeric antigen receptor T-cells alone or in combination with ibrutinib for relapsed and/or refractory CLL. Blood. 2018;132(Suppl 1):299. doi: 10.1182/blood-2018-99-111061.
  46. Gill SI, Vides V, Frey NV, et al. Prospective clinical trial of anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia shows a high response rate. Blood. 2018;132(Suppl 1):298. doi: 10.1182/blood-2018-99-115418.

Протокол ALL-IC BFM 2002: результаты лечения острого лимфобластного лейкоза у детей в рамках многоцентрового клинического исследования

Т.Т. Валиев1, М.А. Шервашидзе1, И.В. Осипова2, Т.И. Бурлуцкая3, Н.А. Попова4, Н.С. Осмульская5, Г.А. Алескерова6, С.Л. Сабанцев7, З.С. Гордеева7, В.Ю. Смирнов8, О.А. Побережная8, С.Н. Юлдашева9, И.А. Бабич10, Н.А. Батманова1, С.Р. Варфоломеева1

1 НИИ детской онкологии и гематологии, ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 23, Москва, Российская Федерация, 115478

2 ГАУЗ «Детская республиканская клиническая больница Министерства здравоохранения Республики Татарстан», Оренбургский тракт, д. 140, Казань, Российская Федерация, 420138

3 ОГБУЗ «Детская областная клиническая больница», ул. Губкина, д. 44, Белгород, Российская Федерация, 308036

4 ГБУЗ «Волгоградский областной клинический онкологический диспансер», ул. Землячки, д. 78, Волгоград, Российская Федерация, 400138

5 БУЗОО «Областная детская клиническая больница», ул. Куйбышева, д. 77, Омск, Российская Федерация, 644001

6 Национальный центр онкологии Республики Азербайджан, ул. Г. Зардаби, д. 79б, Баку, Республика Азербайджан, AZ1011

7 ГБУ РМЭ «Йошкар-Олинская детская городская больница им. Л.И. Соколовой», ул. Волкова, д. 104, Йошкар-Ола, Российская Федерация, 424004

8 ГБУЗ «Калужская областная клиническая детская больница», ул. Вишневского, д. 1, Калуга, Российская Федерация, 248007

9 Институт неотложной и восстановительной хирургии им. В.К. Гусака, Ленинский пр-т, д. 47, Донецк, Донецкая Народная Республика, 83003

10 ГБУЗ «Областная детская больница», ул. Ленина, д. 311, Южно-Сахалинск, Российская Федерация, 693006

Для переписки: Тимур Теймуразович Валиев, д-р мед. наук, профессор, Каширское ш., д. 23, Москва, Российская Федерация, 115478; e-mail: timurvaliev@mail.ru

Для цитирования: Валиев Т.Т., Шервашидзе М.А., Осипова И.В. и др. Протокол ALL-IC BFM 2002: результаты лечения острого лимфобластного лейкоза у детей в рамках многоцентрового клинического исследования. Клиническая онкогематология. 2022;15(2):119–29.

DOI: 10.21320/2500-2139-2022-15-2-119-129


РЕФЕРАТ

Актуальность. Программы лечения острого лимфобластного лейкоза (ОЛЛ) у детей, разработанные группой BFM (Berlin-Frankfurt-Munster) в 2002 г., остаются одними из наиболее эффективных в мире. Показатели многолетней (10–15 лет) общей выживаемости при ОЛЛ у детей превышают 90 %. Высокие результаты лечения ОЛЛ послужили основанием для включения протокола ALL-IC BFM 2002 в клинические рекомендации в 2020 г. (ID: 529).

Цель. Представить результаты лечения ОЛЛ у детей по протоколу ALL-IC BFM 2002 в рамках многоцентрового клинического исследования.

Материалы и методы. С 01.11.2003 по 12.10.2021 г. в многоцентровое ретроспективно-проспективное исследование включено 433 пациента в возрасте от 3 мес. до 21 года с впервые установленным ОЛЛ. Пациенты были в возрасте 0–12 (n = 344), 12–18 (n = 70) и старше 12 лет (n = 19). Всем больным терапия проводилась согласно протоколу ALL-IC BFM 2002. Показатели общей (ОВ), безрецидивной (БРВ) и бессобытийной выживаемости (БСВ) больных оценивались на 01.12.2021 г.

Результаты. У подавляющего большинства больных (97,9 %, n = 424) полная клинико-гематологическая ремиссия была достигнута к 33-му дню терапии по протоколу ALL-IC BFM 2002. 10-летняя ОВ составила 91,8 ± 1,5 %, БРВ — 87,4 ± 1,8 % и БСВ — 84,1 ± 1,9 %. Показатели 10-летней ОВ у больных в группах стандартного и промежуточного риска составили 92,8 ± 1,7 и 94,6 ± 2,6 % соответственно, тогда как у пациентов, стратифицированных в группу высокого риска рецидива ОЛЛ, — 71,1 ± 11,1 %.

Заключение. Протокол лечения ОЛЛ у детей ALL-IC BFM 2002 воспроизводим в федеральных и региональных клиниках. Результаты лечения ОЛЛ по протоколу ALL-IC BFM 2002 оказались впечатляющими. Они сопоставимы с таковыми в ведущих клиниках Европы и США. Для улучшения показателей выживаемости пациентов из группы высокого риска необходимы дополнительные риск-стратифицирующие критерии, одним из которых служит оценка минимальной остаточной болезни (МОБ). Определение МОБ стало основой выделения прогностических групп риска в протоколе ALL-IC BFM 2009, результаты которого будут представлены в 2022–2023 гг.

Ключевые слова: острый лимфобластный лейкоз, лечение, ALL-IC BFM 2002, дети.

Получено: 17 января 2022 г.

Принято в печать: 25 марта 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Румянцев А.Г. Эволюция лечения острого лимфобластного лейкоза у детей: эмпирические, биологические и организационные аспекты. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2015;14(1):5–15.
    [Rumyantsev AG. Evolution of treatment of acute lymphoblastic leukemia in children: empirical, biological and organizational aspects. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2015;14(1):5–15. (In Russ)]
  2. Pinkel D. History and development of total therapy for acute lymphocytic leukemia. In: Murphy SB, Gilbert JR, eds. Leukemia research: advances in cell biology and treatment. New York: Elsevier Science Publ.; 1983. pp. 189–201.
  3. Riehm H, Gadner H, Henze G, et al. Acute lymphoblastic leukemia: treatment in three BFM studies (1970–1981). In: Murphy SB, Gilbert JR, eds. Leukemia research: advances in cell biology and treatment. New York: Elsevier Science Publ.; 1983. pp. 251–63.
  4. Langermann HJ, Henze G, Wulf M, Riehm H. Estimation of tumor cell mass in childhood acute lymphoblastic leukemia: prognostic significance and practical application. Klin 1982;194(4):209–13. doi: 10.1055/s-2008-1033807.
  5. Riehm H, Feickert HJ, Schrappe М, et al. Therapy results in five ALL-BFM studies since 1970: implications of risk factors for prognosis. Haematol Blood Transfus. 1987;30:139–46. doi: 10.1007/978-3-642-71213-5_21.
  6. Moricke A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265–84. doi: 10.1038/leu.2009.257.
  7. Sullivan МP, Chen Т, Dyment PG, et al. Equivalence of intrathecal chemotherapy and radiotherapy as central nervous system prophylaxis in children with acute lymphatic leukemia: a Pediatric Oncology Group study. Blood. 1982;60(4):948–58.
  8. Bleyer WA, Coccia PF, Sather HN, et al. Reduction of central nervous system leukemia with a pharmacokinetically derived intrathecal methotrexate dosage regimen. J Clin Oncol. 1983;1(5):317–25. doi: 10.1200/JCO.1983.1.5.317.
  9. Sackmann-Muriel F, Felice MS, Zubizarreta PA, et al. Treatment results in childhood acute lymphoblastic leukemia with a modified ALL-BFM’90 protocol: lack of improvement in high-risk group. Leuk Res. 1999;23(4):331–40. doi: 10.1016/s0145-2126(98)00162-3.
  10. Moricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. 2008;111(9):4477–89. doi: 10.1182/blood-2007-09-112920.
  11. Stary J, Zimmermann M, Campbell M, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32(3):174–84. doi: 10.1200/JCO.2013.48.6522.

Использование блинатумомаба при остром лимфобластном лейкозе в муниципальном здравоохранении: клиническое наблюдение

В.А. Шуваев1,2, О.В. Ушакова1, Э.И. Мулло1, Т.В. Толстых1, Н.З. Трипутень1

1 ГБУЗ «Городская клиническая больница им. В.В. Вересаева» ДЗМ, Москва, Российская Федерация, ул. Лобненская, д. 10, Москва, Российская Федерация, 127644

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Василий Анатольевич Шуваев, канд. мед. наук, ул. Лобненская, д. 10, Москва, Российская Федерация, 127644; e-mail: shuvaev77@mail.ru

Для цитирования: Шуваев В.А., Ушакова О.В., Мулло Э.И. и др. Использование блинатумомаба при остром лимфобластном лейкозе в муниципальном здравоохранении: клиническое наблюдение. Клиническая онкогематология. 2021;14(2):198–203.

DOI: 10.21320/2500-2139-2021-14-2-198-203


РЕФЕРАТ

Острые лимфобластные лейкозы — одна из наиболее актуальных групп злокачественных новообразований кроветворной ткани. Несмотря на достигнутые успехи в виде индукции ремиссии у первичных больных, в последующем у большой части пациентов развиваются рецидивы заболевания. Показатели общей и безрецидивной выживаемости нуждаются в улучшении, что не может быть достигнуто только с помощью интенсификации химиотерапии. Появление в лечебном арсенале при острых лимфобластных лейкозах таргетных препаратов и клеточных технологий улучшает возможности лечения резистентных форм и рецидивов заболевания. Для эффективного использования новых препаратов необходимо их своевременное назначение, что обеспечивается их доступностью в рутинной клинической практике. В описанном клиническом наблюдении представлен успешный опыт использования биспецифического антитела блинатумомаба для лечения раннего рецидива острого лимфобластного лейкоза в условиях клинической практики муниципального здравоохранения.

Ключевые слова: острый лимфобластный лейкоз, клиническая практика, таргетная терапия, блинатумомаб.

Получено: 22 сентября 2020 г.

Принято в печать: 3 февраля 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43. doi: 10.1016/s0140-6736(08)60457-2.
  2. Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602. doi: 10.1016/S0140-6736(16)31678-6.
  3. Савченко В.Г., Паровичникова Е.Н., Афанасьев Б.В. и др. Клинические рекомендации по диагностике и лечению острых лимфобластных лейкозов взрослых 2018. (электронный ресурс) Доступно по: https://npngo.ru/uploads/media_document/293/556718e9–0ff5–46f3-bff8-bd592c83bpdf. Ссылка активна на 22.09.2020 г.
    [Savchenko VG, Parovichnikova EN, Afanasyev BV, et al. Clinical guidelines on diagnosis and treatment of adult acute lymphoblastic leukemia 2018. [Internet] Available from: https://npngo.ru/uploads/media_document/293/556718e9–0ff5–46f3-bff8-bd592c83b992.pdf. (accessed 22.09.2020) (In Russ)]
  4. Kantarjian HM, Walters RS, Keating MJ, et al. Results of the vincristine, doxorubicin, and dexamethasone regimen in adults with standard- and high-risk acute lymphocytic leukemia. J Clin Oncol. 1990;8(6):994–1004. doi: 10.1200/jco.1990.8.6.994.
  5. Паровичникова Е.Н., Соколов А.Н., Троицкая В.В. и др. Острые Ph-негативные лимфобластные лейкозы взрослых: факторы риска при использовании протокола ОЛЛ-2009. Терапевтический архив. 2016;88(7):15–24. doi: 10.17116/terarkh201688715-24.
    [Parovichnikova EN, Sokolov AN, Troitskaya VV, et al. Acute Ph-negative lymphoblastic leukemias in adults: risk factors in the use of the ALL-2009 protocol. Terapevticheskii arkhiv. 2016;88(7):15–24. doi: 10.17116/terarkh201688715-24. (In Russ)]
  6. Ciftciler R, Sevindik OG, Tekgunduz AIE, et al. Acute Lymphoblastic Leukemia in Routine Practice: A Turkish Multicenter Study. Turk J Haematol. 2019;36(3):169–77. doi: 10.4274/tjh.galenos.2019.2019.0008.
  7. Pehlivan KC, Duncan BB, Lee DW. CAR-T Cell Therapy for Acute Lymphoblastic Leukemia: Transforming the Treatment of Relapsed and Refractory Disease. Curr Hematol Malig Rep. 2018;13(5):396–406. doi: 10.1007/s11899-018-0470-x.
  8. Kantarjian H, Thomas D, Jorgensen J, et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36. doi: 10.1002/cncr.28136.
  9. BLINCYTO® (blinatumomab) for injection, for intravenous use. Initial U.S. approval: 2014. Available from: https://www.pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/blincyto/blincyto_pi_hcp_english.pdf. (accessed 21.09.2020).
  10. Kantarjian H, Stein A, Gokbuget N. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. New Engl J Med. 2017;376(9):836–47. doi: 10.1056/NEJMoa1609783.
  11. Martinelli G, Boissel N, Chevallier P, et al. Complete Hematologic and Molecular Response in Adult Patients With Relapsed/Refractory Philadelphia Chromosome-Positive B-Precursor Acute Lymphoblastic Leukemia Following Treatment With Blinatumomab: Results From a Phase II, Single-Arm, Multicenter Study. J Clin Oncol. 2017;35(16):1795–802. doi: 10.1200/jco.2016.69.3531.
  12. von Stackelberg A, Locatelli F, Zugmaier G, et al. Phase 1/2 Study in Pediatric Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) Receiving Blinatumomab Treatment. Blood. 2014;124(21):2292. doi: 10.1182/blood.V124.21.2292.2292.
  13. von Stackelberg A, Locatelli F, Zugmaier G. Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia. J Clin Oncol. 2016;34(36):4381–9. doi: 10.1200/jco.2016.67.3301.
  14. Topp MS, Gokbuget N, Zugmaier G, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014;32(36):4134–40. doi: 10.1200/jco.2014.56.3247.
  15. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/s1470-2045(14)71170-2.
  16. Kantarjian H, Thomas D, O’Brien S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101(12):2788–801. doi: 10.1002/cncr.20668.
  17. Specchia G, Pastore D, Carluccio P, et al. FLAG-IDA in the treatment of refractory/relapsed adult acute lymphoblastic leukemia. Ann Hematol. 2005;84(12):792–5. doi: 10.1007/s00277-005-1090-9.
  18. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541–52. doi: 10.1056/NEJMra1400972.
  19. Pulte D, Gondos A, Brenner H. Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood. 2009;113(7):1408–11. doi: 10.1182/blood-2008-06-164863.
  20. Geyer MB, Hsu M, Devlin SM, et al. Overall survival among older US adults with ALL remains low despite modest improvement since 1980: SEER analysis. Blood. 2017;129(13):1878–81. doi: 10.1182/blood-2016-11-749507.
  21. Бондаренко С.Н., Паровичникова Е.Н., Масчан А.А. и др. Блинатумомаб в терапии острого лимфобластного лейкоза: Российское многоцентровое исследование. Клиническая онкогематология. 2019;12(2):145–53. doi: 10.21320/2500-2139-2019-12-2-145-153.
    [Bondarenko SN, Parovichnikova EN, Maschan AA, et al. Blinatumomab in the Treatment of Acute Lymphoblastic Leukemia: Russian Multicenter Clinical Trial. Clinical oncohematology. 2019;12(2):145–53. doi: 10.21320/2500-2139-2019-12-2-145-153. (In Russ)]
  22. Markova IV, Bondarenko SN, Paina OV, et al. Features of response to blinatumomab and inotuzumab ozogamicin therapy in patients with relapse/refractory B-cells acute lymphoblastic leukemia in real clinical practice. Cell Ther Transplant. 2020;9(1):47–52. doi: 10.18620/ctt-1866-8836-2020-9-1-47-52.

Влияние антикоагулянтной терапии на выживаемость и исход венозных тромбозов у детей, подростков и молодых взрослых с острым лимфобластным лейкозом в рамках протоколов ALL-МВ-2008 и ALL-МВ-2015

В.В. Дмитриев, Н.В. Мигаль, О.И. Быданов, Н.В. Липай, Е.В. Дмитриев

ГУ «Республиканский научно-практический центр детской онкологии, гематологии и иммунологии» Минздрава РБ, ул. Фрунзенская, д. 43, д. Боровляны, Минский р-н, Республика Беларусь, 223053

Для переписки: Вячеслав Васильевич Дмитриев, д-р мед. наук, ул. Фрунзенская, д. 43, д. Боровляны, Минский район, Республика Беларусь, 223053; тел.: +375(17)265-42-22; e-mail: dmitrievhaematol@mail.ru

Для цитирования: Дмитриев В.В., Мигаль Н.В., Быданов О.И. и др. Влияние антикоагулянтной терапии на выживаемость и исход венозных тромбозов у детей, подростков и молодых взрослых с острым лимфобластным лейкозом в рамках протоколов ALL-МВ-2008 и ALL-МВ-2015. Клиническая онкогематология. 2019;12(3):338–43.

doi: 10.21320/2500-2139-2019-12-3-338-343


РЕФЕРАТ

Цель. Оценить влияние антикоагулянтной терапии на выживаемость и исход венозных тромбозов у детей, подростков и молодых взрослых с острым лимфобластным лейкозом (ОЛЛ).

Материалы и методы. Из 592 пациентов с ОЛЛ, получавших с 2008 по 2017 г. лечение по протоколам ALL-MB-2008 и ALL-MB-2015, венозный тромбоз выявлен у 42.

Результаты. Низкомолекулярный гепарин (НМГ) в дозе 150–200 МЕ/кг в сутки получало 30 пациентов. Продолжительность антикоагулянтной терапии у 4 пациентов была до 1 мес., у 8 — 2–3 мес., у 12 — 4–6 мес., у 4 — 7–12 мес. Более 24 мес. антикоагулянты получало 2 пациента. Полная реканализация тромбированного сосуда достигнута у 19 больных, частичная — у 6, облитерация преимущественно внутренней яремной вены наступила у 5 больных. В период тромбоцитопении (от 100 до 35 × 109/л) 12 пациентов получали НМГ в редуцированных дозах в течение 1–4 нед. Во время индуцированной химиотерапией тромбоцитопении суточную дозу НМГ снижали пропорционально уровню тромбоцитов в крови. После восстановления числа тромбоцитов более 100 × 109/л продолжали антитромботическое лечение в суточной дозе НМГ 150–200 анти-Ха МЕ/кг. Из 12 пациентов, получавших НМГ в редуцированных дозах, общая продолжительность антикоагулянтной терапии составила до 1 мес. у 3 больных, 2–3 мес. — у 4, 4–6 мес. — у 3, 7–12 мес. — у 2. Полная реканализация тромбированного сосуда достигнута у 8 пациентов, частичная — у 2, облитерация вены наступила у 2 человек. Корреляции между режимом дозирования НМГ и исходом тромбоза не выявлено (χ2 = 0,494; = 0,78). Из 42 больных ОЛЛ с венозными тромбозами поддерживающую (сопроводительную) терапию НМГ завершило 38. Бессобытийная выживаемость составила 83 ± 8 %, что не отличалось от таковой (81 ± 2 %) у пациентов без тромбозов (= 0,654).

Заключение. Антикоагулянтная терапия, проводимая по поводу венозных тромбозов, осложняющих течение ОЛЛ у детей, подростков и молодых взрослых, не привела к снижению общей и бессобытийной выживаемости. Снижение дозы НМГ в период индуцированной химиотерапией тромбоцитопении не повлияло на исход венозных тромбозов.

Ключевые слова: венозный тромбоз, свертывание крови, острый лимфобластный лейкоз, дети, подростки, молодые взрослые, антикоагулянтная терапия, низкомолекулярный гепарин.

Получено: 30 октября 2018 г.

Принято в печать: 5 июня 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Жарков П.А., Румянцев А.Г., Новичкова Г.А. Венозные тромбозы у детей со злокачественными новообразованиями (обзор литературы). Российский журнал детской гематологии и онкологии. 2015;2(1):66–74. doi: 10.17650/2311-1267-2015-1-66-74.

    [Zharkov PA, Rumyantsev AG, Novichkova GA. Venous thromboembolism in children with cancer. Russian Journal of Pediatric Hematology and Oncology. 2015;2(1):66–74. doi: 10.17650/2311-1267-2015-1-66-74. (In Russ)]

  2. Raetz EA, Salzer WL. Tolerability and efficacy of L-asparaginase therapy in pediatric patients with acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2010;32(7):554–63. doi: 10.1097/mph.0b013e3181e6f003.

  3. Payne JH, Vora AJ. Thrombosis and acute lymphoblastic leukemia. Br J Haematol. 2007;138(4):430–45. doi: 10.1111/j.1365-2141.2007.06677.x.

  4. Athale UH, Laverdiere C, Nayiager T, et al. Evaluation for inherited and acquired prothrombotic defects predisposing to symptomatic thromboembolism in children with acute lymphoblastic leukemia: a protocol for a prospective, observational, cohort study. BMC Cancer. 2017;17(1):313. doi: 10.1186/s12885-017-3306-5.

  5. Tuckuviene R, Ranta S, Albertsen BK, et al. Prospective study of thromboembolism in 1038 children with acute lymphoblastic leukemia: a Nordic Society of Pediatric Hematology and Oncology (NOPHO) study. J Thromb Haemost. 2016;14(3):485–94. doi: 10.1111/jth.13236.

  6. Caruso V, Iacoviello L, Di Castelnuovo A, et al. Thrombotic complications in childhood acute lymphoblastic leukemia: a meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood, 2006;108(7):2216–22. doi: 10.1182/blood-2006-04-015511.

  7. Mitchell L, Lambers M, Flege S, et al. Validation of a predictive model for identifying an increased risk for thromboembolism in children with acute lymphoblastic leukemia: results of a multicenter cohort study. 2010;115(24):4999–5004. doi: 10.1182/blood-2010-01-263012.

  8. Appel IM, Hop WCJ, van Kessel-Bakvis C, et al. L-Asparaginase and the effect of age on coagulation and fibrinolysis in childhood acute lymphoblastic leukemia. Thromb Haemost. 2008;100(08):330–7. doi: 10.1160/th07-10-0620.

  9. Kearon С, Akl E, Ornelas J, et al. Antithrombotic Therapy for VTE Disease. CHEST Guideline and Expert Panel Report. CHEST. 2016;149 (2):315–52. doi: 10.1016/j.chest.2015.11.026.

  10. Carrier M, Khorana AA, Zwicker JI, et al. Management of challenging cases of patients with cancer-associated thrombosis including recurrent thrombosis and bleeding: guidance from the SSC of the ISTH. J Thromb Haemost. 2013;11(9):1760–5. doi: 10.1111/jth.12338.

  11. Saccullo G, Malato A, Raso S, et al. Cancer patients requiring interruption of long-term warfarin because of surgery or chemotherapy induced thrombocytopenia: the use of fixed subtherapeutic doses of low molecular weight heparin. Am J Hematol. 2012;87(4):388–91. doi: 10.1002/ajh.23122.

  12. Kerlin B, Stephens J, Hogan M, et al. Development of a Pediatric-Specific Clinical Probability Tool for Diagnosis of Venous Thromboembolism: A Feasibility Study. Pediatr Res. 2014;77(3):463–71. doi: 10.1038/pr.2014.198.

  13. Babilonia KM, Golightly LK, Gutman JA, et al. Antithrombotic Therapy in Patients With Thrombocytopenic Cancer: Outcomes Associated With Reduced-Dose, Low-Molecular-Weight Heparin During Hospitalization. Clin Appl Thromb Hemost. 2014;20(8):799–806. doi: 10.1177/1076029614543140.

  14. Dmitriev Nadroparin and dalteparin pharmacokinetics in thromboses complicated the treatment of children with oncological diseases. The Book of Abstracts The Congress on Open Issues in Thrombosis and Hemostasis 2018 jointly with the 9th Russian Conference on Clinical Hemostasiology and Hemorheology, Saint Petersburg, Russia October 4–6, 2018. pp 60.

Блинатумомаб в терапии острого лимфобластного лейкоза: Российское многоцентровое исследование

С.Н. Бондаренко1, Е.Н. Паровичникова2, А.А. Масчан3, О.Ю. Баранова4, Т.В. Шелехова5, В.А. Доронин6, В.Я. Мельниченко7, К.Д. Капланов8, О.С. Успенская9, А.Н. Соколов2, Н.В. Мякова3, И.С. Моисеев1, И.В. Маркова1, Е.И. Дарская1, А.Г. Смирнова1, Т.А. Быкова1, Б.И. Аюбова1, И.А. Самородова1, Е.В. Бабенко1, И.М. Бархатов1, Т.Л. Гиндина1, А.Д. Кулагин1, Б.В. Афанасьев1

1 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова», ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

2 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

3 ФГБУ «НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

4 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

5 ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России, ул. Большая Казачья, д. 112, Саратов, Российская Федерация, 410012

6 ГБУЗ «Городская клиническая больница № 40 ДЗМ», ул. Касаткина, д. 7, Москва, Российская Федерация, 129301

7 ФГБУ «Национальный медико-хирургический центр им. Н.И. Пирогова», Минздрава России, ул. Нижняя Первомайская, д. 70, Москва, Российская Федерация, 105203

8 ГБУЗ «Волгоградский областной клинический онкологический диспансер», ул. Землячки, д. 78, Волгоград, Российская Федерация, 400138

9 ГБУЗ «Ленинградская областная клиническая больница», пр-т Луначарского, д. 45–49, Санкт-Петербург, Российская Федерация, 194291

Для переписки: Сергей Николаевич Бондаренко, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)338-62-72; e-mail: dr.sergeybondarenko@gmail.com

Для цитирования: Бондаренко С.Н., Паровичникова Е.Н., Масчан А.А. и др. Блинатумомаб в терапии острого лимфобластного лейкоза: Российское многоцентровое исследование. Клиническая онкогематология. 2019;12(2):145–53.

DOI: 10.21320/2500-2139-2019-12-2-145-153


РЕФЕРАТ

Актуальность. Успехи в терапии рецидивов и рефрактерного острого лимфобластного лейкоза (Р/Р ОЛЛ) в последние годы связаны с внедрением методов иммунотерапии, в т. ч. биспецифического активатора собственных T-клеток пациента блинатумомаба (Блинцито™, Амджен®) (БЦ).

Цель. Оценить эффективность и токсичность БЦ в лечении пациентов с Р/Р ОЛЛ и с персистенцией минимального опухолевого клона до и после трансплантации аллогенных гемопоэтических стволовых клеток (аллоТГСК).

Материалы и методы. В исследование включено 66 больных В-ОЛЛ CD19+ в возрасте 18–72 лет, из них 23 (35 %) с определяемой минимальной остаточной болезнью (МОБ+) и 43 (65 %) с Р/Р ОЛЛ. У 18 (27 %) пациентов терапия БЦ проводилась после предшествующей аллоТГСК.

Результаты. В общей группе 2-летние общая (ОВ) и безрецидивная выживаемость (БРВ) пациентов, ответивших на терапию БЦ, составили 53 и 38 %. При Р/Р ОЛЛ полные ремиссии (ПР) достигнуты у 29 (67 %) пациентов, в т. ч. у 24 (83 %) с отрицательной МОБ. Частота ПР была выше в группе стандартного цитогенетического риска по сравнению с группой высокого риска — 73 и 59 % соответственно. При уровне бластных клеток в костном мозге менее или более 50 % частота ПР составила 85 и 61 % соответственно. Частота ПР при использовании БЦ после предшествующей аллоТГСК и без таковой оказалась 80 и 60 % соответственно. У пациентов с Р/Р ОЛЛ, ответивших на терапию БЦ, 2-летние ОВ и БРВ были 40 и 26 % соответственно, в группе МОБ+ ОЛЛ — 66 и 51 % соответственно. Частота рецидивов была меньше в группе с аллоТГСК, чем без таковой, — 21 vs 55 %. Нежелательные явления III–IV степени отмечались у 25 (38 %) пациентов. У 11 (16 %) больных потребовалось прервать введение БЦ, у 5 (7 %) — терапия была прекращена досрочно.

Заключение. Эффективность БЦ выше в группе МОБ+, а также у больных Р/Р ОЛЛ с меньшей опухолевой массой. Использование БЦ после аллоТГСК позволяет достичь ремиссии у большинства пациентов и может сочетаться с иммуноадоптивной терапией.

Ключевые слова: острый лимфобластный лейкоз, таргетная терапия, блинатумомаб.

Получено: 22 августа 2018 г.

Принято в печать: 18 января 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Gokbuget N, Stanze D, Beck J, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. 2012;120(10):2032–41. doi: 10.1182/blood-2011-12-399287.

  2. Faderl S, O’Brien S, Pui C-H, et al. Adult Acute Lymphoblastic Leukemia. Cancer. 2010;116(5):1165–76. doi: 10.1002/cncr.24862.

  3. Gokbuget N, Dombret H, Ribera J-M, et al. International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractor y acute lymphoblastic leukemia. Haematologica. 2016;101(12):1524–33. doi: 10.3324/haematol.2016.144311.

  4. Pavlu J, Labopin M, Zoellner AK, et al. Allogeneic Hematopoietic Cell Transplantation for Primary Refractory Acute Lymphoblastic Leukemia: A Report From the Acute Leukemia Working Party of the EBMT. Cancer. 2017;123(11):1965–70. doi: 10.1002/cncr.30604.

  5. Bondarenko SN, Moiseev IS, Slesarchuk OA, et al. Allogeneic hematopoietic stem cell transplantation in children and adults with acute lymphoblastic leukemia. Cellular Therapy and Transplantation. 2016;5(2):12–20. doi: 10.18620/1866-8836-2016-5-2-12-20.

  6. Паровичникова Е.Н., Соколов А.Н., Троицкая В.В. и др. Острые Ph-негативные лимфобластные лейкозы взрослых: факторы риска при использовании протокола ОЛЛ-2009. Терапевтический архив. 2016;88(7):15–24.

    [Parovichnikova EN, Sokolov AN, Troitskaya VV, et al. Acute Ph-negative lymphoblastic leukemias in adults: Risk factors in the use of the ALL-2009 protocol. Terapevticheskii arkhiv. 2016;88(7):15–24. (In Russ)]

  7. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117(5):1137–46. doi: 10.1172/jci31405.

  8. Biagi E, Marin V, Attianese GM, et al. Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies. Haematologica. 2007;92(3):381–8. doi: 10.3324/haematol.10873.

  9. Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell–engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119(26):6226–33. doi: 10.1182/blood-2012-01-400515.

  10. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/s1470-2045(14)71170-2.

  11. Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–31. doi: 10.1182/blood-2017-08-798322.

  12. Kantarjian H, Stein AS, Gokbuget N, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J Med. 2017;376(9):836–47. doi: 10.1056/NEJMoa1609783.

  13. Zugmaier G, Gokbuget N, Klinger M, et al. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment. Blood. 2015;126(24):2578–84. doi: 10.1182/blood-2015-06-649111.

Получение CAR T-лимфоцитов, специфичных к CD19, и оценка их функциональной активности in vitro

А.В. Петухов1, В.А. Маркова2, Д.В. Моторин1, А.К. Титов1, Н.С. Белозерова2, П.М. Гершович2, А.В. Карабельский2, Р.А. Иванов2, Е.К. Зайкова1, Е.Ю. Смирнов2, П.А. Бутылин1, А.Ю. Зарицкий1

1 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

2 Биотехнологическая компания «Биокад», ул. Связи, д. 34-А, п. Стрельна, Санкт-Петербург, Российская Федерация, 198515

Для переписки: Зарицкий Андрей Юрьевич, д-р мед. наук, профессор, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; тел.: +7(812)702-68-28, факс: +7(812)702-37-65; e-mail: zaritskey@gmail.com

Для цитирования: Петухов А.В., Маркова В.А., Моторин Д.В. и др. Получение CAR T-лимфоцитов, специфичных к CD19, и оценка их функциональной активности in vitro. Клиническая онкогематология. 2018;11(1):1–9.

DOI: 10.21320/2500-2139-2018-11-1-1-9


РЕФЕРАТ

Актуальность. При В-линейных онкогематологических заболеваниях наиболее перспективный вариант адоптивной иммунотерапии предполагает применение клеток с химерным антигенным рецептором (CAR T-лимфоцитов), которые, по данным клинических исследований, продемонстрировали непревзойденные результаты.

Цель. Создание CAR T-лимфоцитов для применения в клинике и исследование их цитотоксичности in vitro.

Методы. Т-лимфоциты человека подвергались трансдукции лентивирусным вектором, содержащим гены анти-CD19-CAR, RIAD и GFP. Эффективность трансдукции Т-лимфоцитов оценивалась по уровню сигнала репортерного белка GFP методом проточной цитометрии. Для анализа жизнеспособности клеток применялся пропидия йодид. Цитотоксическая активность полученных CAR T-лимфоцитов в присутствии клеток-мишеней изучалась при их прямом сокультивировании. Анализ количества CAR T-клеток, экспрессии цитокинов проводился методом проточной цитометрии.

Результаты. Жизнеспособность трансдуцированных Т-лимфоцитов и экспрессия GFP достигали 91,87 и 50,87 % соответственно. При культивировании в присутствии IL-2 и рекомбинантного CD19 (целевой антиген) количество CAR T-лимфоцитов увеличивается в 1,4 раза через 120 ч относительно 48 ч. В цитотоксическом тесте при сокультивирования CAR-T с клетками K562-CD19+ доля CAR T-лимфоцитов увеличивается до 57 и 84,5 % после 48 и 120 ч экспозиции соответственно. В случае культивирования CAR T-лимфоцитов с клетками K562 (контрольная линия, не экспрессирующая CD19) через 48 ч их число снижалось до 36,2 %, а число K562 возрастало до 58,3 %. Жизнеспособность клеток-мишеней в экспериментальной и контрольной группах составила 3,5 и 36,74 % соответственно. Различия в концентрации IL-6 между контрольной и экспериментальной группами заметно меньше, чем при исследовании других цитокинов (IFN-γ, IL-2, TNF) в этих же группах.

Заключение. В настоящей работе были получены анти-CD19 CAR T-лимфоциты с достаточной жизнеспособностью. На модели in vitro продемонстрирована их цитотоксичность. Создание CAR T-лимфоцитов для клинического применения является первым шагом в развитии технологии адоптивной иммунотерапии в Российской Федерации.

Ключевые слова: CAR T-лимфоциты, иммуноадоптивная терапия, острый лимфобластный лейкоз, неходжкинские лимфомы, лентивирусная трансдукция, реакция «трансплантат против хозяина», синдром «цитокинового шторма».

Получено: 15 сентября 2017 г.

Принято в печать: 7 декабря 2017 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2015;13(1):10–24. doi: 10.1038/nrclinonc.2015.128.
  2. Podhorecka M, Markowicz J, Szymczyk A, Pawlowski J. Target therapy in hematological malignances: new monoclonal antibodies. Int Sch Res Not. 2014;2014(3):1–16. doi: 10.1155/2014/701493.
  3. Hussaini M. Biomarkers in Hematological Malignancies: A Review of Molecular Testing in Hematopathology. Cancer Control. 2015;22(2):158–66. doi: 10.1177/107327481502200206.
  4. Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult. Blood. 2013;121(7):1077–82. doi: 10.1182/blood-2012-08-234492.
  5. Im A, Pavletic SZ. Immunotherapy in hematologic malignancies: past, present, and future. J Hematol Oncol. 2017;10(1):94. doi: 10.1186/s13045-017-0453-8.
  6. Luskin MR, DeAngelo DJ. Chimeric Antigen Receptor Therapy in Acute Lymphoblastic Leukemia Clinical Practice. Curr Hematol Malig Rep. 2017;12(4):370–9. doi: 10.1007/s11899-017-0394-x.
  7. Fesnak A, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81. doi: 10.1038/nrc.2016.97.
  8. Lim W, June C. The Principles of Engineering Immune Cells to Treat Cancer. Cell. 2017;168(4):724–40. doi: 10.1016/j.cell.2017.01.016.
  9. Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98. doi: 10.1158/2159-8290.CD-12-0548.
  10. Brentjens RJ, Davila ML, Riviere I, et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci Transl Med. 2013;5(177):177ra38. doi: 10.1126/scitranslmed.3005930.
  11. Maude SL, Frey N, Shaw P, et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222.
  12. Turtle CJ, Hanafi L-A, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. doi: 10.1172/JCI85309.
  13. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi: 10.1016/S0140-6736(14)61403-3.
  14. Onea AS, Jazirehi AR. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas. Am J Cancer Res. 2016;6(2):403–24.
  15. Kebriaei P, Singh H, Huls MH, et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126(9):3363–76. doi: 10.1172/JCI86721.
  16. ICML 2017: Data From the TRANSCEND Trial of JCAR017 in Relapsed and Refractory Aggressive B-Cell Non-Hodgkin Lymphoma — The ASCO Post. Available from: http://www.ascopost.com/News/57764 (accessed 7.10.2017).
  17. Locke FL, Neelapu SS, Bartlett NL, et al. Abstract CT019: Primary results from ZUMA-1: a pivotal trial of axicabtagene ciloleucel (axicel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL). Cancer Res. 2017;77(13 Suppl):CT019. doi: 10.1158/1538-7445.AM2017-CT019.
  18. Kalos M, Levine BL, Porter DL, et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842.
  19. Porter DL, Hwang W-T, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
  20. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15. doi: 10.1016/j.coi.2015.01.002.
  21. Павлова А.А., Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. [Pavlova AА, Maschan MА, Ponomarev VB. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors. Oncohematology. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. (In Russ)]
  22. Dai H, Wang Y, Lu X, Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J Natl Cancer Inst. 2016;108(7):1–15. doi: 10.1093/jnci/djv439.
  23. Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics. 2016;3:16014. doi: 10.1038/mto.2016.14.
  24. Holzinger A, Barden M, Abken H. The growing world of CAR T cell trials: a systematic review. Cancer Immunol Immunother. 2016;65(12):1433–50. doi: 10.1007/s00262-016-1895-5.
  25. Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010;16(9):1245–56. doi: 10.1016/j.bbmt.2010.03.014.
  26. Gong MC, Latouche JB, Krause A, et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia. 1999;1(2):123–7.
  27. Davila ML, Sadelain M. Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. 2016;104(1):6–17. doi: 10.1007/s12185-016-2039-6.
  28. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016;127(26):3312–20. doi: 10.1182/blood-2016-02-629063.
  29. Grupp S, Kalos M, Barrett D, et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N Engl J Med. 2013;368(16):1509–18. doi: 10.1056/NEJMoa1215134.
  30. Yu H, Sotillo E, Harrington C, et al. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. Am J Hematol. 2017;92(1):E11–E13. doi: 10.1002/ajh.24594.
  31. Sotillo E, Barrett DM, Black KL, et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015;5(12):1282–95. doi: 10.1158/2159-8290.CD-15-1020.
  32. Fischer J, Paret C, El Malki K, et al. CD19 Isoforms Enabling Resistance to CART-19 Immunotherapy Are Expressed in B-ALL Patients at Initial Diagnosis. J Immunother. 2017;40(5):187–95. doi: 10.1097/CJI.0000000000000169.
  33. Jacoby E, Nguyen SM, Fountaine TJ, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320. doi: 10.1038/ncomms12320.
  34. Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–10. doi: 10.1182/blood-2015-08-665547.
  35. Zah E, Lin M-Y, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res. 2016;4(6):498–508. doi: 10.1158/2326-6066.CIR-15-0231.
  36. Shah NN, Stetler-Stevenson M, Yuan CM, et al. Minimal Residual Disease Negative Complete Remissions Following Anti-CD22 Chimeric Antigen Receptor (CAR) in Children and Young Adults with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Blood. 2016;128(22):650.
  37. Davila ML, Riviere I, Wang X, et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci Transl Med. 2014;6(224):224ra25. doi: 10.1126/scitranslmed.3008226.
  38. Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90. doi: 10.1038/nm.3838.
  39. Hay KA, Turtle CJ. Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies. Drugs. 2017;77(3):237–45. doi: 10.1007/s40265-017-0690-8.
  40. Wehbi VL, Tasken K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells – role of anchored protein kinase a signaling units. Front Immunol. 2016;7:1–19. doi: 10.3389/fimmu.2016.00222.
  41. Newick K, O’Brien S, Sun J, et al. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunol Res. 2016;4(6):541–51. doi: 10.1158/2326-6066.CIR-15-0263.
  42. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–4. doi: 10.1038/nmeth.3047.
  43. Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and Preclinical Evaluation of an Anti-CD19 Chimeric Antigen Receptor. J Immunother. 2009;32(7):689–702. doi: 10.1097/CJI.0b013e3181ac6138.
  44. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi: 10.1186/2162-3619-1-36.
  45. Uckun FFM, Jaszcz W, Ambrus JJL, et al. Detailed Studies on Expression and Function of CD19 Surface Determinant by Using B43 Monoclonal Antibody and the Clinical Potential of Anti-CD19 Immunotoxins. Blood. 1988;71(1):13–29.
  46. Wei G, Ding L, Wang J, et al. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6(1):10. doi: 10.1186/s40164-017-0070-9.
  47. Barrett DM, Singh N, Hofmann TJ, et al. Interleukin 6 Is Not Made By Chimeric Antigen Receptor T Cells and Does Not Impact Their Function. Blood. 2016;128(22):2016–7.
  48. Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017;19(7):867–80. doi: 10.1016/j.jcyt.2017.04.001.
  49. Hartmann J, Schussler‐Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97. doi: 10.15252/emmm.201607485.
  50. Hagen T. Novartis Sets a Price of $475,000 for CAR T-Cell Therapy. Available from: http://www.onclive.com/web-exclusives/novartis-sets-a-price-of-475000-for-car-tcell-therapy (accessed 31.10.2017).
  51. Yang Y, Jacoby E, Fry TJ. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr Opin Hematol. 2015;22(6):509–15. doi: 10.1097/MOH.0000000000000181.
  52. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8(8):573–89. doi: 10.1007/s13238-017-0411-9.

Бортезомиб в программной терапии рецидивов и рефрактерных форм острого лимфобластного лейкоза у детей

Н.А. Батманова, М.А. Шервашидзе, А.В. Попа, Л.Ю. Гривцова, И.Н. Серебрякова, Г.Л. Менткевич

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Наталья Андреевна Батманова, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(925)321-26-42; e-mail: Batmanova_nataly@mail.ru

Для цитирования: Батманова Н.А., Шервашидзе М.А., Попа А.В. и др. Бортезомиб в программной терапии рецидивов и рефрактерных форм острого лимфобластного лейкоза у детей. Клиническая онкогематология. 2017;10(3):381–9.

DOI: 10.21320/2500-2139-2017-10-3-381-389


РЕФЕРАТ

Актуальность и цели. Несмотря на существенные успехи в лечении острого лимфобластного лейкоза (ОЛЛ) у детей, рецидивы и рефрактерность к стандартной химиотерапии — основная причина неудач в лечении данной категории больных. Включение бортезомиба в программную терапию рецидивов ОЛЛ с целью изменить чувствительность бластных клеток, возможно, станет одним из путей излечения пациентов. Цель — оценить эффективность и токсичность противорецидивных протоколов ALL REZ BFM 95/96 без включения бортезомиба и COG AALL07P1 с включением бортезомиба при рецидивах и рефрактерных ОЛЛ у детей.

Материалы и методы. В исследование включено 54 ребенка с подтвержденным рецидивом ОЛЛ различных локализаций. С 1995 по 2011 г. лечение по протоколу ALL REZ BFM 95/96 без бортезомиба проведено 26 больным. С 2011 по 2016 г. лечение по программе COG AALL07P1 c бортезомибом получило 28 детей.

Результаты. Непосредственная эффективность лечения была существенно выше у больных, получивших лечение по программе с бортезомибом, — 85,7 vs 57,6 % после индукционной химиотерапии по протоколу ALL REZ BFM 95/96. При оценке отдаленных результатов лечения (безрецидивная, бессобытийная, общая выживаемость) между группами больных значимых различий не выявлено. Бессобытийная выживаемость больных с изолированными костномозговыми рецидивами на срок 2 года составила 20,3 ± 17,5 %. Переносимость программы была приемлемой, осложнения развивались в период миелосупрессии и не были связаны с введением бортезомиба.

Заключение. Интенсификация индукционной химиотерапии при повторной ремиссии по программе COG AALL07P1 c включением бортезомиба позволяет увеличить количество полных ремиссий, включая МОБ-отрицательные.

Ключевые слова: острый лимфобластный лейкоз, рефрактерность, рецидивы, бортезомиб.

Получено: 24 февраля 2017 г.

Принято в печать: 2 мая 2017 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Менткевич Г.Л., Маякова С.А. Лейкозы у детей. М.: Практическая медицина, 2009. 346 с.
    [Mentkevich GL, Mayakova SA. Leikozy u detei. (Leukemia in children.) Moscow: Prakticheskaya meditsina Publ.; 2009. 346 p. (In Russ)]
  2. Goto H. Childhood relapsed acute lymphoblastic leukemia: biology and recent treatment progress. Pediatr Intern. 2015;57(6):1059–66. doi: 10.1111/ped.12837.
  3. Pui CH, Carroll WL, Meshinchi S, Arceci R.J. Biology, risk stratification and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(36):551–65. doi: 10.1200/JCO.2010.30.7405.
  4. Pui CH, Evans EW. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50(3):185–96. doi: 10.1053/j.seminhematol.2013.06.007.
  5. Bailey LC, Lange BJ, Rheingold SR, Bunin N.J. Bone-marrow relapse in pediatric acute lymphoblastic leukaemia. Lancet Oncol. 2008;9(9):873–83. doi: 10.1016/S1470-2045(08)70229-8.
  6. Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14(6):205–17. doi: 10.1016/S1470-2045(12)70580-6.
  7. Bhatla T. The biology of relapsed acute lymphoblastic leukemia: opportunities for therapeutic interventions. J Pediatr Hematol Oncol. 2014;36(6):413–8. doi: 10.1097/MPH.0000000000000179.
  8. Raetz AE, Bhatla T. Where do we stand in the treatment of relapsed acute lymphoblastic leukemia? Am Soc Hematol Educ Program. 2012;2012:129–36. doi: 10.1182/asheducation-2012.1.129.
  9. Gaynon PS. Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol. 2005;131(5):579–87. doi: 10.1111/j.1365-2141.2005.05773.x.
  10. MacKezie A, Kasner M. Therapeutic developments in acute lymphoblastic leukemia. Blood Lymph Cancer: Targets Ther. 2012;2:145–58. doi: 10.2147/BLCTT.S24990.
  11. Ko RH, Barnette P, Bostrom B, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia consortium study. J Clin Oncol. 2010;28(4):648–54. doi: 10.1200/JCO.2009.22.2950.
  12. Milano A, Perry F, Caponigro F. The ubiquitin-proteasome system as a molecular target in solid tumors: an update on bortezomib. Onco Targets Ther. 2009;2:171–8. doi: 10.2147/OTT.S4503.
  13. Brown RE. Morphoproteomics and bortezomib/dexamethasone-induced response in relapsed acute lymphoblastic leukemia. Ann Clin Lab Sci. 2004;34(2):203–5.
  14. Du Xiao-Li, Chen Qi. Recent advancement of bortezomib in acute lymphoblastic leukemia treatment. Acta Haematol. 2013;129(4):207–14. doi: 10.1159/000345260.
  15. Horton TM. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol. 2006;58(13):13–23. doi: 10.1007/s00280-005-0135-z.
  16. Messinger Y, Gaynon P, Raetz E, et al. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer. 2010;55(2):254–9. doi: 10.1002/pbc.22456.
  17. Messinger YH, Gaynon PS, Sposto R, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood. 2012;120(2):285–90. doi: 10.1182/blood-2012-04-418640.

Острый лимфобластный лейкоз c транслокацией t(4;11)(q21;q23)/KMT2A-AFF1: результаты аллогенной трансплантации гемопоэтических стволовых клеток у детей и взрослых

Т.Л. Гиндина, Н.Н. Мамаев, О.В. Паина, А.С. Боровкова, П.В. Кожокарь, О.А. Слесарчук, Я.В. Гудожникова, Е.И. Дарская, А.Л. Алянский, С.Н. Бондаренко, Л.С. Зубаровская, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова», ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Татьяна Леонидовна Гиндина, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)233-12-43; e-mail: cytogenetics.bmt.lab@gmail.com

Для цитирования: Гиндина Т.Л., Мамаев Н.Н., Паина О.В. и др. Острый лимфобластный лейкоз c транслокацией t(4;11)(q21;q23)/KMT2A-AFF1: результаты аллогенной трансплантации гемопоэтических стволовых клеток у детей и взрослых. Клиническая онкогематология. 2017;10(3):342–50.

DOI: 10.21320/2500-2139-2017-10-3-342-350


РЕФЕРАТ

Цель. Оценить результаты аллогенной трансплантации гемопоэтических стволовых клеток (аллоТГСК) у детей и взрослых при наиболее прогностически неблагоприятном остром лимфобластном лейкозе (ОЛЛ) с транслокацией t(4;11)(q21;q23)/KMT2A-AFF1.

Методы. Обследован 21 больной (лица женского пола — 12, мужского — 9) в возрасте от 3 мес. до 48 лет (медиана 18,9 года). Выполнен анализ факторов прогноза общей (ОВ) и бессобытийной выживаемости (БСВ) после аллоТГСК у больных разных возрастных групп (до 1, 1–18 и старше 18 лет) с различными клиническими, трансплантационными и цитогенетическими характеристиками. АллоТГСК от HLA-совместимых родственных и неродственных доноров, а также гаплоидентичные аллоТГСК были выполнены у 4, 9 и 8 больных соответственно. У 10 (48 %) больных аллоТГСК проведена в первой ремиссии, у 2 (10 %) — во второй, у 9 (43 %) — при рецидивах заболевания.

Результаты. У 8 (38 %) больных единственным хромосомным нарушением была транслокация t(4;11)(q21;q23). Дополнительные изменения хромосом имели место у 11 (52 %) пациентов. У 8 (38 %) из них обнаружено 3 и более хромосомных аномалий в кариотипе. По результатам однофакторного анализа показатели ОВ и БСВ статистически различались в группах больных с аллоТГСК, выполненной в первой ремиссии и на других этапах течения ОЛЛ (во второй ремиссии и при рецидивах: < 0,001 в обоих случаях), а также у пациентов с наличием или отсутствием 3 и более цитогенетических нарушений в кариотипе (= 0,04 в обоих случаях). При многофакторном анализе установлено, что единственным независимым фактором прогноза, влияющим на показатели ОВ и БСВ, у больных ОЛЛ с t(4;11) было выполнение аллоТГСК, включая гаплоидентичную, в состоянии первой полной клинико-гематологической и молекулярной ремиссии (= 0,002 и = 0,0004 соответственно).

Заключение. ОЛЛ с t(4;11)/KMT2AAFFслужит абсолютным показанием к выполнению аллоТГСК на этапе первой ремиссии, в т. ч. у детей до 1 года. Удовлетворительные результаты могут быть получены и при использовании гаплоидентичной трансплантации от родителей. Такой подход освобождает от поиска в регистрах полностью HLA-совместимого донора и значительно упрощает саму лечебную процедуру.

Ключевые слова: острый лимфобластный лейкоз, транслокация t(4;11)(q21;q23)/KMT2A-AFF1, аллогенная ТГСК.

Получено: 17 января 2017 г.

Принято в печать: 10 мая 2017 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Marchesi F, Girardi K, Avvisati G. Pathogenetic, clinical and prognostic features of adult t(4;11)(q21;q23)/MLL-AF4 positive B-cell acute lymphoblastic leukemia. Adv Hematol. 2011;2011:1–8. doi: 10.1155/2011/621627.
  2. Marks DI, Moorman AV, Chilton L, et al. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(Q21;Q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica. 2013;98(6):945–52. doi: 10.3324/haematol.2012.081877.
  3. Vey N, Thomas X, Picard C, et al. Allogeneic stem cell transplantation improves the outcome of adults with t(1;19)/E2a-PBX1 and t(4;11)/MLL-AF4 positive B-cell acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 study. Leukemia. 2006;20(12):2155–66. doi: 10.1038/sj.leu.2404420.
  4. Cimino G, Cenfra N, Elia L, et al. The therapeutic response and clinical outcome of adults with ALL1(MLL)/AF4 fusion positive acute lymphoblastic leukemia according to the GIMEMA experience. Haematologica. 2010;95(5):837–40. doi: 10.3324/haematol.2009.009035.
  5. Koh K, Tomizawa D, Saito MA, et al. Early use of allogeneic hematopoietic stem cell transplantation for infants with MLL gene-arrangement-positive acute lymphoblastic leukemia. Leukemia. 2015;29(2):290–6. doi: 10.1038/leu.2014.172.
  6. Parma M, Vigano C, Fumagatti M, et al. Good outcome for very high risk adult B cell acute lymphoblastic leukemia carrying genetic abnormalities t(4;11)(q21q23), if promtly submitted to allogeneic transplantation after obtaining a good molecular remission. Mediterr J Hematol Infect Dis. 2015;7(1):e2015041. doi: 10.4084/MJHID.2015.041.
  7. Kosaka Y, Koh K, Kinukawa N, et al. Infant acute lymphoblastic leukaemia with MLL gene arrangements: outcome following intensive chemotherapy and hematopoietic stem cell transplantation. Blood. 2004;104(12):3527–34. doi: 10.1182/blood-2004-04-1390.
  8. Mann G, Attarbaschi A, Schrappe M, et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed-lineage-leukemia (MLL)-rearranged acute lymphoblastic leukemia: Results from the Interfant-99 Study. Blood. 2010;116(15):2644–50. doi: 10.1182/blood-2010-03-273532.
  9. Kato M, Hasegawa D, Kato K, et al. Allogeneic haematopoietic stem cell transplantation for infant acute lymphoblastic leukemia with KMT2A (MLL) rearrangements: a retrospective study from the paediatric acute lymphoblastic leukemia working group of the Japan Society for Haematopoietic Cell Transplantation. Br J Haematol. 2015;168(4):564–70. doi: 10.1111/bjh.13174.
  10. Wang Y, Liu QF, Liu Dh, et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of patients with mixed-lineage-leukemia-rearranged acute leukemia: results from a prospective, multi-center study. Am J Hematol. 2014;89(2):130–6. doi: 10.1002/ajh.23595.
  11. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6.
    [Gindina TL, Mamaev NN, Barkhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6. (In Russ)]
  12. Schaffer L, McGovan-Jordan J, Schmid M. An International System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013. p. 140.
  13. Sanjuan-Pla A, Bueno C, Prieto C, et al. Revisiting the biology of infant t(4;11)/MLL-AF41 B-cell acute lymphoblastic leukemia. Blood. 2015;126(25):2676–85. doi: 10.1182/blood-2015-09-967378.
  14. Motllo C, Ribera J-M, Morgades M, et al. Frequency and prognostic significance of t(v;11q23)/KMT2A rearrangements in adult patients with acute lymphoblastic leukemia treated with risk-adapted protocols. Leuk Lymphoma. 2017;58(1):145–52. doi: 10.1080/10428194.2016.1177182.
  15. Dreyer ZE, Dinndorf PA, Camitta B, et al. Analysis of the role of hematopoietic stem-cell transplantation in infants with acute lymphoblastic leukemia in first remission and MLL gene rearrangements: a report from the Children’s Oncology Group. J Clin Oncol. 2011;29(2):214–22. doi: 10.1200/jco.2009.26.8938.
  16. Tomizava D, Kato M, Takahashi H, et al. Favourable outcome in non-infant children with MLL-AF4-positive acute lymphoblastic leukemia: a report from the Tokyo Children’s Cancer Study Group. Int J Hematol. 2015;102(5):602–10. doi: 10.1007/s12185-015-1869-y.

Цитогенетические и молекулярно-генетические факторы прогноза острых лимфобластных лейкозов

А.В. Мисюрин

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Андрей Витальевич Мисюрин, канд. биол. наук, Каширское ш., д. 24, Moсква, Российская Федерация, 115478; e-mail: and@genetechnology.ru

Для цитирования: Мисюрин А.В. Цитогенетические и молекулярно-генетические факторы прогноза острых лимфобластных лейкозов. Клиническая онкогематология. 2017;10(3):317–23.

DOI: 10.21320/2500-2139-2017-10-3-317-323


РЕФЕРАТ

В обзоре представлены характерные и воспроизводимые при острых лимфобластных лейкозах (ОЛЛ) перестройки хромосом, которые можно обнаружить при стандартном цитогенетическом исследовании (окраска на G-полосы) или методом FISH. Более тонкие генетические изменения, недоступные для наблюдения цитогенетиков, выявляются с помощью современных методов молекулярно-биологической диагностики. Показано прогностическое значение цитогенетических и молекулярно-генетических маркеров ОЛЛ. Представлен минимальный набор клинически значимых молекулярных маркеров, которые целесообразно исследовать при ОЛЛ.

Ключевые слова: острый лимфобластный лейкоз, хромосомная аномалия, химерный онкоген, экспрессия гена, мутация гена.

Получено: 3 декабря 2016 г.

Принято в печать: 8 марта 2017 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Гематология: национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. 776 с.
    [Rukavitsyn OA, ed. Gematologiya: natsional’noe rukovodstvo. (Hematology: national guidelines.) Moscow: GEOTAR-Media Publ.; 2015. 776 p. (In Russ)]
  2. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881):1943–55. doi: 10.1016/S0140-6736(12)62187-4.
  3. Shago M. Recurrent Cytogenetic Abnormalities in Acute Lymphoblastic Leukemia. Meth Mol Biol. 2017;1541:257–78. doi: 10.1007/978-1-4939-6703-2_21.
  4. Deshpande PA, Srivastava VM, Mani S, et al. Atypical BCR-ABL11 fusion transcripts in adult B-acute lymphoblastic leukemia, including a novel fusion transcript-e8a1. Leuk Lymphoma. 2016;57(10):2481–4. doi: 10.3109/10428194.2016.1151512.
  5. McGregor S, McNeer J, Gurbuxani S. Beyond the 2008 World Health Organization classification: the role of the hematopathology laboratory in the diagnosis and management of acute lymphoblastic leukemia. Semin Diagn Pathol. 2012;29(1):2–11.
  6. Zerbini MCN, Soares FA, Velloso EDRP, et al. World Health Organization classification of tumors of hematopoietic and lymphoid tissues, 2008: major changes from the 3rd edition. Revista da Associacao Medica Brasileira. 2011;57(1):6–73. doi: 10.1590/S0104-42302011000100019.
  7. Paulsson K, Johansson B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromos Cancer. 2009;48(8):637–60. doi: 10.1002/gcc.20671.
  8. Mrоzek K, Harper DP, Aplan PD. Cytogenetics and Molecular Genetics of Acute Lymphoblastic Leukemia. Hematol Oncol Clin North Am. 2009;23(5):1–20. doi: 10.1016/j.hoc.2009.07.001.
  9. Faderl S, Estrov Z. Residual disease in acute lymphoblastic leukemia of childhood: methods of detection and clinical relevance. Cyt Cell Mol Ther. 1998;4(2):73–85.
  10. Heerema NA, Raimondi SC, Anderson JR, et al. Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromos Cancer. 2007;46(7):684–93. doi: 10.1002/gcc.20451.
  11. Woo JS, Alberti MO, Tirado CA. Childhood B-acute lymphoblastic leukemia: a genetic update. Exper Hematol Oncol. 2014;3(1):16. doi: 10.1186/2162-3619-3-16.
  12. Sutcliffe MJ, Shuster JJ, Sather HN, et al. High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorABL1e prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology Group (COG) initiative. Leukemia. 2005;19(5):734–40. doi: 10.1038/sj.leu.2403673.
  13. Moorman AV, Richards SM, Martineau M, et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood. 2003;102(8):2756–62. doi: 10.1182/blood-2003-04-1128.
  14. Forestier E, Johansson B, Gustafsson G, et al. Prognostic impact of karyotypic findings in childhood acute lymphoblastic leukaemia: a Nordic series comparing two treatment periods. Br J Haematol. 2000;110(1):147–53.
  15. Raimondi SC, Pui CH, Hancock ML, et al. Heterogeneity of hyperdiploid (51-67) childhood acute lymphoblastic leukemia. Leukemia. 1996;10(2):213–24.
  16. Pullarkat V, Slovak ML, Kopecky KJ, et al. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood. 2008;111(5):2563–72. doi: 10.1182/blood-2007-10-116186.
  17. Oostlander AE, Meijer GA, Ylstra B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet. 2004;66(6):488–95. doi: 10.1111/j.1399-0004.2004.00322.x.
  18. Rubnitz JE, Wichlan D, Devidas M, et al. Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. J Clin Oncol. 2008;26(13):2186–91. doi: 10.1200/JCO.2007.14.3552.
  19. Attarbaschi A, Mann G, Konig M, et al. Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis. Leukemia. 2004;18(10):1611–6. doi: 10.1038/sj.leu.2403471.
  20. Pullarkat V, Slovak ML, Kopecky KJ, et al. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood. 2008;111(5):2563–72. doi: 10.1182/blood-2007-10-116186.
  21. Stock W. Advances in the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Adv Hematol Oncol. 2008;6(7):487–8.
  22. Fielding AK, Rowe JM, Richards SM, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia-chromosome positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the international ALL trial MRC KALLXII/ECOG2993. Blood. 2009;113(19):4489–96. doi: 10.1182/blood-2009-01-199380.
  23. Yanada M, Matsuo K, Suzuki T, et al. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a metaanalysis. Leukemia. 2005;19(8):1345–9. doi: 10.1038/sj.leu.2403838.
  24. Moorman AV, Richards SM, Robinson HM, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–30. doi: 10.1182/blood-2006-08-040436.
  25. Heerema NA, Harbott J, Galimberti S, et al. Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome. Leukemia. 2004;18(4):693–702. doi: 10.1038/sj.leu.2403324.
  26. Wetzler M, Talpaz M, Estrov Z, Kurzrock R. CML: mechanisms of disease initiation and progression. Leuk Lymphoma. 1993;11(Suppl 1):47–50. doi: 10.3109/10428199309047863.
  27. Chessells JM, Swansbury GJ, Reeves B, et al. Cytogenetics and prognosis in childhood lymphoblastic leukaemia: results of MRC UKALL X. Br J Haematol. 1997;99(1):93–100.
  28. Chessells JM, Harrison CJ, Kempski H, et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia. 2002;16(5):776–84. doi: 10.1038/sj.leu.2402468.
  29. Moorman AV, Raimondi SC, Pui CH, et al. No prognostic effect of additional chromosomal abnormalities in children with acute lymphoblastic leukemia and 11q23 abnormalities. Leukemia. 2005;19(4):557–63. doi: 10.1038/sj.leu.2403695.
  30. Pui CH, Sandlund JT, Pei D, et al. Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA. 2003;290(15):2001–7. doi: 10.1001/jama.290.15.2001.
  31. Pui C-H, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003;17(4):700–6. doi: 10.1038/sj.leu.2402883.
  32. Jeha S, Pei D, Raimondi SC, et al. Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia. 2009;23(8):1406–9. doi: 10.1038/leu.2009.42.
  33. Mrozek K. Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol. 2008;35:365–77. doi: 10.1053/j.seminoncol.2008.04.007.
  34. Wetzler M, Dodge RK, Mrozek K, et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia: the cancer and leukemia Group B experience. Blood. 1999;93(11):3983–93.
  35. Bernard OA, Busson-LeConiat M, Ballerini P, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia. 2001;15(10):1495–504. doi: 10.1038/sj.leu.2402249.
  36. Graux C, Stevens-Kroef M, Lafage M, et al. Heterogeneous patterns of amplification of the NUP214-ABL11 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(1):125–33. doi: 10.1038/leu.2008.278.
  37. Quintas-Cardama A, Tong W, Manshouri T, et al. Activity of tyrosine kinase inhibitors against human NUP214-ABL11-positive T cell malignancies. Leukemia. 2008;22(6):1117–24. doi: 10.1038/leu.2008.80.
  38. Krawczyk J, Haslam K, Lynam P, et al. No prognostic impact of P2RY8-CRLF2 fusion in intermediate cytogenetic risk childhood B-cell acute lymphoblastic leukaemia. Br J Haematol. 2013;160(4):555–6. doi: 10.1111/bjh.12130.
  39. Hoelzer D. Personalized medicine in adult acute lymphoblastic leukemia. Haematologica. 2015;100(7):855–8. doi: 10.3324/haematol.2015.127837.
  40. Tsuzuki S, Taguchi O, Seto M. Promotion and maintenance of leukemia by ERG. Blood. 2011;117(14):3858–68. doi: 10.1182/blood-2010-11-320515.
  41. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. doi: 10.1056/NEJMoa0808253.
  42. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL11 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4. doi: 10.1038/nature06866.
  43. Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2010;107(1):252–7. doi: 10.1073/pnas.0911726107.
  44. Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471(7337):235–9. doi: 10.1038/nature09727.
  45. Van Vlierberghe P, Palomero T, Khiabanian H, et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet. 2010;42(4):338–42. doi: 10.1038/ng.542.
  46. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56. doi: 10.1016/S1470-2045(08)70314-0.
  47. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71. doi: 10.1126/science.1102160.
  48. Гапонова Т.В., Менделеева Л.П., Мисюрин А.В. и др. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой. Онкогематология. 2009;2:52–5.
    [Gaponova TV, Mendeleeva LP, Misyurin AV, et al. PRAME, WT1 and XIAP tumor-associated genes expression in multiple myeloma patients. Onkogematologiya. 2009;2:52–5. (In Russ)]
  49. Абраменко И.В., Белоус Н.И., Крячок И.А. и др. Экспрессия гена PRAME при множественной миеломе. Терапевтический архив. 2004;76(7):77–81.
    [Abramenko IV, Belous NI, Kryachok IA, et al. PRAME gene expression in multiple myeloma. Terapevticheskii arkhiv. 2004;76(7):77–81. (In Russ)]
  50. Мисюрин В.А. Аутосомные раково-тестикулярные гены. Российский биотерапевтический журнал. 2014;13(3):77–82.
    [Misyurin VA. Autosomal cancer-testis genes. Rossiiskii bioterapevticheskii zhurnal. 2014;13(3):77–82. (In Russ)]
  51. Мисюрин А.В. Основы молекулярной диагностики онкогематологических заболеваний. Российский биотерапевтический журнал. 2016;15(4):18–24. doi: 10.17650/1726-9784-2016-15-4-18-24.
    [Misyurin AV. Essentials of the molecular diagnosis of oncohematological diseases. Rossiysky bioterapevtichesky zhurnal. 2016;15(4):18–24. doi: 10.17650/1726-9784-2016-15-4-18-24. (In Russ)]

Лечение рефрактерных форм острого лимфобластного лейкоза у детей и подростков: реиндукция ремиссии с последующей аллогенной трансплантацией гемопоэтических стволовых клеток

Е.В. Семёнова, Н.В. Станчева, С.Н. Бондаренко, В.Н. Вавилов, Д.А. Багге, О.В. Паина, С.В. Разумова, А.С. Боровкова, Т.А. Быкова, А.А. Рац, Л.С. Зубаровская, Б.В. Афанасьев

Институт Детской Гематологии и Трансплантологии им. Р.М. Горбачевой, Санкт-Петербургский Государственный Медицинский Университет им. академика И. П. Павлова, Санкт-Петербург, Российская Федерация


РЕФЕРАТ

Цель исследования: оценка эффективности программ химиотерапии, содержащих нуклеозидные аналоги (флударабин и неларабин) с последующим применением аллогенной трансплантации гемопоэтических стволовых клеток (алло-ТГСК) при рефрактерных формах острого лимфобластного лейкоза (ОЛЛ) у детей и подростков.

Материал и методы: Пациентам (n=33) в возрасте от 1 до 21 года (медиана – 11,5) с рецидивами и рефрактерными формами острого лимфобластного лейкоза с целью индукции ремиссии выполнена химиотерапия по схемам, содержащим флударабин (FLAG±Ida) (n=23) или неларабин (n=10). В последующем 24 пациентам в последующем проведена алло-ТГСК.

Результаты: Из 23 пациентов, получивших FLAG и FLAG-Ida полная ремиссия (ПР)  достигнута у 11 (48%). Среди 10 пациентов, которым провели лечение по схемам с неларабином, ПР получена у 7 (70%). Длительность ПР составила, в среднем, 4,9 мес (1-18 мес). Общая 3-х летняя выживаемость (ОВ) пациентов после алло-ТГСК, выполненной в ремиссии, составила 58%, в рецидиве – 8%, без алло-ТГСК – 0%.

Заключение: схемы химиотерапии, содержащие флударабин или неларабин, могут применяться  как этап подготовки с целью достижения ремиссии перед аллогенной трансплантацией гемопоэтических стволовых клеток у детей и подростков с прогностически неблагоприятными формами острого лимфобластного лейкоза.


Ключевые слова: флударабин, неларабин, алло-ТГСК, острый лимфобластный лейкоз, резистентные формы, дети, подростки.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Schrappe M., Reiter A., Ludwig W.D. et al. Improved outcome in childhood acute Lymphoblastic leukemia despite reduced use of antracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood 2000; 95(11): 3310–22.
  2. Silverman L.B., Gelber R.D., Dalton V.K. et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001; 97(5): 1211–8.
  3. Pui C.-H., Schrappe M., Ribeiro R.C., Niemeyer C.M. Childhood and adolescent lymphoid and myeloid leukemia. Hematology 2004; 84: 124–32.
  4. Pui C.H., Evans W.E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 2006; 354(2): 166–78.
  5. Chessells J.M., Veys P., Kempski H. et al. Long-term follow-up of relapsed childhood acute lymphoblastic leukaemia. Br. J. Haematol. 2003; 123: 396–405.
  6. Nguyen K., Devidas M., Cheng S.C. et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: A Children’s Oncology Group study. Leukemia 2008; 22: 2142–50.
  7. Афанасьев Б.В., Зубаровская Л.С. Трансплантация гемопоэтических стволовых клеток крови. Детская онкология: Руководство. СПб., 2002: 90–108. [Afanas’ev B.V., Zubarovskaya L.S. Transplantatsiya gemopoeticheskikh stvolovykh kletok krovi. Detskaya onkologiya: Rukovodstvo (Hematopoietic stem cell transplantation. Pediatric oncology. Manual). , 2002: 90–108.]
  8. Румянцев А.Г., Масчан А.А. Трансплантация гемопоэтических стволовых клеток у детей: Руководство для врачей. М., 2003. [Rumyantsev A.G., Maschan A.A. Transplantatsiya gemopoeticheskikh stvolovykh kletok u detei: Rukovodstvo dlya vrachei (Hematopoietic stem cell transplantation in children. Manual for medical practitioners)., 2003.]
  9. McCarthy A.J., Pitcher L.A., Hann I.M., Oakhill A. FLAG (fludarabine, high-dose cytarabine, and G-CSF) for refractory and high-risk relapsed acute leukemia in children. Med. Pediatr. Oncol. 1999; 32(6): 411–5.
  10. Yang S.W. et al. Dual mode of inhibition of purified DNA ligase from human cells by 9-β-D-arabinosyl-2-fluoroadenine triphosphate. J. Biol. Chem. 1992; 267: 2345–9.
  11. Ross S.P. et al. Fludarabine: a review of its pharmacological properties and therapeutic potential in malignancy. Drug 1993; 45: 737–59.
  12. Gandhi V. et al. Combination of fludarabine and arabinosyl-cytosine for the treatment of chronic lymphocytic leukemia: clinical efficacy and modulation of arabinosyl-cytosine pharmacology. Cancer Chem. Pharmacol. 1994; 34: 30–6.
  13. Tavil B., Aytac S., Balci Y.I. et al. Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin (FLAG-IDA) for the treatment of children with poor-prognosis acute leukemia: the Hacettepe experience. Hematol. Oncol. 2010; 27(7): 517–28.
  14. Quarello P., Berger M., Rivetti E. et al. FLAG-liposomal doxorubicin (Myocet) regimen for refractory or relapsed acute leukemia pediatric patients. J. Pediatr. Hematol. Oncol. 2012; 34(3): 208–16.
  15. Berg S.L., Blaney S.M., Devidas M. et al. Phase II study of Nelarabine in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J. Clin. Oncol. 2005; 23(15): 3376–82.
  16. Commander L.A., Seif A.E., Insogna I.G., Susan R. Rheingold. Salvage therapy with nalarabine, etoposide and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. J. Haem. 2010; 150: 345–51.
  17. Trotti A., Colevas A.D. et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Radiat. O 2007; 13: 176–81.