Значение дополнительных иммунологических маркеров в диагностике минимальной остаточной болезни при множественной миеломе

Е.Э. Толстых1, О.С. Чувадар2, А.А. Семенова1, Н.А. Купрышина1, О.П. Колбацкая1, Ю.И. Ключагина1, О.А. Коломейцев1, Г.С. Тумян1, Н.Н. Тупицын1

1 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

2 ООО «Центр клинической онкологии и гематологии», ул. Семашко, д. 4а, Симферополь, Республика Крым, Российская Федерация, 295026

Для переписки: Николай Николаевич Тупицын, д-р мед. наук, профессор, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(925)537-15-82; e-mail: nntca@yahoo.com

Для цитирования: Толстых Е.Э., Чувадар О.С., Семенова А.А. и др. Значение дополнительных иммунологических маркеров в диагностике минимальной остаточной болезни при множественной миеломе. Клиническая онкогематология. 2022;15(4):388–95.

DOI: 10.21320/2500-2139-2022-15-4-388-395


РЕФЕРАТ

Актуальность. Известно, что популяция неопухолевых плазматических клеток в костном мозге здоровых лиц весьма гетерогенна. Среди них может обнаруживаться небольшое количество плазмоцитов CD19–, CD56+, CD45–, отличающих их от основной массы нормальных клеток плазмоцитарного ряда отсутствием экспрессии CD19, CD45 и наличием экспрессии CD56. Именно это обстоятельство вносит определенные сложности в мониторинг минимальной остаточной болезни (МОБ) при множественной миеломе (ММ), поскольку необходимо проводить сопоставление аберрантных и нормальных плазматических клеток. По этой причине представляется чрезвычайно актуальным исследование ряда дополнительных диагностических маркеров: CD27, CD28, CD117 и CD81.

Цель. Изучение роли дополнительных диагностических маркеров (CD27, CD28, CD117 и CD81) МОБ у больных ММ на различных этапах течения заболевания.

Материалы и методы. В настоящее исследование включено 62 больных ММ в возрасте 31–76 лет (медиана 58 лет); женщин было 25, мужчин — 37. Анализу подвергнуты морфологические и иммунофенотипические особенности плазматических клеток костного мозга. Методом определения МОБ служила 8-цветная проточная цитометрия на проточном цитометре FACSCanto II (США) в соответствии с критериями EuroFlow.

Результаты. Иммунофенотип плазматических клеток на этапе первичной диагностики ММ оценен у всех 62 больных с использованием двух 8-цветных панелей, рекомендованных консорциумом EuroFlow (2012). В соответствии с данными первичного иммунофенотипирования МОБ определялась на основании изучения как основных диагностических маркеров плазматических клеток (CD38, CD138, CD45, CD56, CD19), так и дополнительных (CD27, CD28, CD117 и CD81). Исследование проводилось в основном после индукционной терапии по достижении ремиссии. Установлено, что частота МОБ-положительных результатов при пороговом уровне аберрантных плазматических клеток более 0,01 % была следующей: по CD27 — 91 %, CD28 — 90,6 %, CD117 — 87 %, CD81 — 96,7 %. Соответственно МОБ-отрицательные случаи по маркеру CD27 составили 9 %, CD28 — 9,4 %, CD117 — 13 %, CD81 — 3,3 %.

Заключение. Применение комплекса дополнительных маркеров CD27, CD28, CD117, CD81 позволяет более достоверно с учетом экспрессии основных антигенов CD38, CD138, CD45, CD56, CD19 установить МОБ-статус при ММ: отрицательный либо положительный.

Ключевые слова: множественная миелома, минимальная остаточная болезнь, плазматические клетки, костный мозг, многоцветная проточная цитометрия.

Получено: 2 марта 2022 г.

Принято в печать: 30 августа 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017.
  2. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–e548. doi: 10.1016/S1470-2045(14)70442-5.
  3. Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020. 252 с.
    [Kaprin AD, Starinskii VV, Shakhzadova AO, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2019 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2019 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 252 p. (In Russ)]
  4. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018. 324 с.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. 324 р. (In Russ)]
  5. van Dongen JJ, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimentional flow cytometric immunophenotyling of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–75. doi: 10.1038/leu.2012.120.
  6. Flores-Montero J, de Tute R, Paiva B, et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications or MRD detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90(1):61–72. doi: 10.1002/cyto.b.21265.
  7. Mateo G, Montalban MA, Vidriales MB, et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol. 2008;26(16):2737–44. doi: 10.1200/JCO.2007.15.4120.
  8. Chen F, Hu Y, Wang X, et al. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018;7(12):5920–7. doi: 10.1002/cam4.1840.

Прогностическое значение иммунофенотипических особенностей плазматических клеток у пациентов с впервые диагностированной множественной миеломой, получавших лечение на основе ингибитора протеасомы первого поколения бортезомиба

Г.Н. Салогуб1, Е.Б. Русанова2, М.В. Горчакова2, Е.А. Белякова3

1 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

2 ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

3 ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, ул. Кирочная, д. 41, Санкт-Петербург, Российская Федерация, 191015

Для переписки: Галина Николаевна Салогуб, д-р мед. наук, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; e-mail: salogub@bk.ru

Для цитирования: Салогуб Г.Н., Русанова Е.Б., Горчакова М.В., Белякова Е.А. Прогностическое значение иммунофенотипических особенностей плазматических клеток у пациентов с впервые диагностированной множественной миеломой, получавших лечение на основе ингибитора протеасомы первого поколения бортезомиба. Клиническая онкогематология. 2022;15(4):377–87.

DOI: 10.21320/2500-2139-2022-15-4-377-387


РЕФЕРАТ

Цель. Оценить с помощью методов проточной цитометрии (ПЦ) и световой микроскопии количество плазматических клеток (ПК) в костном мозге и их иммунофенотип. Проанализировать клиническое и прогностическое значение полученных данных у пациентов с впервые диагностированной множественной миеломой (ММ), получавших лечение на основе ингибитора протеасомы первого поколения бортезомиба.

Материалы и методы. В исследование включено 153 пациента с впервые диагностированной ММ, проходивших лечение с последующим наблюдением в ПСПбГМУ им. И.П. Павлова в период с 2007 по 2017 г. Медиана возраста пациентов 69 лет. В качестве индукционной терапии у 115 пациентов применялись схемы на основе ингибитора протеасомы первого поколения бортезомиба. Для определения иммунофенотипического профиля ПК использовались моноклональные антитела CD19, CD20, CD27, CD38, CD45, CD56, CD138, CD117. Иммунофенотипирование ПК в костном мозге проводили методом ПЦ на приборе Cytomics FC500 (Beckman Coulter, США).

Результаты. Значительных различий в моноклональной продукции отдельных классов и типов тяжелых и/или легких цепей иммуноглобулинов у больных с различным фенотипом не выявлено. При иммунофенотипическом профиле миеломных клеток CD20+CD27–преобладала секреция моноклональной цепи κ над λ. В целом секреция легких цепей чаще отмечалась при ММ CD20+, реже — при ММ CD56+. При экспрессии CD56 чаще наблюдалась секреция IgAλ, а при экспрессии CD117 — IgAκ. Наихудшие показатели выживаемости оказались у пациентов с иммунофенотипом ПК CD27–CD56–. Поздние стадии заболевания по системе ISS на этапе первичной диагностики ММ чаще характеризовались фенотипом CD45–CD27–CD56+.

Заключение. Особенности иммунофенотипа ПК, выявленные по результатам ПЦ, могут использоваться у пациентов с ММ для определения прогноза и оптимизации терапии.

Ключевые слова: множественная миелома, проточная цитометрия, бортезомиб, иммунофенотипический профиль, плазматические клетки, общая выживаемость, выживаемость без прогрессирования.

Получено: 22 мая 2022 г.

Принято в печать: 28 августа 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Saxe D, Seo E-J, Bergeron MB, Han J-Y. Recent advances in cytogenetic characterization of multiple myeloma. Int J Lab Hematol. 2019;41(1):5–14. doi: 10.1111/ijlh.12882.
  2. Johnsen HE, Bogsted M, Klausen TW, et al. Multiparametric flow cytometry profiling of neoplastic plasma cells in multiple myeloma. Cytometry B Clin Cytom. 2010;78(5):338–47. doi: 10.1002/cyto.b.20523.
  3. Dispenzieri A, Kumar S. Treatment for high-risk smoldering myeloma. N Engl J Med. 2013;369(18):1762–5. doi: 10.1056/NEJMc1310911#SA1.
  4. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):538–48. doi: 10.1016/S1470-2045(14)70442-5.
  5. Dimopoulos MA, Sonneveld P, Leung N, et al. International Myeloma Working Group Recommendations for the Diagnosis and Management of Myeloma-Related Renal Impairment. J Clin Oncol. 2016;34(13):1544–57. doi: 10.1200/JCO.2015.65.0044.
  6. Flores-Montero J, de Tute R, Paiva B, et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90(1):61–72. doi: 10.1002/cyto.b.21265.
  7. Flores-Montero J, Sanoja-Flores L, Paiva B, et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–103. doi: 10.1038/leu.2017.29.
  8. Kumar SK, Kimlinger T, Morice W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best Pract Res Clin Haematol. 2010;23(3):433–51. doi: 10.1016/j.beha.2010.09.002.
  9. Kumar S, Rajkumar SV, Kimlinger T, et al. CD45 expression by bone marrow plasma cells in multiple myeloma: clinical and biological correlations. Leukemia. 2005;19(8):1466–70. doi: 10.1038/sj.leu.2403823.
  10. Iriyama N, Miura K, Hatta Y, et al. Clinical effect of immunophenotyping on the prognosis of multiple myeloma patients treated with bortezomib. Oncol Lett. 2017;13(5):3803–8. doi: 10.3892/ol.2017.5920.
  11. Grigoriadis G, Gilbertson M, Came N, et al. Is CD20 positive plasma cell myeloma a unique clinicopathological entity? A study of 40 cases and review of the literature. Pathology. 2012;44(6):552–6. doi: 10.1097/PAT.0b013e3283583f5d.
  12. Arana P, Paiva B, Cedena MT, et al. Prognostic value of antigen expression in multiple myeloma: a PETHEMA/GEM study on 1265 patients enrolled in four consecutive clinical trials. Leukemia. 2018;32(4):971–8. doi: 10.1038/leu.2017.320.
  13. Li Z, Xu Y, An G, et al. The characteristics of 62 cases of CD20-positive multiple myeloma. 2015;36(1):44–8. doi: 10.3760/cma.j.issn.0253-2727.2015.01.011.
  14. Shen C, Xu H, Alvarez X, et al. Reduced expression of CD27 by collagenase treatment: implications for interpreting B cell data in tissue. PLoS One. 2015;10(3):213–20. doi: 10.1371/journal.pone.0116667.
  15. Moreau P, Robillard N, Jego G, et al. Lack of CD27 in myeloma delineates different presentation and outcome. Br J Haematol. 2006;132(2):168–70. doi: 10.1111/j.1365-2141.2005.05849.x.
  16. Lok R, Golovyan D, Smith J. Multiple myeloma causing interstitial pulmonary infiltrates and soft-tissue plasmacytoma. Respir Med Case Rep. 2018;24:155–7. doi: 10.1016/j.rmcr.2018.05.023.
  17. Klimiene I, Radzevicius M, Matuzeviciene R, et al. Adhesion molecule immunophenotype of bone marrow multiple myeloma plasma cells impacts the presence of malignant circulating plasma cells in peripheral blood. Int J Lab Hematol. 2021;43(3):403–8. doi: 10.1111/ijlh.13387.
  18. Khallaf SM, Yousof EA, Ahmed EH, et al. Prognostic value of CD56 expression in multiple myeloma. Res Oncol. 2020;16(1):6–1. doi: 10.21608/resoncol.2020.24758.1091.
  19. Yoshida T, Ri M, Kinoshita S, et al. Low expression of neural cell adhesion molecule, CD56, is associated with low efficacy of bortezomib plus dexamethasone therapy in multiple myeloma. PLoS One. 2018;13(5):e0196780. doi: 10.1371/journal.pone.0196780.
  20. Baughn LB, Sachs Z, Noble-Orcutt KE, et al. Phenotypic and functional characterization of a bortezomib resistant multiple myeloma cell line by flow and mass cytometry. Leuk Lymphoma. 2017;58(8):1931–40. doi: 10.1080/10428194.2016.1266621.
  21. Pan Y, Wang H, Tao Q, et al. Absence of both CD56 and CD117 expression on malignant plasma cells is related with a poor prognosis in patients with newly diagnosed multiple myeloma. Leuk Res. 2016;40:77–82. doi: 10.1016/j.leukres.2015.11.003.
  22. Chen F, Hu Y, Wang X, et al. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018;7(12):5920–7. doi: 10.1002/cam4.1840.
  23. Wang H, Zhou X, Zhu JW. Association of CD117 and HLA-DR expression with shorter overall survival and/or progression-free survival in patients with multiple myeloma treated with bortezomib and thalidomide combination treatment without transplantation. Oncol Lett. 2018;16(5):5655–66. doi: 10.3892/ol.2018.9365.
  24. Skerget M, Skopec B, Zadnik V, et al. CD56 Expression is an important prognostic factor in multiple myeloma even with bortezomib induction. Acta Haematol. 2018;139(4):228–34. doi: 10.1159/000489483.
  25. Raja KR, Kovarova L, Hajek R. Review of phenotypic markers used in flow cytometric analysis of MGUS and MM, and applicability of flow cytometry in other plasma cell disorders. Br J Haematol. 2010;149(3):334–51. doi: 10.1111/j.1365-2141.2010.08121.x.
  26. Sahara N, Takeshita A, Shigeno K, et al. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br J Haematol. 2002;117(4):882–5. doi: 10.1046/j.1365-2141.2002.03513.x.

Клиническое наблюдение волосатоклеточного лейкоза и лимфоплазмоцитарной лимфомы, установленных одновременно методом клеточного биочипа

А.Н. Хвастунова1,2, Л.С. Аль-Ради3, О.С. Федянина1,2, С.А. Луговская4, С.А. Кузнецова1,2

1 ФГБУ «НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

2 ФГБУН «Центр теоретических проблем физико-химической фармакологии РАН», ул. Косыгина, д. 4, Москва, Российская Федерация, 119991

3 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

4 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, ул. Баррикадная, д. 2/1, Москва, Российская Федерация, 125993

Для переписки: Алина Николаевна Хвастунова, канд. биол. наук, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997; тел.: +7(495)287-65-70; e-mail: alina_shunina@mail.ru

Для цитирования: Хвастунова А.Н., Аль-Ради Л.С., Федянина О.С. и др. Клиническое наблюдение волосатоклеточного лейкоза и лимфоплазмоцитарной лимфомы, установленных одновременно методом клеточного биочипа. Клиническая онкогематология. 2019;12(3):243–6.

doi: 10.21320/2500-2139-2019-12-3-243-246


РЕФЕРАТ

В работе представлено клиническое наблюдение сочетания волосатоклеточного лейкоза и лимфоплазмоцитарной лимфомы с секрецией PIgMκ. С помощью клеточного биочипа, позволяющего одновременно исследовать иммунофенотип и проводить морфологический и цитохимический анализы лейкоцитов, в периферической крови у пациента с лейкопенией были обнаружены малые популяции ворсинчатых (3 % от общего числа лимфоцитов) и плазматических клеток (2 %), включая клетки Мотта (0,2 %). Результаты, полученные методом клеточного биочипа, способствовали быстрому установлению предварительного диагноза, который затем был подтвержден стандартными методами диагностики.

Ключевые слова: клеточный биочип, волосатоклеточный лейкоз, лимфоплазмоцитарная лимфома, ворсинчатые клетки, плазматические клетки, клетки Мотта.

Получено: 12 ноября 2018 г.

Принято в печать: 2 мая 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Khvastunova AN, Kuznetsova SA, Al-Radi LS, et al. Anti-CD antibody microarray for human leukocyte morphology examination allows analyzing rare cell populations and suggesting preliminary diagnosis in leukemia. Sci Rep. 2015;5(1):12573. doi: 10.1038/srep12573.

  2. Хвастунова А.Н., Аль-Ради Л.С., Капранов Н.М. и др. Использование клеточного биочипа в диагностике волосатоклеточного лейкоза. Онкогематология. 2015;10(1):37–45. doi: 10.17650/1818-8346-2015-1-37-45.

    [Khvastunova AN, Al-Radi LS, Kapranov NM, et al. Cell-binding microarray application in diagnosis of hairy cell leukemia. Oncohematology. 2015;10(1):37–45. doi: 10.17650/1818-8346-2015-1-37-45. (In Russ)]

  3. Khvastunova AN, Al‐Radi LS, Fedyanina OS, Kuznetsova SA. Simultaneous finding of chronic lymphocytic leukemia and residual hairy cell leukemia using a lymphocyte‐binding anti‐CD antibody microarray. Clin Case Rep. 2018;6(4):753–5. doi: 10.1002/ccr3.1416.

  4. Bain BJ. Leukemia Diagnosis. 4th edition. Singapore: Blackwell Publishing; 2010. doi: 10.1002/9781444318470.

  5. Луговская С.А., Почтарь М.Е. Гематологический атлас. М. – Тверь: Триада, 2011. 368 с.

    [Lugovskaya SA, Pochtar ME. Gematologicheskii atlas. (Hematology atlas.) Moscow – Tver: Triada Publ.; 2011. 368 р. (In Russ)]

  6. Shao H, Calvo KR, Gronborg M, et al. Distinguishing hairy cell leukemia variant from hairy cell leukemia: Development and validation of diagnostic criteria. Leuk Res. 2013;37(4):401–9. doi: 10.1016/j.leukres.2012.11.021.

  7. Robak T. Hairy-cell leukemia variant: recent view on diagnosis, biology and treatment. Cancer Treat Rev. 2011;37(1):3–10. doi: 10.1016/j.ctrv.2010.05.003.

  8. Traverse-Glehen A, Baseggio L, Callet-Bauchu E, et al. Splenic red pulp lymphoma with numerous basophilic villous lymphocytes: a distinct clinicopathologic and molecular entity? Blood. 2008;111(4):2253–60. doi: 10.1182/blood-2007-07-098848.

  9. Хвастунова А.Н., Аль-Ради Л.С., Федянина О.С. и др. Особенности морфологии и иммунофенотипа опухолевых клеток лимфомы из клеток маргинальной зоны селезенки (исследование с помощью клеточного биочипа). Онкогематология. 2017;12(1):71–7. doi: 10.17650/1818-8346-2017-12-1-71-77.

    [Khvastunova AN, Al-Radi LS, Fedyanina OS, et al. Determination of morphology and immunophenotype of circulating lymphoma cells in patients with splenic marginal zone lymphoma using an anti-CD antibody microarray. Oncohematology. 2017;12(1):71–7. doi: 10.17650/1818-8346-2017-12-1-71-77. (In Russ)]

  10. Mott F. Observations on the brains of men and animals infected with various forms of trypanosomes. Preliminary note. Proc Royal Soc London B. 1905;76(509):235–42. doi: 10.1098/rspb.1905.0016.

  11. Jacob H, Lutcke A. Subakute sklerosierende leukoencephalitis unter dem initialbild einer akuten epidemischen encephalitis (akute parkinsonistische encephalitis) mit ausgepragter entwicklung von Maulbeerzellen und Russell-Korperchen. J Neurol Sci. 1971;12(2):137–53. doi: 10.1016/0022-510X(71)90045-1.

  12. Greenwood BM, Whittle HC. Cerebrospinal fluid IgM in patients with sleeping sickness. Lancet. 1973;302(7828):525–7. doi: 10.1016/s0140-6736(73)92348-9.

  13. Alanen A, Pira U, Lassila O, et al. Mott cells are plasma cells defective in immunoglobulin secretion. Eur J Immunol. 1985;15(3):235–42. doi: 10.1002/eji.1830150306.

  14. Posnett DN, Mouradian J, Mangraviti DJ, Wolf DJ. Mott cells in a patient with a lymphoproliferative disorder. Differentiation of a clone of B lymphocytes into Mott cells. Am J Med. 1984;77(1):125–30. doi: 10.1016/0002-9343(84)90446-7.

  15. El-Okda M, Hyeh Y, Xie SS, Hsu SM. Russell bodies consist of heterogeneous glycoproteins in B-cell lymphoma cells. Am J Clin Pathol. 1992;97(6):866–71. doi: 10.1093/ajcp/97.6.866.

  16. Kurihara K, Sakai H, Hashimoto N. Russell body-like inclusions in oral B-lymphomas. J Oral Pathol.1984;13(6):640–9. doi: 10.1111/j.1600-0714.1984.tb01466.x.

  17. Джулакян У.Л., Двирнык В.Н., Менделеева Л.П. Селезеночная В-клеточная лимфома из клеток маргинальной зоны с выраженной плазмоклеточной дифференцировкой: вариант опухоли из клеток Мотта? Онкогематология. 2015;10(4):34–7. doi: 10.17650/1818-8346-2015-10-4-34-37.

    [Dzhulakyan UL, Dvirnyk VN, Mendeleeva LP. Splenic B-cell marginal zone lymphoma with marked plasmocytic differentiation: tumor variant from Mott cells? Oncohematology. 2015;10(4):34–7. doi: 10.17650/1818-8346-2015-10-4-34-37. (In Russ)]

  18. Mossafa H, Malaure H, Maynadie M, et al. Persistent polyclonal B lymphocytosis with binucleated lymphocytes: a study of 25 cases. Br J Haematol. 1999;104(3):486–93. doi: 10.1046/j.1365-2141.1999.01200.x.