Мониторинг эритроцитарного донорского химеризма у онкогематологических больных после трансплантации аллогенных гемопоэтических стволовых клеток

М.В. Смольникова, Е.В. Бутина, А.В. Йовдий, Е.А. Попонина, Н.А. Зорина

ФГБУН «Кировский НИИ гематологии и переливания крови ФМБА», ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027

Для переписки: Мария Викторовна Смольникова, ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027; e-mail: smolnikova_96@inbox.ru

Для цитирования: Смольникова М.В., Бутина Е.В., Йовдий А.В. и др. Мониторинг эритроцитарного донорского химеризма у онкогематологических больных после трансплантации аллогенных гемопоэтических стволовых клеток. Клиническая онкогематология. 2023;16(1):96–100.

DOI: 10.21320/2500-2139-2023-16-1-96-100


РЕФЕРАТ

Обоснование. Трансплантация аллогенных гемопоэтических стволовых клеток (аллоТГСК) является радикальным методом лечения различных онкологических и гематологических заболеваний. Исследование эритроцитарного донорского химеризма — важный процесс в посттрансплантационный период, обеспечивающий диагностику приживления и функционирования трансплантата.

Цель. Оценить влияние иммуногематологических (АВО- и HLA-совместимость донора/реципиента) и медицинских (режимы кондиционирования) параметров на сроки возникновения посттрансплантационного донорского химеризма, определяемого по антигенам эритроцитов системы АВО.

Материалы и методы. В исследование включено 54 пациента гематологической клиники ФГБУН КНИИГиПК ФМБА России (25 женского пола и 29 — мужского) в возрасте 3–60 лет (медиана 32 года). Всем пациентам выполнена аллоТГСК в 2013–2021 гг. У 39 больных имели место острые лейкозы, у 8 — злокачественные лимфопролиферативные заболевания, у 3 — миелопролиферативные заболевания, у 4 — апластическая анемия. Антигены эритроцитов доноров и реципиентов исследованы методом гемагглютинации в геле с применением реактивов и оборудования производства Bio-Rad (США).

Результаты. Время возникновения донорского химеризма не зависит от степени совместимости пар донор-реципиент по системе HLA и режима кондиционирования. Появление донорского химеризма у реципиентов с большой АВО-несовместимостью занимает статистически значимо больше времени, чем у пациентов с малой АВО-несовместимостью и АВО-идентичностью.

Заключение. Мониторинг посттрансплантационного химеризма является важным диагностическим и прогностическим исследованием, позволяющим оценивать приживление донорских гемопоэтических клеток, восстановление гемопоэза, отторжение трансплантата и развитие рецидива заболевания. Первое появление донорских эритроцитов после аллоТГСК у пар с большой АВО-несовместимостью отмечается позднее, чем у пар с малой несовместимостью или совместимых по антигенам системы АВО. Другие иммуногематологические и медицинский параметры не влияют на скорость формирования донорского химеризма, определяемого по антигенам эритроцитов.

Ключевые слова: трансплантация аллогенных гемопоэтических стволовых клеток, донорский химеризм, система HLA, система АВО, режим кондиционирования, антигены эритроцитов.

Получено: 23 июня 2022 г.

Принято в печать: 29 ноября 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Лавриненко В.А., Савицкая Т.В., Волочник Е.В. и др. Количественный анализ химеризма после аллогенной трансплантации гемопоэтических стволовых клеток молекулярно-генетическими методами. Онкогематология. 2014;9(2):29–36.
    [Lavrinenko VA, Savitskaya TV, Volochnik EV, et al. Quantitative analysis of chimerism after allogeneic hematopoietic stem cell transplantation with molecular genetic methods. 2014;9(2):29–36. (In Russ)]
  2. Vaezi M, Dameshghi DO, Souri M, et al. ABO Incompatibility and Hematopoietic Stem Cell Transplantation Outcomes. Int J Hematol Oncol Stem Cell Res. 2017;11(2):139–47.
  3. Лавриненко В.А., Марейко Ю.Е., Березовская Е.Ю. и др. Становление донорского химеризма у пациентов с первичными иммунодефицитами после аллогенной трансплантации гемопоэтических стволовых клеток. Онкогематология. 2018;13(2):82–92. doi: 10.17650/1818-8346-2018-13-2-82-92.
    [Lavrinenko VA, Marejco YE, Berezovskaya EY, et al. Donor chimerism in patients with primary immunodeficiency after allogeneic hematopoietic stem cell transplantation. Oncohematology. 2018;13(2):82–92. doi: 10.17650/1818-8346-2018-13-2-82-92. (In Russ)]
  4. Богданов К.В., Моторин Д.В., Никулина Т.С. и др. Мониторинг донорского химеризма и минимальной остаточной болезни у онкогематологических больных после аллогенной трансплантации гемопоэтических стволовых клеток. Биомедицинская химия. 2017;63(6):570–81. doi: 18097/PBMC20176306570.
    [Bogdanov KV, Motorin DV, Nikulina TS, et al. Donor chimerism and minimal residual disease monitoring in leukemia patients after allo-HSCT. Biomeditsinskaya khimiya. 2017;63(6):570–81. doi: 10.18097/PBMC20176306570. (In Russ)]
  5. Минаковская Н.В., Марейко Ю.Е., Кирсанова Н.П. и др. Трансплантации гемопоэтических стволовых клеток у детей и молодых взрослых в Республике Беларусь. Гематология. Трансфузиология. Восточная Европа. 2017;3(3):271–84.
    [Minakovskaya NV, Mareiko YuE, Kirsanova NP, et al. Hematopoietic stem cell transplantation in children and young adults in the Republic of Belarus. Gematologiya. Transfuziologiya. Vostochnaya Evropa. 2017;3(3):271–84. (In Russ)]
  6. Worel N. ABО-mismatched allogeneic hematopoietic stem cell transplantation. Transfus Med Hemother. 2016;43(1):3–12. doi: 10.1159/000441507
  7. Лавриненко В.А., Марейко Ю.Е., Красько О.В. и др. Химеризм и восстановление гемопоэза после аллогенной трансплантации гемопоэтических стволовых клеток при апластических анемиях у детей. Гематология. Трансфузиология. Восточная Европа. 2016;2(4):206–7.
    [Lavrinenko VA, Mareiko YuE, Krasko OV, et al. Chimerism and hematopoietic reconstitution after allogeneic stem cell transplantation in children with aplastic anemia. Gematologiya. Transfuziologiya. Vostochnaya Evropa. 2016;2(4):206–7. (In Russ)]
  8. Rydberg L. ABO-incompatibility in solid organ transplantation. Transfus Med. 2001;11(4):325–42. doi: 10.1046/j.1365-3148.2001.00313.x.
  9. Кучер M.A., Певцов Д.Э., Макаренко О.А. и др. АВ0-несовместимость при аллогенной трансплантации гемопоэтических клеток: анализ 15-летнего опыта НИИ детской онкологии, гематологии и трансплантологии имени Р.М. Горбачевой. Онкогематология. 2016;11(4):49–55. doi: 10.17650/1818-8346-2016-11-4-49-55.
    [Kucher MA, Pevtcov DE, Makarenko OA, et al. АВ0-incompatibility in allogeneic hematopoietic stem cell transplantation: 15-years experience of R.M. Gorbacheva Memorial Research Institute for Children Oncology, Hematology and Transplantation. Oncohematology. 2016;11(4):49–55. doi: 10.17650/1818-8346-2016-11-4-49-55. (In Russ)]
  10. Хамаганова Е.Г., Кузьмина Л.А. Оценка HLA-совместимости и требования к HLA-типированию больного и донора при трансплантации аллогенных гемопоэтических стволовых клеток. Гематология и трансфузиология. 2019;64(2):175–87. doi: 10.35754/0234-5730-2019-64-2-175-187.
    [Khamaganova EG, Kuzmina LA. Assessment of HLA-compatibility and requirements for HLA-typing of patient and donor in allogeneic hematopoietic stem cell transplantation. Russian journal of hematology and transfusiology. 2019;64(2):175–87. doi: 10.35754/0234-5730-2019-64-2-175-187. (In Russ)]
  11. Bolan CD, Leitman SF, Griffith LM, et al. Delayed donor red cell chimerism and pure red cell aplasia following major ABO-incompatible nonmyeloablative hematopoietic stem cell transplantation. 2001;98(6):1687–94. doi: 10.1182/blood.V98.6.1687.
  12. Wang Z, Sorror ML, Leisenring W. The Impact of Donor Type and ABO Incompatibility on Transfusion Requirements after Nonmyeloablative Hematopoietic Cell Transplantation (HCT). Br J Haematol. 2010;149(1):101–10. doi: 10.1016/j.bbmt.2009.12.323.
  13. Йовдий А.В., Бутина Е.В., Попонина Е.А. и др. Интерпретация результатов иммуногематологических исследований у пациентов гематологической клиники. Клиническая лабораторная диагностика. 2019;64(4):221–4. doi: 18821/0869-2084-2019-64-4-221-224.
    [Yovdiy AV, Butina EV, Poponina EA, et al. Interpretation of the results of immunohematological tests in hematological patients. Klinicheskaya laboratornaya diagnostika. 2019;64(4):221–4. doi: 10.18821/0869-2084-2019-64-4-221-224. (In Russ)]
  14. Бутина Е.В., Минеева Н.В., Зайцева Г.А. и др. Аллоиммунизация к антигенам эритроцитов у пациентов с гематологическими и онкогематологическими заболеваниями. Трансфузиология. 2019;21(2):27–34.
    [Butina EV, Mineeva NV, Zaitseva GA, et al. Red blood cell alloimmunization in patients with hematology/oncology disorders. Transfuziologiya. 2019;21(2):27–34. (In Russ)]

Эффективность режимов комбинированной лекарственной предтрансплантационной подготовки у пациентов с однократной трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе

И.И. Кострома1, А.С. Жук2, Ж.Ю. Сидорова1,3, Р.Р. Сабитова1, А.Ю. Аксенова4, О.Б. Белопольская4, С.С. Бессмельцев1, С.В. Сидоркевич1, С.В. Грицаев1

1 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

2 ФГАОУ ВО «Национальный исследовательский университет ИТМО», Кронверкский пр-т, д. 49, лит. А, Санкт-Петербург, Российская Федерация, 197101

3 ФГБУ «Петербургский институт ядерной физики им. Б.П. Константинова НИЦ “Курчатовский институт”», микрорайон Орлова роща, д. 1, Гатчина, Ленинградская область, Российская Федерация, 188300

4 ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

Для переписки: Иван Иванович Кострома, канд. мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; e-mail: obex@rambler.ru

Для цитирования: Кострома И.И., Жук А.С., Сидорова Ж.Ю. и др. Эффективность режимов комбинированной лекарственной предтрансплантационной подготовки у пациентов с однократной трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2023;16(1):88–95.

DOI: 10.21320/2500-2139-2023-16-1-88-95


РЕФЕРАТ

Цель. Промежуточный анализ результатов применения режимов кондиционирования, включающих карфилзомиб либо тиотепу, в сравнении со стандартным режимом мелфалана в дозе 200 мг/м2 у пациентов с однократной трансплантацией аутологичных гемопоэтических стволовых клеток (аутоТГСК) при множественной миеломе (ММ).

Материалы и методы. Проведен ретроспективный анализ результатов 67 однократных аутоТГСК, выполненных в период с 2017 по 2021 г. Сравнивались варианты ответа согласно критериям IWMG в пред- и посттрансплантационный периоды, а также показатели выживаемости без прогрессирования (ВБП) и общей выживаемости (ОВ) больных ММ. Назначались три варианта режимов кондиционирования: мелфалан в дозе 200 мг/м2 (Mel200), мелфалан в комбинации с карфилзомибом (Mel/Karfil) и мелфалан в комбинации с тиотепой (Mel/Thio). В дополнительной выборке из 12 больных ММ методом секвенирования следующего поколения проведен поиск наследуемых и соматических мутаций, связанных с эффективностью ингибиторов протеасом. Для этого использовали ДНК лимфоцитов периферической крови и плазматических клеток костного мозга.

Результаты. Установлена сопоставимость показателей медианы ВБП в группах больных ММ, у которых использовались режимы кондиционирования Mel200 (n = 40) и Mel/Karfil (n = 10), — 32 и 23 мес. соответственно (= 0,241). Медиана ОВ в этих группах не достигнута, кривые без статистически значимых различий (= 0,050). Из 10 больных ММ, получавших комбинацию Mel/Karfil, у 6 доза мелфалана составила 140 мг/м2, у остальных 4 — 200 мг/м2. Частота полного ответа (ПО) в группах Mel200 и Mel/Karfil увеличилась в 2 раза после выполнения аутоТГСК — с 35,5 до 74,2 % и с 25 до 50 % соответственно. Наихудшие показатели медианы ВБП и ОВ оказались в группе с режимом кондиционирования Mel/Thio — 12 и 17 мес. соответственно, а частота ПО после аутоТГСК не изменилась. Наилучшая медиана ВБП ассоциировалась с ПО, нежели с очень хорошим частичным и частичным ответом после аутоТГСК, — 48, 21 и 23 мес. соответственно (= 0,001). Экзомное секвенирование ДНК лимфоцитов периферической крови и костномозговых плазматических клеток показало наличие полиморфных вариантов в генах, связанных с ответом на противоопухолевые лекарственные препараты.

Заключение. Использование в составе режима кондиционирования Mel/Karfil мелфалана в редуцированной дозе 140 мг/м2 и статистическая сопоставимость с режимом Mel200 позволяют предположить эффективность данной комбинации у больных ММ со сниженной функцией почек, что требует подтверждения. Отсутствие преимущества комбинированного режима кондиционирования по сравнению со стандартным может быть следствием потери чувствительности плазматических клеток к ингибиторам протеасом. Полученные данные дают основание для модификации исследовательского протокола с акцентом на изучение эффективности и безопасности режима кондиционирования Mel/Karfil с дозой мелфалана 200 мг/м2 в зависимости от биологического фенотипа плазматических клеток.

Ключевые слова: множественная миелома, трансплантация аутологичных гемопоэтических стволовых клеток, режим кондиционирования, мелфалан, карфилзомиб, тиотепа.

Получено: 15 июня 2022 г.

Принято в печать: 2 декабря 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]
  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]
  3. Goicoechea E, Puig N, Cedenae MT, et al. Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma. Blood. 2021;137(1):49–60. doi: 1182/blood.2020006731
  4. Goel U, Usmani S, Kumar S. Current approaches to management of newly diagnosed multiple myeloma. Am J Haematol. 2022;97(Suppl 1):S3–S25. doi: 1002/ajh.26512.
  5. Palumbo A, Bringhen S, Bruno B, et al. Melphalan 200 mg/m2 versus melphalan 100 mg/m2 in newly diagnosed myeloma patients: a prospective, multicenter phase 3 study. Blood. 2010;115(10):1873–9. doi: 1182/blood-2009-09-241737.
  6. Saini N, Bashir O, Milton D, et al. Busulfan and melphalan conditioning is superior to melphalan alone in autologous stem cell transplantation for high-risk MM. Blood Adv. 2020;4(19):4834–7. doi: 10.1182/bloodadvances.2020002590.
  7. Farag S, Bacher U, Jeker B, et al. Adding bendamustine to melphalan before ASCT improves CR rate in myeloma vs. melphalan alone: A randomized phase-2 trial. Bone Marrow Transplant. 2022;57(6):990–7. doi: 10.1038/s41409-022-01681-y.
  8. Roussel M, Lauwers-Cances V, Macro M, et al. Bortezomib and high-dose melphalan conditioning regimen in frontline multiple myeloma: an IFM randomized phase 3 study. 2022;139(18):2747–57. doi: 10.1182/blood.2021014635.
  9. Costa L, Landau H, Chhabra S, et al. Phase 1/2 trial of carfilzomib plus high-dose melphalan preparative regimen for salvage autologous hematopoietic cell transplantation followed by maintenance carfilzomib in patients with relapsed/refractory multiple myeloma. Biol Blood Marrow Transplant. 2018;24(7):1379–85. doi: 10.1016/j.bbmt.2018.01.036.
  10. Грицаев С.В., Кострома И.И., Жернякова А.А. и др. Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2019;12(3):282–8. doi: 10.21320/2500-2139-2019-12-3-282-288.
    [Gritsaev SV, Kostroma II, Zhernyakova AA, et al. Experience with the Use of Thio/Mel Conditioning Regimen Prior to Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma. Clinical oncohematology. 2019;12(3):282–8. doi: 10.21320/2500-2139-2019-12-3-282-288. (In Russ)]
  11. Karam D, Gertz M, Lacy M, et al. Impact of maintenance therapy post autologous stem cell transplantation for multiple myeloma in early and delayed transplant. Bone Marrow Transplant. 2022;57(5):803–9. doi:1038/s41409-022-01631-8.
  12. Roussel M, Lauwers-Cances V, Wuilleme S, et al. Up-front carfilzomib, lenalidomide, and dexamethasone with transplant for patients with multiple myeloma: the IFM KRd final results. Blood. 2021;138(2):113–21. doi: 1182/blood.2021010744.
  13. Bazarbachi A, Hamed R, Malard F, et al. Induction therapy prior to autologous stem cell transplantation (ASCT) in newly diagnosed multiple myeloma: an update. Blood Cancer J. 2022;12(3):47. doi: 1038/s41408-022-00645-1.
  14. Lahuerta J, Mateos M, Martinez-Lopez J, et al. Influence of pre- and post-transplantation responses on outcome of patients with multiple myeloma: sequential improvement of response and achievement of complete response are associated with longer survival. J Clin Oncol. 2008;26(35):5775–82. doi: 1200/JCO.2008.17.9721.
  15. Harousseau JL, Attal M, Avet-Loiseau H. The role of complete response in multiple myeloma. Blood. 2009;114(15):3139–46. doi: 1182/blood-2009-03-201053.
  16. Kumar S, Fu A, Niesvizky R, et al. Renal response in real-world carfilzomib- vs bortezomib-treated patients with relapsed or refractory multiple myeloma. Blood Adv. 2021;5(2):367–76. doi: 1182/bloodadvances.2019001059.
  17. Hodges L, Markova S, Chinn L, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–61. doi: 1097/FPC.0b013e3283385a1c.
  18. Hassen W, Kassambara A, Reme T, et al. Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. 2015;6(8):6431–47. doi: 10.18632/oncotarget.3237.
  19. Soriano G, Besse L, Li N, et al. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. 2016;30(11):2198–207. doi: 10.1038/LEU.2016.102.
  20. Sissung T, Peer C, Korde N, et al. Carfilzomib and lenalidomide response related to VEGF and VEGFR2 germline polymorphisms. Cancer Chemother Pharmacol. 2017;80(1):217–21. doi: 10.1007/s00280-017-3323-8.
  21. Kuhn D, Berkova Z, Jones R, et al. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. 2012;120(16):3260–70. doi: 10.1182/blood-2011-10-386789.
  22. Shirazi F, Jones R, Singh R, et al. Activating KRAS, NRAS, and BRAF mutants enhance proteasome capacity and reduce endoplasmic reticulum stress in multiple myeloma. Proc Natl Acad Sci USA. 2020;117(33):20004–14. doi: 10.1073/pnas.2005052117.
  23. Mulligan G, Lichter D, Di Bacco A, et al. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy. 2014;123(5):632–9. doi: 10.1182/blood-2013-05-504340.
  24. Narita T, Ri M, Masaki A, et al. Lower expression of activating transcription factors 3 and 4 correlates with shorter progression-free survival in multiple myeloma patients receiving bortezomib plus dexamethasone therapy. Blood Cancer J. 2015;5(12):e373. doi: 10.1038/bcj.2015.98.
  25. Pinto V, Bergantim R, Caires H, et al. Multiple myeloma: Available therapies and causes of drug resistance. Cancers (Basel). 2020;12(2):407. doi: 10.3390/cancers12020407.
  26. Aksenova AY, Zhuk AS, Lada AG, et al. Genome instability in multiple myeloma: facts and factors. Cancers (Basel). 2021;13(23):5949. doi: 10.3390/cancers13235949.

Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе

С.В. Грицаев1, И.И. Кострома1, А.А. Жернякова1, И.М. Запреева1, Е.В. Карягина2, Ж.В. Чубукина1, С.А. Тиранова1, И.С. Мартынкевич1, С.С. Бессмельцев1, А.В. Чечеткин1

1 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

2 ГБУ «Городская больница № 15», ул. Авангардная, д. 4, Санкт-Петербург, Российская Федерация, 198205

Для переписки: Иван Иванович Кострома, канд. мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(921)784-82-82; e-mail: obex@rambler.ru

Для цитирования: Грицаев С.В., Кострома И.И., Жернякова А.А. и др. Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2019;12(3):282–8.

doi: 10.21320/2500-2139-2019-12-3-282-288


РЕФЕРАТ

Актуальность. В связи с продолжающимся поиском комбинированных режимов кондиционирования как способа усиления циторедуктивного воздействия до выполнения одиночной трансплантации аутологичных гемопоэтических стволовых клеток (аутоТГСК) больным множественной миеломой (ММ) привлекательной опцией является добавление тиотепы к мелфалану.

Цель. Анализ данных пилотного исследования по изучению эффективности режима кондиционирования, включающего введение двух алкилирующих препаратов (тиотепа и мелфалан) с последующей аутоТГСК.

Материалы и методы. 9 больным выполнено 10 аутоТГСК с режимом кондиционирования, включавшим введение тиотепы 250 мг/м2 в день –5 и мелфалана 140 мг/м2 в день –2. После проведения аутоТГСК 8 пациентам назначали пегилированный филграстим. Сроки приживления трансплантата рассчитывали по абсолютному числу нейтрофилов ≥ 0,5 × 109/л и уровню тромбоцитов ≥ 20 × 109/л. Токсичность режима оценивали по критериям CTCAE v5.0. Показатели выживаемости рассчитывали с помощью кривых Каплана—Мейера.

Результаты. Введение тиотепы не потребовало назначения дополнительных препаратов. Частота развития мукозита и энтеропатии I–II степени тяжести составила 100 и 70 % соответственно. Повышение температуры тела зафиксировано при проведении 7 аутоТГСК. Пневмония развилась у 1 больной. Инфузия 1–3 доз тромбоконцентрата (медиана 2 дозы) потребовалась всем, за исключением одного, больным. Донорские эритроциты были перелиты 3 больным. Приживление трансплантата констатировано у всех больных в срок 10–14 дней. Медиана длительности госпитализации от дня 0 до выписки составила 16 койко-дней. После аутоТГСК у 6 из 9 больных констатировано улучшение качества ответа. Прогрессирование ММ имело место у больного с комплексным кариотипом. При последующем наблюдении прогрессирование зафиксировано у 2 пациентов. На декабрь 2018 г. медиана наблюдения за 9 больными от даты проведения аутоТГСК составила 9 мес. (диапазон 3–20 мес.), медиана выживаемости без прогрессирования — 17 мес., медиана общей выживаемости не достигнута.

Заключение. Приемлемая токсичность, улучшение качества ответа и его сохранение до 20 мес. дают основание рассматривать комбинированный режим кондиционирования Thio/Mel как возможную альтернативу стандартному режиму Mel200.

Ключевые слова: множественная миелома, трансплантация аутологичных гемопоэтических стволовых клеток, режим кондиционирования, тиотепа, мелфалан.

Получено: 26 декабря 2018 г.

Принято в печать: 25 мая 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.

    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.

    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]

  3. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. doi: 10.1056/NEJMra1011442.

  4. Cavo M, Rajkumar SV, Palumbo A, et al. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. 2011;117(23):6063–73. doi: 10.1182/blood-2011-02-297325.

  5. Engelhardt M, Terpos E, Kleber M, et al. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. Haematologica. 2014;99(2):232–42. doi: 10.3324/haematol.2013.099358.

  6. Sidiqi MH, Aljama MA, Bin Riaz I, et al. Bortezomib, lenalidomide, and dexamethasone (VRd) followed by autologous stem cell transplant for multiple myeloma. Blood Cancer J. 2018;8(8):106. doi: 10.1038/s41408-018-0147-7.

  7. Attal M, Lauwers-Cances V, Hulin C, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376(14):1311–20. doi: 10.1056/NEJMoa1611750.

  8. Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335(2):91–7.

  9. Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895–905. doi: 10.1056/NEJMoa1402888.

  10. Thoennissen GB, Gorlich D, Bacher U, et al. Autologous stem cell transplantation in multiple myeloma in the era of novel drug induction: a retrospective single-center analysis. Acta Haematol. 2017;137(3):163–72. doi: 10.1159/000463534.

  11. Ozaki S, Harada T, Saitoh T, et al. Survival of multiple myeloma patients aged 65–70 years in the era of novel agents and autologous stem cell transplantation. A multicenter retrospective collaborative study of the Japanese Society of Myeloma and the European Myeloma Network. Acta Haematol. 2014;132(2):211–9. doi: 10.1159/000357394.

  12. Cavo M, Salwender H, Rosinol L, et al. Double vs single autologous stem cell transplantation after bortezomib-based induction regimens for multiple myeloma: an integrated analysis of patient-level data from phase III European studies. Blood. 2013;122(21):767.

  13. Cavo M, Beksac M, Dimopoulos M, et al. Intensification therapy with bortezomib-melphalan-prednisone versus autologous stem cell transplantation for newly diagnosed multiple myeloma: an intergroup, multicenter, phase III study of the European Myeloma Network (EMN02/HO95 MM trial). 2016;128(22):673.

  14. Sonneveld P, Beksac M, van der Holt B, et al. Consolidation followed by maintenance therapy versus maintenance alone in newly diagnosed, transplant eligible patients with multiple myeloma (MM): a randomized phase 3 study of the European Myeloma Network (EMN02/HO95 MM Trial). 2016;128(22):242.

  15. Stadtmauer EA, Pasquini MC, Blackwell B, et al. Comparison of autologous hematopoietic cell transplant (autoHCT), bortezomib, lenalidomide and dexamethasone (RVD) consolidation with lenalidomide maintenance (ACM), tandem autoHCT with lenalidomide maintenance (TAM), and autoHCT with lenalidomide maintenance (AM) for upfront treatment of patients with multiple myeloma (MM): primary results from the randomized phase III trial of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0702 – StaMINA Trial). 2016;128(22):LBA-1.

  16. Yhim HY, Kim K, Kim JS, et al. Matched-pair analysis to compare the outcomes of a second salvage auto-SCT to systemic chemotherapy alone in patients with multiple myeloma who relapsed after front-line auto-SCT. Bone Marrow Transplant. 2013;48(3):425–32. doi: 10.1038/bmt.2012.164.

  17. Olin RL, Vogl DT, Porter DL, et al. Second auto-SCT is safe and effective salvage therapy for relapsed multiple myeloma. Bone Marrow Transplant. 2009;43(5): 417–22. doi: 10.1038/bmt.2008.334.

  18. Abbi KKS, Zheng J, Devlin SM, et al. Second autologous stem cell transplant: an effective therapy for relapsed multiple myeloma. Biol Blood Marrow Transplant. 2015;21(3):468–72. doi: 10.1016/j.bbmt.2014.11.677.

  19. Cook G, Williams C, Brown JM, et al. High-dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(8):874–85. doi: 10.1016/S1470-2045(14)70245-1.

  20. Benson DM, Panzner K, Hamadani M, et al. Effects of induction with novel agents versus conventional chemotherapy on mobilization and autologous stem cell transplant outcomes in multiple myeloma. Leuk Lymphoma. 2010;51(2):243–51. doi: 10.3109/10428190903480728.

  21. Kumar SK, Lacy MQ, Dispenzieri A, et al. Early versus delayed autologous transplantation following IMiD-based induction therapy in patients with newly diagnosed multiple myeloma. Cancer. 2012;118(6):1585–92. doi: 10.1002/cncr.26422.

  22. Ashcroft J, Judge D, Dhanasiri S, et al. Chart review across EU5 in MM post-ASCT patients. Int J Hematol Oncol. 2018;7(1):IJH05. doi: 10.2217/ijh-2018-0004.

  23. McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol. 2017;35(29):3279–89. doi: 10.1200/JCO.2017.72.6679.

  24. Kumar S, Lacy MQ, Dispenzieri A, et al. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant. 2004;34(2):161–7. doi: 10.1038/sj.bmt.1704545.

  25. Kim JS, Kim K, Cheong JW, et al. Complete remission status before autologous stem cell transplantation is an important prognostic factor in patients with multiple myeloma undergoing upfront single autologous transplantation. Biol Blood Marrow Transplant. 2009;15(4):463–70. doi: 10.1016/j.bbmt.2008.12.512.

  26. Gertz MA, Kumar S, Lacy MQ, et al. Stem cell transplantation in multiple myeloma: impact of response failure with thalidomide or lenalidomide induction. Blood. 2010;115(12):2348–53. doi: 10.1182/blood-2009-07-235531.

  27. Грицаев С.В., Кузяева А.А., Бессмельцев С.С. Отдельные аспекты аутологичной трансплантации гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2017;10(1):7–12. doi: 21320/2500-2139-2017-10-1-7-12.

    [Gritsaev SV, Kuzyaeva AA, Bessmeltsev SS. Certain Aspects of Autologous Hematopoietic Stem Cell Transplantation in Patients with Multiple Myeloma. Clinical oncohematology. 2017;10(1):7–12. doi: 10.21320/2500-2139-2017-10-1-7-12. (In Russ)]

  28. Musso M, Messina G, Marcacci G, et al. High-dose melphalan plus thiotepa as conditioning regimen before second autologous stem cell transplantation for “de novo” multiple myeloma patients: a phase II study. Biol Blood Marrow Transplant. 2015;21(11):1932–8. doi: 10.1016/j.bbmt.2015.06.011.

  29. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–46. doi: 10.1016/S1470-2045(16)30206-6.

  30. Schiffman KS, Bensinger WI, Appelbaum FR, et al. Phase II study of high-dose busulfan, melphalan and thiotepa with autologous peripheral blood stem cell support in patients with malignant disease. Bone Marrow Transplant. 1996;17(6):943–50.

  31. Zaid AB, Abdul-Hai A, Grotto I, et al. Autologous transplant in multiple myeloma with an augmented conditioning protocol. Leuk Lymphoma. 2013;54(11):2480–4. doi: 10.3109/10428194.2013.782608.

  32. Anagnostopoulos A, Aleman A, Ayers G, et al. Comparison of high-dose melphalan with a more intensive regimen of thiotepa, busulfan, and cyclophosphamide for patients with multiple myeloma. Cancer. 2004;100(12):2607–12. doi: 10.1002/cncr.20294.

  33. Hari P, Reece DE, Randhawa J, et al. Final outcomes of escalated melphalan 280 mg/m2 with amifostine cytoprotection followed autologous hematopoietic stem cell transplantation for multiple myeloma: high CR and VGPR rates do not translate into improved survival. Bone Marrow Transplant. 2019;54(2):293–9. doi: 10.1038/s41409-018-0261-y.

  34. Auner HW, Iacobelli S, Sbianchi G, et al. Melphalan 140 mg/m2 or 200 mg/m2 for autologous transplantation in myeloma: results from the collaboration to collect autologous transplant outcomes in lymphoma and myeloma (CALM) study. A report by the EBMT Chronic Malignancies Working Party. Haematologica. 2018;103(3):514–21. doi: 10.3324/haematol.2017.181339.

  35. Dimopoulos M, Wang M, Maisnar V, et al. Response and progression-free survival according to planned treatment duration in patients with relapsed multiple myeloma treated with carfilzomib, lenalidomide, and dexamethasone (KRd) versus lenalidomide and dexamethasone (Rd) in the phase III ASPIRE study. J Hematol Oncol. 2018;11(1):49. doi: 10.1186/s13045-018-0583-7.

  36. Costa LJ, Landau HJ, Chhabra S, et al. Phase 1/2 trial of carfilzomib plus high-dose melphalan preparative regimen for salvage autologous hematopoietic cell transplantation followed by maintenance carfilzomib in patients with relapsed/refractory multiple myeloma. Biol Blood Marrow Transplant. 2018;24(7):1379–85. doi: 10.1016/j.bbmt.2018.01.036.

Отдельные аспекты аутологичной трансплантации гемопоэтических стволовых клеток при множественной миеломе

С.В. Грицаев, А.А. Кузяева, С.С. Бессмельцев

ФГБУ «Российский научно-исследовательский институт гематологии и трансфузиологии ФМБА», 2-я Советская ул., д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Сергей Васильевич Грицаев, д-р мед. наук, 2-я Советская ул., д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(812)717-58-57; e-mail: gritsaevsv@mail.ru

Для цитирования: Грицаев С.В., Кузяева А.А., Бессмельцев С.С. Отдельные аспекты аутологичной трансплантации гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2017;10(1):7–12.

DOI: 10.21320/2500-2139-2017-10-1-7-12


РЕФЕРАТ

В обзоре рассматриваются отдельные вопросы режимов мобилизации и режимов кондиционирования, а также проведения аутологичной трансплантации гемопоэтических стволовых клеток (аутоТГСК) у больных с множественной миеломой. Цель — определить на этой основе новые научные направления по повышению эффективности аутоТГСК.

Ключевые слова: множественная миелома, аутологичная трансплантация гемопоэтических стволовых клеток, режим мобилизации, режим кондиционирования.

Получено: 13 июля 2016 г.

Принято в печать: 12 ноября 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: МК, 2016. 504 с.
    [Bessmel’tsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: MK Publ.; 2016. 504 p. (In Russ)]
  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2014;1(Приложение № 3):1–24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National guidelines for diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2014;1(Suppl 3):1–24. (In Russ)]
  3. Reece DE. Management of multiple myeloma: The changing landscape. Blood Rev. 2007;21(6):301–14. doi: 10.1016/j.blre.2007.07.001.
  4. Cavo M, Tosi P, Zamagni E, et al. Prospective, randomized study of single compared with double autologous stem-cell transplantation for multiple myeloma: Bologna 96 clinical study. J Clin Oncol. 2007;25(17):2434–41. doi: 10.1200/jco.2006.10.2509.
  5. Attal M, Harousseau JL, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med. 2003;349(26):2495–502. doi: 10.1056/nejmoa032290.
  6. Allan DS, Keeney M, Howson-Jan K, et al. Number of viable CD34(+) cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2002;29(12):967–72. doi: 10.1038/sj.bmt.1703575.
  7. Michaelis LC, Saad A, Zhong X, et al. Salvage second hematopoietic cell transplantation in myeloma. Biol Blood Marrow Transplant. 2013;19(5):760–6. doi: 10.1016/j.bbmt.2013.01.004.
  8. Cook G, Williams C, Brown JM, et al. High dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(14):874–85. doi: 10.1016/s1470-2045(14)70245-1.
  9. Musto P, Simeon V, Grossi A, et al. Predicting poor peripheral blood stem cell collection in patients with multiple myeloma receiving pre-transplant induction therapy with novel agents and mobilized with cyclophosphamide plus granulocyte-colony stimulating factor: results from a Gruppo Italiano Malattie Ematologiche dell’Adulto Multiple Myeloma Working Party study. Stem Cell Res Ther. 2015;6:64. doi: 10.1186/s13287-015-0033-1.
  10. Olivieri A, Marchetti M, Lemoli R, et al. Proposed definition of “poor mobilizer” in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo ItalianoTrapianto di Midollo Osseo. Bone Marrow Transplant. 2012;47(3):342–51. doi: 10.1038/bmt.2011.82.
  11. To LB, Levesque JP, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly. Blood. 2011;118(17):4530–40. doi: 10.1182/blood-2011-06-318220.
  12. Gertz MA. Current status of stem cell mobilization. Br J Haematol. 2010;150(6):647–62. doi: 10.1111/j.1365-2141.2010.08313.x.
  13. Popat U, Saliba R, Thandi R, et al. Impairment of filgrastim induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant. 2009;15(6):718–23. doi: 10.1016/j.bbmt.2009.02.011.
  14. Mazumder A, Kaufman J., Niesvizky R, et al. Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients (letter). Leukemia. 2008;22(60):1280–1. doi: 10.1038/sj.leu.2405035.
  15. Giralt S, Costa L, Schriber J, et al. Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Transplant. 2014;20(3):295–308. doi: 10.1016/j.bbmt.2013.10.013.
  16. Duong HK, Savani BN, Copelan E, et al. Peripheral blood progenitor cell mobilization for autologous and allogeneic hematopoietic cell transplantation: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2014;20(9):1262–73. doi: 10.1016/j.bbmt.2014.05.003.
  17. Sung AD, Grima DT, Bernard LM, et al. Outcomes and costs of autologous stem cell mobilization with chemotherapy plus G-CSF vs G-CSF alone. Bone Marrow Transplant. 2013;48(11):1444–9. doi: 10.1038/bmt.2013.80.
  18. Gertz MA, Kumar SK, Lacy MQ, et al. Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant. 2009;43(8):619–25. doi: 10.1038/bmt.2008.369.
  19. Arora M, Burns LJ, Barker JN, et al. Randomized comparison of granulocyte colony-stimulating factor versus granulocyte-macrophage colony-stimulating factor plus intensive chemotherapy for peripheral blood stem cell mobilization and autologous transplantation in multiple myeloma. Biol Blood Marrow Transplant. 2004;10(6):395–404. doi: 10.1016/s1083-8791(04)00068-0.
  20. Nakasone H, Kanda Y, Ueda T, et al. Retrospective comparison of mobilization methods for autologous stem cell transplantation in multiple myeloma. Am J Hematol. 2009;84(12):809–14. doi: 10.1002/ajh.21552.
  21. Mark T, Stern J, Furst JR, et al. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma. Biol Blood Marrow Transplant. 2008;14(7):795–8. doi: 10.1016/j.bbmt.2008.04.008.
  22. Costa LJ, Miller AN, Alexander ET, et al. Growth factor and patient-adapted use of plerixafor is superior to CY and growth factor for autologous hematopoietic stem cells mobilization. Bone Marrow Transplant. 2011;46(4):523–8. doi: 10.1038/bmt.2010.170.
  23. DiPersio J., Stadtmauer EA, Nademanee A, et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood. 2009;113(23):5720–6. doi: 10.1182/blood-2008-08-174946.
  24. Покровская О.С. Механизм действия и клиническая эффективность антагониста хемокинового рецептора CXCR4 плериксафора при мобилизации гемопоэтических стволовых клеток. Клиническая онкогематология. 2012;5(4):371–9.
    [Pokrovskaya OS. Mechanism of action and clinical activity of CXCR4 antagonist Plerixafor in stem cell mobilization. Klinicheskaya onkogematologiya. 2012;5(4):371–9. (In Russ)]
  25. Кучер М.А., Моталкина М.С., Климова О.У. и др. Плериксафор у пациентов со сниженной мобилизационной способностью аутологичных гемопоэтических стволовых клеток. Клиническая онкогематология. 2016;9(2):155–61. doi: 10.21320/2500-2139-2016-9-2-155-61.
    [Kucher MA, Motalkina MS, Klimova OU, et al. Plerixafor in Patients with Decreased Mobilizing Ability of Autologous Hematopoietic Stem Cells. Clinical oncohematology. 2016;9(2):155–61. doi: 10.21320/2500-2139-2016-9-2-155-61. (In Russ)]
  26. Levesque JP, Takamatsu Y, Nilsson SK, et al. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001;98(5):1289–97. doi: 10.1182/blood.V98.5.1289.
  27. Levesque JP, Hendy J, Takamatsu Y, et al. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111(2):187–96. doi: 10.1172/jci15994.
  28. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and upregulating CXCR4. Nat Immunol. 2002;3(7):687–94. doi: 10.1038/ni813.
  29. Cesana C, Carlo-Stella C, Regazzi E, et al. CD34+ cells mobilized by cyclophosphamide and granulocyte colonystimulating factor (G-CSF) are functionally different from CD34+ cells mobilized by G-CSF. Bone Marrow Transplant. 1998;21(6):561–8. doi: 10.1038/sj.bmt.1701133.
  30. Bruns I, Steidl U, Fischer JC, et al. Pegylated granulocyte colony-stimulating factor mobilizes CD34+ cells with different stem and progenitor subsets and distinct functional properties in comparison with unconjugated granulocyte colony-stimulating factor. Haematologica. 2008;93(3):347–55. doi: 10.3324/haematol.12081.
  31. Kim MG, Han N, Lee EK, Kim T. Pegfilgrastim vs filgrastim in PBSC mobilization for autologous hematopoietic SCT: a systematic review and meta-analysis. Bone Marrow Transplant. 2015;50(4):523–30. doi: 10.1038/bmt.2014.297.
  32. Tuchman SA, Bacon WA, Huang LW, et al. Cyclophosphamide-based hematopoietic stem cell mobilization before autologous stem cell transplantation in newly diagnosed multiple myeloma. J Clin Apher. 2015;30(3):176–82. doi: 10.1002/jca.21360.
  33. Dingli D, Nowakowski GS, Dispenzieri A, et al. Cyclophosphamide mobilization does not improve outcome in patients receiving stem cell transplantation for multiple myeloma. Clin Lymphoma Myeloma. 2006;6(5):384–8. doi: 10.3816/clm.2006.n.014.
  34. Hamadani M, Kochuparambil ST, Osman S, et al. Intermediate-dose versus low-dose cyclophosphamide and granulocyte colony-stimulating factor for peripheral blood stem cell mobilization in patients with multiple myeloma treated with novel induction therapies. Biol Blood Marrow Transplant. 2012;18(7):1128–35. doi: 10.1016/j.bbmt.2012.01.005.
  35. Hiwase DK, Bollard G, Hiwase S. Intermediate-dose CY and G-CSF more efficiently mobilize adequate numbers of PBSC for tandem autologous PBSC transplantation compared with low-dose CY in patients with multiple myeloma. Cytotherapy. 2007;9(6):539–47. doi: 10.1080/14653240701452800.
  36. Jantunen E, Putkonen M, Nousiainen T, Low-dose or intermediate-dose cyclophosphamide plus granulocyte colonystimulating factor for progenitor cell mobilisation in patients with multiple myeloma. Bone Marrow Transplant. 2003; 31(5):347–51. doi: 10.1038/sj.bmt.1703840.
  37. Nazha A, Cook R, Vogl DT, et al. Stem cell collection in patients with multiple myeloma: impact of induction therapy and mobilization regimen. Bone Marrow Transplant. 2011;46(1):59–63. doi: 10.1038/bmt.2010.63.
  38. Brioli A, Perrone G, Patriarca F, et al. Successful mobilization of PBSCs predicts favorable outcomes in multiple myeloma patients treated with novel agents and autologous transplantation. Bone Marrow Transplant. 2015;50(5):673–8. doi: 10.1038/bmt.2014.322.
  39. Samaras P, Pfrommer S, Seifert B, et al. Efficacy of vinorelbine plus granulocyte colonye-stimulation factor for CD34+ hematopoietic progenitor cell mobilization in patients with multiple myeloma. Biol Blood Marrow Transplant. 2015;21(1):74–80. doi: 10.1016/j.bbmt.2014.09.020.
  40. Heizmann M, O’Meara AC, Moosmann PR, et al. Efficient mobilization of PBSC with vinorelbine/G-CSF in patients with malignant lymphoma. Bone Marrow Transplant. 2009;44(2):75–9. doi: 10.1038/bmt.2008.434.
  41. Annunziata M, Celentano M, Pocali B, et al. Vinorelbine plus intermediate dose cyclophosphamide is an effective and safe regimen for the mobilization of peripheral blood stem cells in patients with multiple myeloma. Ann Hematol. 2006;85(6):394–9. doi: 10.1007/s00277-005-0058-0.
  42. Bargetzi MJ, Passweg J, Baertschi E, et al. Mobilization of peripheral blood progenitor cells with vinorelbine and granulocyte colony-stimulating factor in multiple myeloma patients is reliable and cost effective. Bone Marrow Transplant. 2003;31(2):99–103. doi: 10.1038/sj.bmt.1703787.
  43. Schmid A, Friess D, Taleghani BM, et al. Role of plerixafor in autologous stem cell mobilization with vinorelbine chemotherapy and granulocyte-colony stimulating factor in patients with myeloma: a phase II study (PAV-trial). Leuk Lymphoma. 2015;56(3):608–14. doi: 10.3109/10428194.2014.927454.
  44. Moreau P, Facon T, Attal M, et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5. doi: 10.1182/blood.v99.3.731.
  45. Palumbo A, Bringhen S, Bruno B, et al. Melphalan 200 mg/m(2) versus melphalan 100 mg/m(2) in newly diagnosed myeloma patients: a prospective, multicenter phase 3 study. Blood. 2010;115(10):1873–9. doi: 10.1182/blood-2010-08-301085.
  46. Giralt S. 200mg/m2 melphalan – the gold standard for multiple myeloma. Nat Rev. 2010;7(9):490–1. doi: 10.1038/nrclinonc.2010.104.
  47. Philips GL, Meisenberg BR, Reece DE, et al. Activity of single-agent melphalan 220 to 300 mg/m2 with amifostine cytoprotection and autologous hematopoietic stem cell support in non-Hodgkin and Hodgkin lymphoma. Bone Marrow Transplant. 2004;33(8):781–7. doi: 10.1038/sj.bmt.1704424.
  48. Moreau P, Milpied N, Mahe B. Melphalan 220 mg/m2 followed by peripheral blood stem cell transplantation in 27 patients with advanced multiple myeloma. Bone Marrow Transplant. 1999;23(10):1003–6. doi: 10.1038/sj.bmt.1701763.
  49. Reece D., Song K., Leblanc R., et al. Efficacy and safety of busulfan-based conditioning regimens for multiple myeloma. Oncologist. 2013;18:611–8. doi: 10.1634/theoncologist.2012-0384.
  50. Roussel M, Moreau P, Huynh A, et al. Bortezomib ad high-dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase 2 study of the Intergroupe Francophone du Myelome (IFM). Blood. 2010;115(1):32–7. doi: 10.1182/blood-2009-06-229658.
  51. Nishihori T, Alekshun TJ, Shain K, et al. Bortezomib salvage followed by a phase I/II study of bortezomib plus high-dose melphalan and tandem autologous transplantation for patients with primary resistant myeloma. Br J Haematol. 2012;157(5):553–63. doi: 10.1111/j.1365-2141.2012.09099.x.
  52. Huang W, Li J, Li H, et al. High-dose melphalan with bortezomib as conditioning regimen for autologous stem cell transplant in patients with newly diagnosed multiple myeloma who exhibited at least very good partial response to bortezomib-based induction therapy. Leuk Lymphoma. 2012;53(12):2507–10. doi: 10.3109/10428194.2012.685735.
  53. Mark TM, Reid W, Niesvizky R, et al. A phase 1 study of bendamustine and melphalan conditioning for autologous stem cell transplant in multiple myeloma. Biol Blood Marrow Transplant. 2013;19(5):831–7. doi: 10.3109/10428194.2012.685735.
  54. Martino M, Tripepi G, Messina G, et al. A phase II, single-arm, prospective study of bendamustine plus melphalan conditioning for second autologous stem cell transplantation in de novo multiple myeloma patients through a tandem transplant strategy. Bone Marrow Transplant. 2016;51(9):1197–203. doi: 10.1038/bmt.2016.94.
  55. Visani G, Malerba L, Stefani PM, et al. BeEAM (bendamustine, etoposide, cytarabine, melphalan) before autologous stem cell transplantation is safe and effective for resistant/relapsed lymphoma patients. Blood. 2011;118(12):3419–25. doi: 10.1182/blood-2011-04-351924.
  56. Veeraputhiran M, Jain T, Deol A, et al. BEAM conditioning regimen has higher toxicity compared with high-dose melphalan for salvage autologous hematopoietic stem cell transplantation in multiple myeloma. Clin Lymph Myeloma Leuk. 2015;15(9):531–5. doi: 10.1016/j.clml.2015.05.008.
  57. Abu Zaid B, Abdul-Hai A, Grotto I, et al. Autologous transplant in multiple myeloma with an augmented conditioning protocol. Leuk Lymphoma. 2013;54(11):2480–4. doi: 10.3109/10428194.2013.782608.
  58. Musso M, Messina G, Marcacci G, et al. High-dose melphalan plus thiotepa as conditioning regimen before second autologous stem cell transplantation for “de novo” multiple myeloma patients: a phase II study. Biol Blood Marrow Transplant. 2015;21(11):1932–8. doi: 10.1016/j.bbmt.2015.06.011.

Некоторые аспекты трансплантации костного мозга у пациентов с крайне неблагоприятным прогнозом острого лимфобластного лейкоза: обзор литературы и собственное наблюдение

Субботина Н.Н., Попа А.В., Долгополов И.С., Бояршинов В.К., Пименов Р.И., Дайлидите В.В., Менткевич Г.Л.

ФГБНУ «Российский онкологический научный центр им. Н.Н. Блохина», Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Наталья Николаевна Субботина, канд. мед. наук, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-45-08; e-mail: natik-23@yandex.ru

Для цитирования: Субботина Н.Н., Попа А.В., Долгополов И.С. и др. Некоторые аспекты трансплантации костного мозга у пациентов с крайне неблагоприятным прогнозом острого лимфобластного лейкоза: обзор литературы и собственное наблюдение. Клиническая онкогематология. 2015;8(3):331–6.


РЕФЕРАТ

Известно, что с увеличением количества факторов риска рецидивов острых лимфобластных лейкозов (ОЛЛ) более выраженными становятся различия в выживаемости пациентов, получавших только химиотерапию либо химиотерапию с трансплантацией гемопоэтических стволовых клеток (ТГСК). Для детей и молодых взрослых с ОЛЛ стандартом остаются миелоаблативные режимы кондиционирования перед выполнением ТГСК. Наиболее высокие показатели выживаемости демонстрирует исторический «режим ТОТ-ЦФ» с последующей ТГСК от совместимого родственного донора. Выживаемость пациентов с рецидивами ОЛЛ после аллогенной ТГСК остается низкой. Повторная ТГСК остается единственным возможным лечебным подходом для достижения длительной выживаемости не более чем у 10–15 % больных. Поздние рецидивы после первой ТГСК и возраст пациентов менее 10 лет являются статистически значимыми факторами более благоприятного прогноза. В статье приводится собственное клиническое наблюдение больной ОЛЛ из группы очень высокого риска, которой проводились химиотерапия, 3 аллогенных родственных ТГСК с привлечением разных доноров, а также дополнительная трансфузия периферических стволовых клеток крови от второго HLA-совместимого донора. Ко времени подготовки публикации (23 мес. после гаплоидентичной ТГСК) пациентка остается под наблюдением в ФГБНУ «РОНЦ им. Н.Н. Блохина».


Ключевые слова: острый лимфобластный лейкоз, крайне неблагоприятный прогноз, трансплантация гемопоэтических стволовых клеток, режим кондиционирования.

Получено: 3 марта 2015 г.

Принято в печать: 3 июня 2015 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Favre C, Foa R, Locatelli F, et al. Hematopoietic stem cell transplantation for children with high-risk acute lymphoblastic leukemia in first complete remission: a report from the AIEOP registry. Haematologica. 2013;98(8):1273–81. doi: 10.3324/haematol.2012.079707.
  2. Silverman LB, Gelber RD, Clavell LA, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood. 2001;97(5):1211–8. doi: 10.1182/blood.v97.5.1211.
  3. Arico M, Valsecchi MG, Messina C, et al. Improved outcome in high-risk childhood acute lymphoblastic leukemia defined by prednisone poor response treated with double Berlin-Frankfurt-Muenster protocol II. Blood. 2002;100(2):420–6. doi: 10.1182/blood.v100.2.420.
  4. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. The Lancet. 2008;371(9617):1030–43. doi: 10.1016/s0140-6736(08)60457-2.
  5. Pulte D, Gondos A, Brenner H. Trends in 5-and 10-year survival after diagnosis with childhood hematologic malignancies in the United States 1990–2004. J Natl Cancer Inst. 2008;100(18):1271–3. doi: 10.1093/jnci/djn276.
  6. Burke PW, Douer D. Acute lymphoblastic leukemia in adolescents and young adults. Acta Haematol. 2014;132(3–4):264–73. doi: 10.1159/000360204.
  7. Barry EV, Silverman LB. Acute lymphoblastic leukemia in adolescents and young adults. Curr Hematol Malig Rep. 2008;3(3):161–6. doi: 10.1007/s11899-008-0023-9.
  8. Balduzzi A, Klingebiel T, Peters C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomization in an international prospective study. The Lancet. 2005;366(9486):635–42. doi: 10.1016/s0140-6736(05)66998-x.
  9. Kato M, Horikoshi Y, Okamoto Y, et al. Second allogeneic hematopoietic SCT for relapsed ALL in children. Bone Marrow Transplant. 2012;47(10):1307–11. doi: 10.1038/bmt.2012.29.
  10. Poon LM, Bassett R. Jr, Kebriaei P, et al. Outcomes of second allogeneic hematopoietic stem cell transplantation for patients with acute lymphoblastic leukemia. Bone Marrow Transplant. 2013;48(5):666–70. doi: 10.1038/bmt.2012.195.
  11. Spyridonidis A, Labopin M, Rocha V, et al. Immunotherapy Subcommittee of Acute Leukemia Working Party. Outcomes and prognostic factors of adults with acute lymphoblastic leukemia who relapse after allogeneic hematopoietic cell transplantation. An analysis on behalf of the Acute Leukemia Working Party of EBMT. Leukemia. 2012;26(6):1211–7. doi: 10.1038/leu.2011.351.
  12. Mohty M, Nagler A, Rocha V, et al. Acute Leukemia Working Party of EBMT. Reduced-intensity versus conventional myeloablative conditioning allogeneic stem cell transplantation for patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Blood. 2010;116(22):4439–43. doi: 10.1182/blood-2010-02-266551.
  13. Eom KS, Shin SH, Lee S, et al. Comparable long-term outcomes after reduced-intensity conditioning versus myeloablative conditioning allogeneic stem cell transplantation for adult high-risk acute lymphoblastic leukemia in complete remission. Am J Hematol. 2013;88(8):634–41. doi: 10.1002/ajh.23465.
  14. Verneris MR, Eapen M, Davies SM, et al. Reduced-Intensity Conditioning Regimens for Allogeneic Transplantation in Children with Acute Lymphoblastic Leukemia. Biol Blood Marrow Transplant. 2010;16(9):1237–44. doi: 10.1016/j.bbmt.2010.03.009.
  15. Bunin N, Cnaan A, Simms S, et al. Randomized trial of busulfan vs total body irradiation containing conditioning regimens for children with acute lymphoblastic leukemia: a Pediatric Blood and Marrow Transplant Consortium study. Bone Marrow Transplant. 2003;32(6):543–8. doi: 10.1038/sj.bmt.1704198.
  16. Davies SM, Ramsay NK, Horowitz MM, et al. Comparison of preparative regimens in transplants for children with acute lymphoblastic leukemia. J Clin Oncol. 2000;18(2):340–7.
  17. Blaise D, Maraninchi D, Archimbaud E, et al. Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: A randomized trial of a busulfan-cytoxan versus cytoxan-total body irradiation as preparative regimen. A report from the Groupe d’Etudes de la Greffe de Moelle Osseuse. Blood. 1992;79:2578–82.
  18. Dusenbery KE, Daniels KA, McClure JS, et al. Randomized comparison of cyclophosphamide-total body irradiation versus busulfan-cyclophosphamide conditioning in autologous bone marrow transplantation for acute myeloid leukemia. Int J Radiat Oncol Biol Phys. 1995;31(1):119–28. doi: 10.1016/0360-3016(94)00335-i.
  19. Ringden O, Ruutu T, Remberger M, et al. A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: A report from the Nordic Bone Marrow Transplantation Group. Blood. 1994;83(9):2723–30.
  20. Ringden O, Labopin M, Tura S, et al. A comparison of busulfan versus total body irradiation combined with cyclophosphamide as conditioning for autograft or allograft bone marrow transplantation in patients with acute leukemia. Br J Haematol. 1996;93(3):637–45. doi: 10.1046/j.1365-2141.1996.d01-1681.x.
  21. Rozman C, Carreras E, Qian C, et al. Risk factors for hepatic veno-occlusive disease following HLA-identical sibling bone marrow transplantation for leukemia. Bone Marrow Transplant. 1996;17(1):75–80.
  22. Bhatia S, Ramsay NK, Neglia JP, et al. Malignant neoplasms following bone marrow transplantation. Blood. 1996;87(9):3633–9.
  23. Deeg HJ, Gluckman E, Storb R, et al. Malignancies after marrow transplantation for aplastic anemia and Fanconi anemia: a joint Seattle and Paris analysis of results in 700 patients. Blood. 1996;87(1):386–92.
  24. Chou RH, Wong GB, Wara WM, et al. Toxicities of total-body irradiation for pediatric bone marrow transplantation. Int J Radiat Oncol Biol Phys. 1996;34(4):843–51.