Мутационный профиль генома нормальных и опухолевых клеток у больного множественной миеломой (клиническое наблюдение)

А.С. Жук1, И.И. Кострома2, Е.И. Степченкова3,4, Д.В. Качкин3, О.Б. Белопольская5, И.В. Зотова3,4, А.Д. Гарифуллин2, С.В. Волошин2,6, С.В. Грицаев2, А.Ю. Аксенова3

1 ФГАОУ ВО «Национальный исследовательский университет ИТМО», Кронверкский пр-т, д. 49, лит. А, Санкт-Петербург, Российская Федерация, 197101

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

3 ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

4 ФГБУН «Институт общей генетики им. Н.И. Вавилова РАН», Санкт-Петербургский филиал, Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

5 РЦ «Центр Биобанк», ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

6 ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» Минобороны России, ул. Академика Лебедева, д. 6, Санкт-Петербург, Российская Федерация, 194044

Для переписки: Елена Игоревна Степченкова, канд. биол. наук, Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034; тел.: +7(905)282-57-72; e-mail: stepchenkova@gmail.com

Для цитирования: Жук А.С., Кострома И.И., Степченкова Е.И. и др. Молекулярное профилирование нормальных и опухолевых плазматических клеток у пациента с впервые диагностированной множественной миеломой (собственное клиническое наблюдение). Клиническая онкогематология. 2023;16(3):337–49.

DOI: 10.21320/2500-2139-2023-16-3-337-349


РЕФЕРАТ1


1Редакционная коллегия журнала «Клиническая онкогематология. Фундаментальные исследования и клиническая практика» оставляет за собой право на принципиально иную интерпретацию результатов секвенирования нового поколения (NGS) с учетом международных рекомендаций (ACMG/AMP, doi: 10.1038/gym.2015.30) и отечественного руководства (https://mgs.med-gen.ru/) для клинического применения. Несмотря на существенные расхождения с личной точкой зрения авторов, редколлегия журнала сочла возможным опубликовать представленную статью.


В настоящем исследовании представлено клиническое наблюдение больного с впервые диагностированной множественной миеломой (ММ), у которого до начала лечения проведено секвенирование экзома лимфоцитов периферической крови и опухолевых плазматических клеток CD138+. У пациента выявлено несколько наследуемых вариантов в генах, связанных с предрасположенностью к ММ. В генотипе у пациента обнаружены варианты в генах, отвечающих за репарацию ДНК, в т. ч. наследуемые мутации в генах RFDW3 и TP53. Они участвуют в регуляции стабильности генома, скорости накопления соматических мутаций, в т. ч. структурных перестроек и хромосомных аберраций. На нарушение процессов репарации ДНК у пациента указывает большое количество структурных вариаций и наличие мутационной подписи ID6 в генетическом материале опухоли. Анализ экзома опухолевых клеток позволил определить профиль соматических мутаций, включающий мутации в генах, ранее считавшихся связанными с ММ, а также оценить функциональную значимость выявленных нарушений. Кроме того, среди соматических мутаций мы обнаружили повреждающие мутации и мутации высокой значимости в генах, связанных с развитием других типов опухолей, в частности в генах ASCC3, TET3 и CHD1, а также в генах, кодирующих антимикробные пептиды CAMP и HTN3. За исключением дополнительной копии плеча 1q в геноме опухолевых плазматических клеток, у пациента не установлено других генетических факторов риска, связанных с неблагоприятным течением заболевания. У больного выявлены наследуемые (мутации в гене ABCB1) и соматические (трисомия по хромосоме 3) изменения генетического материала, которые характеризуются, по данным литературы, как факторы положительного прогноза при ММ.

Ключевые слова: множественная миелома, секвенирование нового поколения, экзом, наследуемые мутации, соматические мутации.

Получено: 12 августа 2022 г.

Принято в печать: 20 мая 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Aksenova AY, Zhuk AS, Lada AG, et al. Genome instability in multiple myeloma: Facts and factors. Cancers. 2021;13(23):5949. doi: 10.3390/cancers13235949.
  2. Аксенова А.Ю., Жук А.С., Степченкова Е.И., Грицаев С.В. Стратификация больных множественной миеломой: современное состояние вопроса и дальнейшие перспективы. Клиническая онкогематология. 2022;15(3):259–70. doi: 10.21320/2500-2139-2022-15-3-259-270.
    [Aksenova AYu, Zhuk AS, Stepchenkova EI, Gritsaev SV. Stratification of Patients with Multiple Myeloma: State-of-the-Art and Prospects. Clinical oncohematology. 2022;15(3):259–70. doi: 10.21320/2500-2139-2022-15-3-259-270. (In Russ)]
  3. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132(6):587–97. doi: 10.1182/blood-2018-03-840132.
  4. Fu X, Yucer N, Liu S, et al. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Nat Acad Sci USA. 2010;107(10):4579–84. doi: 10.1073/PNAS.0912094107.
  5. Feeney L, Munoz IM, Lachaud C, et al. RPA-Mediated Recruitment of the E3 Ligase RFWD3 Is Vital for Interstrand Crosslink Repair and Human Health. Mol Cell. 2017;66(5):610–621.e4. doi: 10.1016/j.molcel.2017.04.021.
  6. Mitchell JS, Li N, Weinhold N, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun. 2016;7:12050. doi: 10.1038/ncomms12050.
  7. Went M, Sud A, Forsti A, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018;9(1):3707. doi: 10.1038/s41467-018-04989-w.
  8. Hou P, Su X, Cao W, et al. Whole-exome sequencing reveals the etiology of the rare primary hepatic mucoepidermoid carcinoma. Diagn Pathol. 2021;16(1):29. doi: 10.1186/s13000-021-01086-3.
  9. Huang X, Wu F, Zhang Z, Shao Z. Association between TP53 rs1042522 gene polymorphism and the risk of malignant bone tumors: a meta-analysis. Biosci Rep. 2019;39(3):20181832. doi: 10.1042/BSR20181832.
  10. Akter R, Islam MS, Islam MS, et al. A case-control study investigating the association of TP53 rs1042522 and CDH1 rs16260 polymorphisms with prostate cancer risk. Meta Gene. 2021;30:100962. doi: 10.1016/J.MGENE.2021.100962.
  11. Henner WD, Evans AJ, Hough KM, et al. Association of codon 72 polymorphism of p53 with lower prostate cancer risk. Prostate. 2001;49(4):263–6. doi: 10.1002/PROS.10021.
  12. Dunna NR, Vure S, Sailaja K, et al. TP53 codon 72 polymorphism and risk of acute leukemia. Asian Pacif J Cancer Prevent. 2012;13(1):347–50. doi: 10.7314/APJCP.2012.13.1.349.
  13. Kochethu G, Delgado J, Pepper C, et al. Two germ line polymorphisms of the tumour suppressor gene p53 may influence the biology of chronic lymphocytic leukaemia. Leuk Res. 2006;30(9):1113–8. doi: 10.1016/J.LEUKRES.2005.12.014.
  14. Bergamaschi D, Samuels Y, Sullivan A, et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet. 2006;38(10):1133–41. doi: 10.1038/ng1879.
  15. Dumont P, Leu JIJ, Della Pietra AC, et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33(3):357–65. doi: 10.1038/ng1093.
  16. Weng Y, Lu L, Yuan G, et al. p53 codon 72 polymorphism and Hematological Cancer Risk: An Update Meta-Analysis. PLoS ONE. 2012;7(9):e45820. doi: 10.1371/journal.pone.0045820.
  17. Ortega MM, Honma HN, Zambon L, et al. GSTM1 and codon 72 P53 polymorphism in multiple myeloma. Ann Hematol. 2007;86(11):815–9. doi: 10.1007/S00277-007-0347-X/TABLES/3.
  18. Hattori Y, Ikeda Y, Suzuki Y, et al. Codon 72 polymorphism of TP53 gene is a novel prognostic marker for therapy in multiple myeloma. Br J Haematol. 2014;165(5):728–31. doi: 10.1111/BJH.12784.
  19. Greenberg AJ, Lee AM, Serie DJ, et al. Single-nucleotide polymorphism rs1052501 associated with monoclonal gammopathy of undetermined significance and multiple myeloma. Leukemia. 2013;27(2):515–6. doi: 10.1038/leu.2012.232.
  20. Broderick P, Chubb D, Johnson DC, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat Genet. 2012;44(1):58–61. doi: 10.1038/ng.993.
  21. Ford AQ, Heller NM, Stephenson L, et al. An Atopy-Associated Polymorphism in the Ectodomain of the IL-4Rα Chain (V50) Regulates the Persistence of STAT6 Phosphorylation. J Immunol. 2009;183(3):1607–16. doi: 10.4049/JIMMUNOL.0803266.
  22. Luo Y, Ye Z, Li K, et al. Associations between polymorphisms in the IL-4 and IL-4 receptor genes and urinary carcinomas: a meta-analysis. Int J Clin Exp Med. 2015;8(1):1227–33.
  23. Ivansson EL, Gustavsson IM, Magnusson JJ, et al. Variants of chemokine receptor 2 and interleukin 4 receptor, but not interleukin 10 or Fas ligand, increase risk of cervical cancer. Int J Cancer. 2007;121(11):2451–7. doi: 10.1002/IJC.22989.
  24. Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 2004;3(11):1045–50. doi: 10.4161/cbt.3.11.1172.
  25. Vikova V, Jourdan M, Robert N, et al. Comprehensive characterization of the mutational landscape in multiple myeloma cell lines reveals potential drivers and pathways associated with tumor progression and drug resistance. Theranostics. 2019;9(2):540–53. doi: 10.7150/thno.28374.
  26. Waller RG, Darlington TM, Wei X, et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk Epstein MP, editor. PLOS Genet. 2018;14(2):e1007111. doi: 10.1371/journal.pgen.1007111.
  27. Bolli N, Barcella M, Salvi E, et al. Next-generation sequencing of a family with a high penetrance of monoclonal gammopathies for the identification of candidate risk alleles. Cancer. 2017;123(19):3701–8. doi: 10.1002/cncr.30777.
  28. Greipp P, Cascino G, Kimlinger T, et al. Plasma Cell Folate Receptor Overexpression Differentiates Multiple Myeloma from Monoclonal Gammopathy of Undetermined Significance and Smoldering Myeloma. Blood. 2004;104(11):3649. doi: 10.1182/BLOOD.V104.11.3649.3649.
  29. Song J, Freeman ADJ, Knebel A, et al. Human ANKLE1 Is a Nuclease Specific for Branched DNA. J Mol Biol. 2020;432(21):5825–34. doi: 10.1016/J.JMB.2020.08.022.
  30. Antoniou AC, Wang X, Fredericksen ZS, et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet. 2010;42(10):885–92. doi: 10.1038/NG.669.
  31. Tian J, Ying P, Ke J, et al. ANKLE1 N6-Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability. Int J Cancer. 2020;146(12):3281–93. doi: 10.1002/IJC.32677.
  32. Rhie SK, Coetzee SG, Noushmehr H, et al. Comprehensive functional annotation of seventy-one breast cancer risk Loci. PloS One. 2013;8(5):e63925. doi: 10.1371/journal.pone.0063925.
  33. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–61. doi: 10.1097/FPC.0B013E3283385A1C.
  34. Hassen W, Kassambara A, Reme T, et al. Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. Oncotarget. 2014;6(8):6431–47. doi: 10.18632/ONCOTARGET.3237.
  35. Salama NN, Yang Z, Bui T, Ho RJY. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci. 2006;95(10):2293–308. doi: 10.1002/JPS.20717.
  36. Drain S, Catherwood M, Orr N, et al. ABCB1 (MDR1) rs1045642 is associated with increased overall survival in plasma cell myeloma. Leuk lymphoma. 2009;50(4):566–70. doi: 10.1080/10428190902853144.
  37. Buda G, Ricci D, Huang CC, et al. Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol. 2010;89(11):1133. doi: 10.1007/S00277-010-0992-3.
  38. Maggini V, Buda G, Martino A, et al. MDR1 diplotypes as prognostic markers in multiple myeloma. Pharmacogenet Genomics. 2008;18(5):383–9. doi: 10.1097/FPC.0B013E3282F82297.
  39. Ziccheddu B, Biancon G, Bagnoli F, et al. Integrative analysis of the genomic and transcriptomic landscape of double-refractory multiple myeloma. Blood Adv. 2020;4(5):830–44. doi: 10.1182/bloodadvances.2019000779.
  40. Zheleznyak A, Mixdorf M, Marsala L, et al. Orthogonal targeting of osteoclasts and myeloma cells for radionuclide stimulated dynamic therapy induces multidimensional cell death pathways. Theranostics. 2021;11(16):7735–54. doi: 10.7150/THNO.60757.
  41. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  42. Dementyeva E, Kryukov F, Kubiczkova L, et al. Clinical implication of centrosome amplification and expression of centrosomal functional genes in multiple myeloma. J Transl Med. 2013;11(1):1–9. doi: 10.1186/1479-5876-11-77/FIGURES/5.
  43. Dango S, Mosammaparast N, Sowa ME, et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol Cell. 2011;44(3):373–84. doi: 10.1016/J.MOLCEL.2011.08.039.
  44. Fedeles BI, Singh V, Delaney JC, et al. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem. 2015;290(34):20734–42. doi: 10.1074/JBC.R115.656462.
  45. Jia J, Absmeier E, Holton N, et al. The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations. Nat Commun. 2020;11(1):1–13. doi: 10.1038/s41467-020-19221-x.
  46. Ko M, An J, Pastor WA, et al. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol Rev. 2015;263(1):6–21. doi: 10.1111/IMR.12239.
  47. Bray JK, Dawlaty MM, Verma A, Maitra A. Roles and Regulations of TET Enzymes in Solid Tumors. Trends Cancer. 2021;7(7):635–46. doi: 10.1016/j.trecan.2020.12.011.
  48. Linowiecka K, Foksinski M, Brozyna AA. Vitamin c transporters and their implications in carcinogenesis. Nutrients. 2020;12(12):1–19. doi: 10.3390/nu12123869.
  49. Kari V, Mansour WY, Raul SK, et al. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep. 2016;17(11):1609–23. doi: 10.15252/EMBR.201642352.
  50. Zhou J, Li J, Serafim RB, et al. Human CHD1 is required for early DNA-damage signaling and is uniquely regulated by its N terminus. Nucleic Acids Res. 2018;46(8):3891–905. doi: 10.1093/nar/gky128.
  51. Cardoso AR, Lopes-Marques M, Oliveira M, et al. Genetic variability of the functional domains of chromodomains helicase DNA-binding (CHD) proteins. Genes. 2021;12(11):1–15. doi: 10.3390/genes12111827.
  52. Burkhardt L, Fuchs S, Krohn A, et al. CHD1 Is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 2013;73(9):2795–805. doi: 10.1158/0008-5472.CAN-12-1342.
  53. Li Y, Roberts ND, Wala JA, et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020;578(7793):112–21. doi: 10.1038/s41586-019-1913-9.
  54. Chretien ML, Corre J, Lauwers-Cances V, et al. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood. 2015;126(25):2713–9. doi: 10.1182/blood-2015-06-650242.
  55. Perrot A, Lauwers-Cances V, Tournay E, et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 2019;37(19):1657–65. doi: 10.1200/JCO.18.00776.
  56. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLOS Comput Biol. 2016;12(4):e1004873. doi: 10.1371/JOURNAL.PCBI.1004873.
  57. Lee J, Lee AJ, Lee JK, et al. Mutalisk: A web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures. Nucleic Acids Res. 2018;46(W1):W102–W108. doi: 10.1093/nar/gky406.
  58. Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25(23):2436. doi: 10.1101/GAD.179184.111.
  59. Schmidt TM, Barwick BG, Joseph N, et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 2019;9(12):94. doi: 10.1038/s41408-019-0254-0.

 

Молекулярное профилирование и мониторинг минимальной остаточной болезни у больных множественной миеломой: обзор литературы

А.В. Семьянихина1,2, Е.Э. Толстых1

1 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

2 ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова», ул. Москворечье, д. 1, Москва, Российская Федерация, 115522

Для переписки: Александра Владимировна Семьянихина, канд. мед. наук, Каширское ш., д. 23, Moсква, Российская Федерация, 115478; тел.: +7(926)371-21-56; e-mail: alexandra_silina@mail.ru

Для цитирования: Семьянихина А.В., Толстых Е.Э. Молекулярное профилирование и мониторинг минимальной остаточной болезни у больных множественной миеломой: обзор литературы. Клиническая онкогематология. 2021;14(4):436–43.

DOI: 10.21320/2500-2139-2021-14-4-436-443


РЕФЕРАТ

Персонализированный подход выступает многообещающим инструментом в терапии злокачественных новообразований (ЗНО). Достижение успехов и оценка преимуществ такого подхода были значительно форсированы внедрением технологий секвенирования нового поколения, позволяющих получать полную информацию о состоянии генома и транскриптома опухоли с выявлением потенциальных биомаркеров и мишеней для направленного лекарственного воздействия. Несмотря на экспоненциальный рост секвенированных опухолевых геномов, ряд ЗНО остается вне активной фазы клинических исследований при очевидных и растущих потребностях в оптимизации существующих схем лечения. Одной из таких патологий является множественная миелома (ММ). Значительные достижения в диагностике и лечении ММ позволили существенно повысить показатели выживаемости при этой злокачественной опухоли. Однако исключить ММ из списка неизлечимых заболеваний пока не удается. ММ остается неоплазией, требующей разработки и внедрения новых лечебных подходов, большинство из которых будет базироваться на фено- и генотипических особенностях опухолевых клеток. Настоящий обзор посвящен современному состоянию изучения молекулярно-генетического профиля ММ, мониторинга минимальной остаточной болезни (МОБ), а также возможностей секвенирования нового поколения для диагностики, прогноза, оценки МОБ и поиска предикторов с целью оптимизации противоопухолевого лечения.

Ключевые слова: множественная миелома, секвенирование нового поколения, минимальная остаточная болезнь.

Получено: 21 мая 2021 г.

Принято в печать: 29 августа 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition. Lyon: IARC Press; 2017. 592 p.
  2. Brigle K, Rogers B. Pathobiology and Diagnosis of Multiple Myeloma. Semin Oncol Nurs. 2017;33(3):225–36. doi: 10.1016/j.soncn.2017.05.012.
  3. Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol Oncol. 2016;9(1):52. doi: 10.1186/s13045-016-0282-1.
  4. Castaneda O, Baz R. Multiple Myeloma Genomics – A Concise Review. Acta Med Acad. 2019;48(1):57–67. doi: 10.5644/ama2006-124.242.
  5. Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3(1):17046. doi: 10.1038/nrdp.2017.46.
  6. Поддубная И.В., Савченко В.Г., Каприн А.Д. Клинические рекомендации. Множественная миелома. М., 2020. 222 с.
    [Poddubnaya IV, Savchenko VG, Kaprin AD. Klinicheskie rekomendatsii. Mnozhestvennaya mieloma. (Clinical guidelines. Multiple myeloma.) Moscow; 2020. 222 p. (In Russ)]
  7. Bolli N, Genuardi E, Ziccheddu B, et al. Next-Generation Sequencing for Clinical Management of Multiple Myeloma: Ready for Prime Time? Front Oncol. 2020;25(10):a189. doi: 10.3389/fonc.2020.00189.
  8. Chng WJ, Van Wier SA, Ahmann GJ, et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood. 2005;106(6):2156–61. doi: 10.1182/blood-2005-02-0761.
  9. Lai JL, Zandecki M, Mary JY, et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood. 1995;85(9):2490–7. doi: 10.1182/blood.v85.9.2490.bloodjournal8592490.
  10. Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–48. doi: 10.1038/nrc3257.
  11. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5. doi: 10.1182/blood-2011-11-390658.
  12. Kumar SK, Rajkumar SV. The multiple myelomas – current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15(7):409–21. doi: 10.1038/s41571-018-0018-y.
  13. Binder M, Rajkumar SV, Ketterling RP, et al. Prognostic implications of abnormalities of chromosome 13 and the presence of multiple cytogenetic high-risk abnormalities in newly diagnosed multiple myeloma. Blood Cancer J. 2017;7(9):e600. doi: 10.1038/bcj.2017.83.
  14. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–21. doi: 10.1038/leu.2009.174.
  15. Bergsagel PL, Kuehl WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106(1):296–303. doi: 10.1182/blood-2005-01-0034.
  16. Kuiper R, van Duin M, van Vliet MH, et al. Prediction of high- and low-risk multiple myeloma based on gene expression and the International Staging System. Blood. 2015;126(17):1996–2004. doi: 10.1182/blood-2015-05-644039.
  17. Shaughnessy JD Jr, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6):2276–84. doi: 10.1182/blood-2006-07-038430.
  18. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–72. doi: 10.1038/nature09837.
  19. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33. doi: 10.1056/NEJMoa1200710.
  20. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  21. Raab MS, Lehners N, Xu J, et al. Spatially divergent clonal evolution in multiple myeloma: overcoming resistance to BRAF inhibition. Blood. 2016;127(17):2155–7. doi: 10.1182/blood-2015-12-686782.
  22. Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120(5):1067–76. doi: 10.1182/blood-2012-01-405985.
  23. Zhao S, Choi M, Heuck C, et al. Serial exome analysis of disease progression in premalignant gammopathies. Leukemia. 2014;28(7):1548–52. doi: 10.1038/leu.2014.59.
  24. Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28(2):384–90. doi: 10.1038/leu.2013.199.
  25. Miller A, Asmann Y, Cattaneo L, et al. High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple myeloma. Blood Cancer J. 2017;7(9):e612. doi: 10.1038/bcj.2017.94.
  26. Benson DM Jr. Checkpoint inhibition in myeloma. Hematology Am Soc Hematol Educ Program. 2016;2016(1):528–33. doi: 10.1182/asheducation-2016.1.528.
  27. Walker BA, Boyle EM, Wardell CP, et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20. doi: 10.1200/JCO.2014.59.1503.
  28. Mailankody S, Kazandjian D, Korde N, et al. Baseline mutational patterns and sustained MRD negativity in patients with high-risk smoldering myeloma. Blood Adv. 2017;1(22):1911–8. doi: 10.1182/bloodadvances.2017005934.
  29. Manier S, Sacco A, Leleu X, et al. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012;2012:1–5. doi: 10.1155/2012/157496.
  30. Misund K, Keane N, Stein CK, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34(1):322–6. doi: 10.1038/s41375-019-0543-4.
  31. Sive JI, Feber A, Smith D, et al. Global hypomethylation in myeloma is associated with poor prognosis. Br J Haematol. 2016;172(3):473–5. doi: 10.1111/bjh.13506.
  32. Bollati V, Fabris S, Pegoraro V, et al. Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis. 2009;30(8):1330–5. doi: 10.1093/carcin/bgp149.
  33. Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. doi: 10.1038/nrc1840.
  34. Van Beers EH, van Vliet MH, Kuiper R, et al. Prognostic Validation of SKY92 and Its Combination With ISS in an Independent Cohort of Patients With Multiple Myeloma. Clin Lymphoma Myel Leuk. 2017;17(9):555–62. doi: 10.1016/j.clml.2017.06.020.
  35. Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. 2008;112(10):4017–23. doi: 10.1182/blood-2008-05-159624.
  36. Paiva B, Martinez-Lopez J, Vidriales MB, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol. 2011;29(12):1627–33. doi: 10.1200/JCO.2010.33.1967.
  37. Paiva B, Gutierrez NC, Rosinol L, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. 2012;119(3):687–91. doi: 10.1182/blood-2011-07-370460.
  38. Munshi NC, Avet-Loiseau H, Rawstron AC, et al. Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis. JAMA Oncol. 2017;3(1):28–35. doi: 10.1001/jamaoncol.2016.3160.
  39. Gambella M, Omede P, Spada S, et al. Minimal residual disease by flow cytometry and allelic-specific oligonucleotide real-time quantitative polymerase chain reaction in patients with myeloma receiving lenalidomide maintenance: A pooled analysis. Cancer. 2019;125(5):750–60. doi: 10.1002/cncr.31854.
  40. Perrot A, Lauwers-Cances V, Corre J, et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood. 2018;132(23):2456–64. doi: 10.1182/blood-2018-06-858613.
  41. Mateos MV, Dimopoulos MA, Cavo M, et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N Engl J Med. 2018;378(6):518–28. doi: 10.1056/NEJMoa1714678.
  42. Langerak AW, Groenen PJ, Bruggemann M, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159–71. doi: 10.1038/leu.2012.246.
  43. Van der Velden VH, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604–11. doi: 10.1038/sj.leu.2404586.
  44. Corradini P, Voena C, Tarella C, et al. Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol. 1999;17(1):208–15. doi: 10.1200/JCO.1999.17.1.208.
  45. Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365–72.
  46. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9. doi: 10.1182/blood-2014-01-550020.
  47. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346. doi: 10.1016/S1470-2045(16)30206-6.
  48. Lohr JG, Kim S, Gould J, et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med. 2016;8(363):363ra147. doi: 10.1126/scitranslmed.aac7037.
  49. Mishima Y, Paiva B, Shi J, et al. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Rep. 2017;19(1):218–24. doi: 10.1016/j.celrep.2017.03.025.
  50. Manier S, Park J, Capelletti M, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691. doi: 10.1038/s41467-018-04001-5.
  51. Zamagni E, Nanni C, Mancuso K, et al. PET/CT Improves the Definition of Complete Response and Allows to Detect Otherwise Unidentifiable Skeletal Progression in Multiple Myeloma. Clin Cancer Res. 2015;21(19):4384–90. doi: 10.1158/1078-0432.CCR-15-0396.
  52. Паива Б., Видриалес М.Б., Алмейда Х. и др. Оценка эффекта лечения при множественной миеломе: клиническое значение мониторинга МОЗ. Иммунология гемопоэза. 2012;10(1):34–77.
    [Paiva B, Vidriales MB, Almeida J, et al. Treatment response assessment in multiple myeloma: clinical significance of MRD monitoring. Immunologiya gemopoeza. 2012;10(1):34–77. (In Russ)]
  53. Kumar SK. Targeted Management Strategies in Multiple Myeloma. Cancer J. 2019;25(1):59–64. doi: 10.1097/PPO.0000000000000353.
  54. Multiple Myeloma Research Consortium. Myeloma-Developing Regimens Using Genomics (MyDRUG). Available from: https://clinicaltrials.gov/ct2/show/NCT03732703 (accessed 2.06.2021).

Материалы II конференции «Актуальные вопросы диагностики и лечения Ph-негативных и Ph-позитивных миелопролиферативных заболеваний» (15–16 марта 2019 г., ФГБУ «НМИЦ гематологии» Минздрава России, Москва)

А.Л. Меликян1, А.Г. Туркина1, И.Н. Суборцева1, Е.Ю. Челышева1, А.М. Ковригина1, В.А. Шуваев2, В.В. Байков3, О.Ю. Виноградова4,5,6, С.М. Куликов1, А.Н. Петрова1, А.В. Быкова1, А.-П.А. Пошивай2, Ю.Ю. Власова3, М.М. Чукавина7, О.Д. Сердюк8, К.В. Наумова9, Н.Т. Сиордия10, Н.С. Лазорко10, Р.В. Грозов10, Э.И. Мулло11, А.С. Максимова12, О.М. Сендерова13, О.В. Каня13, М.С. Фоминых2,25, Д.И. Шихбабаева4, Е.А. Белякова14, И.С. Мартынкевич2, Л.Б. Полушкина2, М.Н. Зенина2, Е.В. Ефремова2, В.И. Ругаль2, Л.П. Папаян2, Н.Е. Корсакова2, О.Ю. Матвиенко2, Е.Б. Сырцева15, С.В. Гаппоев16, М.В. Барабанщикова3, М.О. Иванова3, К.Д. Капланов17, Е.С.  Рогова9, К.Б. Тризна18, А.С. Жевняк19, О.Е. Очирова20, А.А. Шахаева20, А.С. Лямкина21, И.П. Михно22, Ю.Б. Черных23, Т.В. Чуданова23, И.Н. Контиевский23, Н.Н. Глонина24, М.В. Бурундукова22

1 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

3 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

4 ГБУЗ «Городская клиническая больница им. С.П. Боткина» ДЗМ, 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

5 ФГБУ «НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

6 ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» Минздрава России, ул. Островитянова, д. 1, Москва, Российская Федерация, 117997

7 ГБУЗ МО «Коломенская ЦРБ», ул. Октябрьской революции, д. 318, Коломна, Московская область, Российская Федерация, 140401

8 ГБУЗ «Клинический онкологический диспансер № 1» Минздрава Краснодарского края, ул. Димитрова, д. 146, Краснодар, Российская Федерация, 350040

9 ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, пр-т Карла Маркса, д. 165б, Самара, Российская Федерация, 443086

10 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

11 ГБУЗ МО «Чеховская районная больница № 2», ул. Гагарина, д. 37, Чехов, Московская область, Российская Федерация, 142300

12 ГАУЗ «Городская клиническая больница № 16», ул. Гагарина, д. 121, Казань, Российская Федерация, 420039

13 ГБУЗ «Иркутская ордена “Знак Почета” областная клиническая больница», микрорайон Юбилейный, д. 100, Иркутск, Российская Федерация, 664049

14 ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, ул. Кирочная, д. 41, Санкт-Петербург, Российская Федерация, 191015

15 КГБУЗ «Красноярская межрайонная городская больница № 7», ул. Академика Павлова, д. 4, Красноярск, Российская Федерация, 660003

16 КГБУЗ «Красноярское краевое патолого-анатомическое бюро», ул. Партизана Железняка, д. 3д, Красноярск, Российская Федерация, 660022

17 ГБУЗ «Волгоградский областной клинический онкологический диспансер», ул. Землячки, д. 78, Волгоград, Российская Федерация, 400138

18 ОГАУЗ «Томская областная клиническая больница», ул. Ивана Черных, д. 96, Томск, Российская Федерация, 634063

19 ОГБУЗ «Патологоанатомическое бюро», ул. Ивана Черных, д. 96, стр. 9, Томск, Российская Федерация, 634063

20 ГБУЗ «Республиканская клиническая больница им. Н.А. Семашко» Минздрава Республики Бурятия, ул. Павлова, д. 12, Улан-Удэ, Российская Федерация, 670031

21 ФГБУ ВО «Новосибирский государственный медицинский университет» Минздрава России, Красный пр-т, д. 52, Новосибирск, Российская Федерация, 630091

22 ГБУЗ Новосибирской области «Городская клиническая больница № 2», ул. Ползунова, д. 21, Новосибирск, Российская Федерация, 630051

23 ГБУЗ МО «МОНИКИ им. М.Ф. Владимирского», ул. Щепкина, д. 61/2, Москва, Российская Федерация, 129110

24 КГБУЗ «Краевая клиническая больница № 1 им. проф. С.И. Сергеева», ул. Краснодарская, д. 9, Хабаровск, Российская Федерация, 680009

25 ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7-9, Санкт-Петербург, Российская Федерация, 199034

Для переписки: Ирина Николаевна Суборцева, канд. мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: soubortseva@yandex.ru

Для цитирования: Меликян А.Л., Туркина А.Г., Суборцева И.Н. и др. Материалы II конференции «Актуальные вопросы диагностики и лечения Ph-негативных и Ph-позитивных миелопролиферативных заболеваний» (15–16 марта 2019 г., ФГБУ «НМИЦ гематологии» Минздрава России, Москва). Клиническая онкогематология. 2020;13(2):199–231.


РЕФЕРАТ

Публикация содержит материалы докладов, представленных на II конференции «Актуальные вопросы диагностики и лечения Ph-негативных и Ph-позитивных миелопролиферативных заболеваний», которая состоялась 15–16 марта 2019 г. в ФГБУ «НМИЦ гематологии» Минздрава России (Москва). Цель конференции — профессиональное общение врачей-клиницистов, специализирующихся на лечении миелопролиферативных заболеваний (МПЗ), и научных экспертов в данной сфере, обмен мнениями по внедрению современных методов диагностики и лечения Ph-позитивных и Ph-негативных МПЗ. Тематика сообщений охватывала широкий спектр редких и нестандартных клинических ситуаций. Особенно важной была возможность их детального обсуждения при панельной дискуссии, а также в формате интерактивных сессий. Такой формат конференции позволил привести в настоящей публикации мнения экспертов. Подчеркивается важная роль комплексной диагностики МПЗ с использованием морфологического исследования трепанобиоптатов костного мозга и проведения молекулярно-генетических исследований. Исходя из этого, второй день конференции был посвящен тщательному разбору морфологических характеристик представленных случаев по материалам трепанобиоптатов костного мозга.

Ключевые слова: миелопролиферативные заболевания, хронический миелоидный лейкоз, эссенциальная тромбоцитемия, истинная полицитемия, первичный миелофиброз, тромбоз, JAK2V617F, CALR, MPL, секвенирование нового поколения, руксолитиниб.

Получено: 30 сентября 2019 г.

Принято в печать: 5 марта 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Rychter A, Jerzmanowski P, Holub A, et al. Treatment adherence in chronic myeloid leukaemia patients receiving tyrosine kinase inhibitors. Med Oncol. 2017;34(6):104. doi: 10.1007/s12032-017-0958-6.

  2. Челышева Е.Ю., Галактионова А.В., Туркина А.Г. Проблема приверженности терапии хронического миелолейкоза: понять пациента и найти решения. Клиническая онкогематология. 2013;6(2):157–65.

    [Chelysheva EYu, Galaktionova AV, Turkina AG. The problem of adherence to therapy in chronic myeloid leukemia: understanding the patient and making a decision. Klinicheskaya onkogematologiya. 2013;6(2):157–65. (In Russ)]

  3. Туркина А.Г., Зарицкий А.Ю., Шуваев В.А. и др. Клинические рекомендации по диагностике и лечению хронического миелолейкоза. Клиническая онкогематология. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316.

    [Turkina AG, Zaritskii AYu, Shuvaev VA, et al. Clinical Recommendations for the Diagnosis and Treatment of Chronic Myeloid Leukemia. Clinical oncohematology. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316. (In Russ)]

  4. Deininger MW, Cortes J, Paquette R, et al. The prognosis for patients with chronic myeloid leukemia who have clonal cytogenetic abnormalities in Philadelphia chromosome-negative cells. Cancer. 2007;110(7):1509–19. doi: 10.1002/cncr.22936.

  5. Richter J, Soderlund S, Lubking A, et al. Musculoskeletal Pain in Patients With Chronic Myeloid Leukemia After Discontinuation of Imatinib: A Tyrosine Kinase Inhibitor Withdrawal Syndrome? J Clin Oncol. 2014;32(25):2821–3. doi: 10.1200/jco.2014.55.6910.

  6. Туркина А.Г., Немченко И.С., Челышева Е.Ю. и др. Национальные клинические рекомендации: диагностика и лечение миелопролиферативных заболеваний с эозинофилией и идиопатического гиперэозинофильного синдрома. Гематология и трансфузиология. 2016;61(3):1–24.

    [Turkina AG, Nemchenko IS, Chelysheva EYu, et al. National clinical guidelines: Diagnosis and treatment of myeloproliferative neoplasms with eosinophilia and idiopathic hypereosinophilic syndrome. Gematologiya i transfuziologiya. 2016;61(3):1–24. (In Russ)]

  7. Samuelson BT, Vesely SK, Chai-Adisaksopha C, et al. The impact of ruxolitinib on thrombosis in patients with polycythemia vera and myelofibrosis: a meta-analysis. Blood Coagul Fibrinol. 2016;27(6):648–52. doi: 10.1097/MBC.0000000000000446.

  8. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-06-721662.

  9. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;1:25–60.

    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical guidelines on diagnosis and treatment of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, and primary myelofibrosis) (2016 edition). Gematologiya i transfuziologiya. 2017;1:25–60. (In Russ)]

  10. Marchioli R, Finazzi G, Landolfi R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32. doi: 10.1200/jco.2005.07.062.

  11. Barbui T, Vannucchi AM, Buxhofer-Ausch V, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5(11):e369. doi: 10.1038/bcj.2015.94.

  12. Rumi E, Pietra D, Pascutto C, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124(7):1062–9. doi: 10.1182/blood-2014-05-578435.

  13. Tefferi A, Lasho TL, Tischer A, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood. 2014;124(15):2465–6. doi: 10.1182/blood-2014-07-588426.

  14. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28(7):1494–500. doi: 10.1038/leu.2014.57.

  15. Полушкина Л.Б., Мартынкевич И.С., Шуваев В.А. и др. Молекулярно-генетические и цитогенетические особенности первичного миелофиброза. Гены и клетки. 2016;11(3):113–22.

    [Polushkina LB, Martynkevich IS, Shuvaev VA, et al. Molecular genetic and cytogenetic characteristics of primary Geny i kletki. 2016;11(3):113–22. (In Russ)]

  16. Tefferi A, Lasho TL, Finke CM, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1(2):105–11. doi: 10.1182/bloodadvances.2016000208.

  17. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156. doi: 10.1186/s13045-017-0527-7.

  18. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. 2014;124(21):405. doi: 10.1182/blood.v124.21.405.405.

  19. Wei JJ, Kallenbach LR, Kreider M, et al. Resolution of cutaneous sarcoidosis after Janus kinase inhibitor therapy for concomitant polycythemia vera. JAAD Case Rep. 2019;5(4):360–1. doi: 10.1016/j.jdcr.2019.02.006.

  20. Garcia-Pagan JC, Buscarini E, Janssen HLA, et al. EASL Clinical Practice Guidelines: Vascular diseases of the liver. J Hepatol. 2016;64(1):179–202. doi: 10.1016/j.jhep.2015.07.040.

  21. Шмаков Р.Г., Полушкина Е.С. Особенности репродуктивной функции у женщин с онкогематологическими заболеваниями. Современная онкология. 2008;10(3):68–9.

    [Shmakov RG, Polushkina ES. Reproductive function characteristics in women with oncohematological diseases. Sovremennaya onkologiya. 2008;10(3):68–9. (In Russ)]

  22. Griesshammer M, Sadjadian P, Wille K. Contemporary management of patients with BCR-ABL1-negative myeloproliferative neoplasms during pregnancy. Expert Rev Hematol. 2018;11(9):697–706. doi: 10.1080/17474086.2018.1506325.

  23. Schwartz LC, Mascarenhas J. Current and evolving understanding of atypical chronic myeloid leukemia. Blood Rev. 2019;33:74–81. doi: 10.1016/j.blre.2018.07.004.

 

 

Прогностическое значение результатов секвенирования нового поколения у пациентов с миелодиспластическим синдромом

Н.Ю. Цветков1, Е.В. Морозова1, И.М. Бархатов1, И.С. Моисеев1, М.В. Барабанщикова1, А.В. Тишков2, Д.С. Буг2, Н.В. Петухова2, Е.А. Измайлова1, С.Н. Бондаренко1, Б.В. Афанасьев1

1 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

2 Центр биоинформатики научно-образовательного института биомедицины, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Николай Юрьевич Цветков, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(911)233-48-77, +7(812)338-62-27; e-mail: nikolai.tcvetkov@yandex.ru

Для цитирования: Цветков Н.Ю., Морозова Е.В., Бархатов И.М. и др. Прогностическое значение результатов секвенирования нового поколения у пациентов с миелодиспластическим синдромом. Клиническая онкогематология. 2020;13(2):170–5.

DOI: 10.21320/2500-2139-2020-13-2-170-175


РЕФЕРАТ

Цель. Оценить прогностическое значение мутаций генов метилирования ДНК и генов SF3B1, TP53 у пациентов с миелодиспластическим синдромом (МДС).

Материалы и методы. В исследование включено 35 пациентов с МДС: с мультилинейной дисплазией — 2, с избытком бластов-I — 13, с избытком бластов-II — 19, с 5q-синдромом — 1 (критерии ВОЗ 2016 г.). У 30 больных был первичный МДС, у 5 — после предшествующей химио- или лучевой терапии. Трансплантация аллогенных гемопоэтических стволовых клеток (аллоТГСК) выполнена 25 пациентам. Согласно IPSS-R, 1 пациент соответствовал группе низкого риска, 5 — промежуточного, 17 — высокого, 12 — очень высокого. Лечение гипометилирующими препаратами получали 28 больных. Медиана возраста пациентов составила 49 лет (диапазон 18–80 лет). С помощью секвенирования нового поколения определяли соматические мутации в генах метилирования ДНК (TET2, IDH1/2, ASXL1, DNMT3A), а также в генах SF3B1, TP53, IDH и RUNX1. Время до прогрессирования (ВДП) рассчитывалось как время от постановки диагноза до трансформации в острый лейкоз. Конкурирующим риском считалась смерть по причинам, связанным с аллоТГСК или проводимой противоопухолевой терапией.

Результаты. У 37 % пациентов при анализе генов метилирования мутаций не выявлено, у 40 % пациентов обнаружена мутация только в 1 из генов, у 23 % — в 2 генах и более. Мутации SF3B1 наблюдались у 23 % больных, TP53 — у 11 %. Медиана времени наблюдения составила 25 мес. (диапазон 5–116 мес.). В однофакторном анализе не получено значимых различий в общей выживаемости в зависимости от мутационного статуса. Медиана ВДП в группе с аллоТГСК не достигнута, а без аллоТГСК она составила 6 мес. (= 0,0001). Этот же показатель при отсутствии мутации в гене SF3B1 равен 35 мес., при ее наличии медиана ВДП не достигнута (= 0,043). При наличии ≥ 2 мутаций в генах метилирования медиана ВДП была 12 мес., в других случаях она не достигнута (= 0,024). При наличии мутации в гене TP53 медиана ВДП составила 6 мес., при ее отсутствии — 43 мес. (= 0,023). В многофакторном анализе наличие мутации в гене TP53 или ≥ 2 мутаций в генах метилирования сохранило свое неблагоприятное прогностическое значение в отношении ВДП вне зависимости от проведенного лекарственного лечения или аллоТГСК (отношение рисков 7,1; 95%-й доверительный интервал 2,6–19,6; = 0,0001).

Заключение. Изучение молекулярных маркеров позволяет получить дополнительную информацию о прогнозе при МДС. Требуются дальнейшие исследования для определения прогностической роли молекулярных маркеров в клинической практике, что даст возможность индивидуализировать подходы к терапии МДС.

Ключевые слова: миелодиспластический синдром, молекулярные маркеры, мутации, секвенирование нового поколения, прогноз.

Получено: 27 декабря 2019 г.

Принято в печать: 25 марта 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Ma X. Epidemiology of Myelodysplastic Syndromes. Am J Med. 2012;125(7):S2–S5. doi: 10.1016/j.amjmed.2012.04.014.

  2. Greenberg P, Cox C, LeBeau MM, et al. International Scoring System for Evaluating Prognosis in Myelodysplastic Syndromes. 1997;89(6):2079–88. doi: 10.1182/blood.v89.6.2079.

  3. Alessandrino EP, Della Porta MG, Bacigalupo A, et al. WHO classification and WPSS predict posttransplantation outcome in patients with myelodysplastic syndrome: a study from the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Blood. 2008;112(3):895–902. doi: 10.1182/blood-2008-03-143735.

  4. Greenberg PL, Tuechler H, Schanz J, et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood. 2012;120(12):2454–65. doi: 10.1182/blood-2012-03-420489.

  5. Montalban-Bravo G, Garcia-Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and management. Am J Hematol. 2018;93(1):129–47. doi: 10.1002/ajh.24930.

  6. Bejar R, Stevenson KE, Caughey B, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32(25):2691–8. doi: 10.1200/jco.2013.52.3381.

  7. Bains A, Luthra R, Medeiros LJ, et al. FLT3 and NPM1 mutations in myelodysplastic syndromes: Frequency and potential value for predicting progression to acute myeloid leukemia. Am J Clin Pathol. 2011;135(1):62–9. doi: 10.1309/ajcpei9xu8pybcio.

  8. Della Porta MG, Galli A, Bacigalupo A, et al. Clinical Effects of Driver Somatic Mutations on the Outcomes of Patients With Myelodysplastic Syndromes Treated With Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol. 2016;34(30):3627–37. doi: 10.1200/jco.2016.67.3616.

  9. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  10. Bejar R. CHIP, ICUS, CCUS and other four-letter words. 2017;31(9):1869–71. doi: 10.1038/leu.2017.181.

  11. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87. doi: 10.1056/nejmoa1409405.

  12. Young AL, Tong RS, Birmann BM, et al. Clonal hematopoiesis and risk of acute myeloid leukemia. 2019;104(12):2410–7. doi: 10.3324/haematol.2018.215269.

  13. Figueroa ME, Skrabanek L, Li Y, et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. 2009;114(16):3448–58. doi: 10.1182/blood-2009-01-200519.

  14. Reilly B, Tanaka TN, Diep D, et al. DNA methylation identifies genetically and prognostically distinct subtypes of myelodysplastic syndromes. Blood Adv. 2019;3(19):2845–58. doi: 10.1182/bloodadvances.2019000192.

  15. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40. doi: 10.1200/jco.2002.04.117.

  16. Kantarjian H, Issa J-PJ, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. 2006;106(8):1794–803. doi: 10.1002/cncr.21792.

  17. Stahl M, Zeidan AM. Lenalidomide use in myelodysplastic syndromes: Insights into the biologic mechanisms and clinical applications. 2017;123(10):1703–13. doi: 10.1002/cncr.30585.

  18. Duong VH, Lin K, Reljic T, et al. Poor outcome of patients with myelodysplastic syndrome after azacitidine treatment failure. Clin Lymphoma Myel Leuk. 2013;13(6):711–5. doi: 10.1016/j.clml.2013.07.007.

  19. Prebet T, Cluzeau T, Park S, et al. Outcome of patients treated for myelodysplastic syndromes with 5q deletion after failure of lenalidomide therapy. 2017;8(23):81926–35. doi: 10.18632/oncotarget.15200.

  20. Tefferi A, Guglielmelli P, Lasho TL, et al. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J Clin Oncol. 2018;36(17):1769–70. doi: 10.1200/jco.2018.78.9867.

  21. Haase D, Stevenson KE, Neuberg D, et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. 2019;33(7):1747–58. doi: 10.1038/s41375-018-0351-2.

  22. Montalban-Bravo G, Takahashi K, Patel K, et al. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. 2018;9(11):9714–27. doi: 10.18632/oncotarget.23882.

  23. van Gelder M, de Wreede LC, Schetelig J, et al. Monosomal karyotype predicts poor survival after allogeneic stem cell transplantation in chromosome 7 abnormal myelodysplastic syndrome and secondary acute myeloid leukemia. 2013;27(4):879–88. doi: 10.1038/leu.2012.297.

  24. de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. 2017;129(13):1753–62. doi: 10.1182/blood-2016-06-724500.

  25. Itzykson R, Kosmider O, Cluzeau T, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. 2011;25(7):1147–52. doi: 10.1038/leu.2011.71.

  26. Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med. 2016;375(21):2023–36. doi: 10.1056/nejmoa1605949.