А.В. Пономарев
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Moсква, Российская Федерация, 115478
Для переписки: Александр Васильевич Пономарев, аспирант, Каширское ш., д. 24, Moсква, Российская Федерация, 115478; e-mail: kl8546@yandex.ru
Для цитирования: Пономарев А.В. Миелоидные супрессорные клетки при некоторых онкогематологических заболеваниях. Клиническая онкогематология. 2017;10(1):29–38.
DOI: 10.21320/2500-2139-2017-10-1-29-38
РЕФЕРАТ
Миелоидные супрессорные клетки — это незрелые клетки миелоидного происхождения, обладающие иммуносупрессивными свойствами. В обзоре приведена характеристика миелоидных супрессорных клеток, в т. ч. варианты фенотипа, механизмы супрессивного воздействия на иммунную систему, механизмы рекрутирования опухолью миелоидных супрессоров. Дано краткое описание работ, в которых исследовались миелоидные супрессоры при онкогематологических заболеваниях, включая множественную миелому, лимфомы и лейкозы.
Ключевые слова: миелоидные супрессоры, супрессорные клетки миелоидного происхождения, множественная миелома, лимфомы, лейкозы.
Получено: 8 сентября 2016 г.
Принято в печать: 3 декабря 2016 г.
ЛИТЕРАТУРА
- Тупицына Д.Н., Ковригина А.М., Тумян Г.С. и др. Клиническое значение внутриопухолевых FOXP3+ Т-регуляторных клеток при солидных опухолях и фолликулярных лимфомах: обзор литературы и собственные данные. Клиническая онкогематология. 2012;(5)3:193–203.
[Tupitsyna DN, Kovrigina AM, Tumian GS, et al. Different clinical meaning of intratumoral FOXP3+ T-regulatory cells in solid tumors and follicular lymphomas: literature review and own data. Klinicheskaya onkogematologiya. 2012;(5)3:193–203. (In Russ)] - Кадагидзе З.Г., Черткова А.И., Славина Е.Г. NKT-клетки и противоопухолевый иммунитет. Российский биотерапевтический журнал. 2011;10(3):9–16.
[Kadagidze ZG, Chertkova AI, Slavina EG. NKT-cells and antitumor immunity. Rossiiskii bioterapevticheskii zhurnal. 2011;10(3):9–16. (In Russ)] - Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev 2012;12(4):253–68. doi: 10.1038/nri3175.
- Gabrilovich DI, Bronte V, Chen S-H, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67(1):425– doi: 10.1158/0008-5472.CAN-06-3037.
- Bowen JL, Olson JK. Innate immune CD11b+Gr-1+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease. J Immunol. 2009;183(11):6971–80. doi: 10.4049/jimmunol.0902193.
- Tsiganov EN, Verbina EM, Radaeva TV, et al. Gr-1dim CD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immunol. 2014;192(10):4718–27. doi: 10.4049/jimmunol.1301365.
- Delano MJ, Scumpia PO, Weinstein JS, et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 2007;204(6):1463–74.
- Гапонов М.А., Хайдуков С.В., Писарев В.М. и др. Субпопуляционная гетерогенность миелоидных иммуносупрессорных клеток у пациентов с септическими состояниями. Российский иммунологический журнал. 2015;9(18):11–14.
[Gaponov MA, Khaidukov SV, Pisarev VM, et al. Subpopulation heterogeneity of immunosuppressive myeloid cells in patients with sepsis. Rossiiskii immunologicheskii zhurnal. 2015;9(18):11–14. (In Russ)] - Makarenkova VP, Bansal V, Matta BM, et al. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol. 2006;176(4):2085–94. doi: 10.4049/jimmunol.176.4.2085.
- Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int. 2011;11(7):802–7. doi: 10.1016/j.intimp.2011.01.003.
- Diaz-Montero CM, Salem ML, Nishimura MI, et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58(1):49–59. doi: 10.1007/s00262-008-0523-
- Yazdani Y, Mohammadnia-Afrouzi M, Yousefi M, et al. Myeloid-derived suppressor cells in B cell malignancies. Tumour Biol. 2015;36(10):7339–53. doi: 10.1007/s13277-015-4004-z.
- Пономарев А.В. Миелоидные супрессорные клетки: общая характеристика. Иммунология. 2016;37(1):47–50. doi: 10.18821/0206-4952-2016-37-1-47-50.
[Ponomarev AV. Myeloid suppressor cells: general characteristics. Immunologiya. 2016;37(1):47–50. doi: 10.18821/0206-4952-2016-37-1-47- (In Russ)] - Gabrilovich DI, Nagaraj S. Myeloid-derived-suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. doi: 10.1038/nri2506.
- Lechner MG, Megiel C, Russell SM, et al. Functional characterization of human Cd33+ And Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl 2011;9(1):90. doi: 10.1186/1479-5876-9-90.
- Rodriguez PC, Ernstoff MS, Hernandez C, et al. Arginase I–Producing Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma Are a Subpopulation of Activated Granulocytes. Cancer Res. 2009;69(4):1553–60.
- Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 2001;61(12):4756–60.
- Youn J-I, Collazo M, Shalova I, et al. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leuk 2012;91(1):167–81. doi: 10.1189/jlb.0311177.
- Youn J-I, Nagaraj S, Collazo M, et al. Subsets of Myeloid-Derived Suppressor Cells in Tumor Bearing Mice. J Immunol. 2008;181(8):5791–802. doi: 10.4049/jimmunol.181.8.5791.
- Corzo CA, Condamine T, Lu L, et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010;207(11):2439–53. doi: 10.1084/jem.20100587.
- Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6(4):409–21. doi: 10.1016/j.ccr.2004.08.031.
- Zhuang J, Zhang J, Lwin ST, et al. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+ myeloid-derived suppressor cells. PLoS One. 2012;7(11):e48871. doi: 1371/journal.pone.0048871.
- Choi J, Suh B, Ahn YO, et al. CD15+/CD16low human granulocytes from terminal cancer patients: granulocytic myeloid-derived suppressor cells that have suppressive function. Tumour Biol. 2012;33(1):121–9. doi: 10.1007/s13277-011-0254-
- Stanojevic I, Miller K, Kandolf-Sekulovic L, et al. A subpopulation that may correspond to granulocytic myeloid-derived suppressor cells reflects the clinical stage and progression of cutaneous melanoma. Int Immunol. 2016;28(2):87–97. doi: 10.1093/intimm/dxv053.
- Saiwai H, Kumamaru H, Ohkawa Y, et al. Ly6C+Ly6G– Myeloid-derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury. J Neurochem. 2013;125(1):74–88. doi: 10.1111/jnc.12135.
- Rodriguez PC, Augusto CO. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol 2008;222(1):180–91. doi: 10.1111/j.1600-065X.2008.00608.x.
- Srivastava MK, Sinha P, Clements VK, et al. Myeloid-derived suppressor cells inhibit T cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77. doi: 10.1158/0008-CAN-09-2587.
- Chevolet I, Speeckaert R, Schreuer M, et al. Characterization of the in vivo immune network of IDO, tryptophan metabolism, PD-L1, and CTLA-4 in circulating immune cells in melanoma. Oncoimmunology. 2015;4(3):e982382. doi: 10.4161/2162402X.2014.982382.
- Jitschin R, Braun M, Buttner M, et al. CLL-cells induce IDOhiCD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote Tregs. Blood. 2014;124(5):750–60. doi: 10.1182/blood-2013-12-
- Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007;13(7):828–35. doi: 10.1038/nm1609.
- Lu T, Ramakrishnan R, Altiok S, et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin 2011;121(10):4015–4029. doi: 10.1172/JCI45862.
- Hanson EM, Clements VK, Sinha P, et al. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J. Immunol. 2009;183(2):937–44. doi: 10.4049/jimmunol.0804253.
- Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211(5):781–90. doi: 10.1084/jem.20131916.
- Filipazzi P, Valenti R, Huber V, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25(18):2546–53. doi: 10.1200/JCO.2006.08.5829.
- Sinha P, Clements VK, Bunt SK, et al. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179(2):977–83. doi: 10.4049/jimmunol.179.2.977.
- Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol. 2009;182(1):240–9. doi: 10.4049/jimmunol.182.1.240.
- Liu C, Yu S, Kappes J, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood. 2007;109(10):4336–42. doi: 10.1182/blood-2006-09-
- Elkabets M, Ribeiro VSG, Dinarello CA, et al. IL-1b regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol. 2010;40(12):3347–57. doi: 10.1002/eji.201041037.
- Hoechst B, Voigtlaender T, Ormandy L, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799–807. doi: 10.1002/hep.23054.
- Pan PY, Ma G, Weber KJ, et al. Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010;70(1):99–108. doi: 10.1158/0008-CAN-09-1882.
- Hoechst B, Gamrekelashvili J, Manns MP, et al. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011;117(24):6532–41. doi: 10.1182/blood-2010-11-
- Shojaei F, Wu X, Malik AK, et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol. 2007;25(8):911–20. doi: 10.1038/nbt1323.
- Connolly MK, Mallen-St Clair J, Bedrosian AS, et al. Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J Leuk Biol. 2010;87(4):713–25. doi: 10.1189/jlb.0909607.
- Yang L, Huang J, Ren X, et al. Abrogation of TGFb signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell. 2008;13(1):23–35. doi: 10.1016/j.ccr.2007.12.004.
- Giles A, Vicioso Y, Kasai M, et al. Bone marrow-derived progenitor cells develop into myeloid-derived suppressor cells at metastatic sites. J Immunother Cancer. 2013;1(Suppl 1):188. doi: 10.1186/2051-1426-1-S1-P188.
- Solito S, Falisi E, Diaz-Montero CM, et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood. 2011;118(8):2254–65. doi: 10.1182/blood-2010-12-
- Marigo I, Bosio E, Solito S, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010;32(6):790–802. doi: 10.1016/j.immuni.2010.05.010.
- Highfill SL, Rodriguez PC, Zhou Q, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood. 2010;116(25):5738–47. doi: 10.1182/blood-2010-06-
- Lechner MG, Liebertz DJ, Epstein AL. Characterization of cytokine-induced myeloid derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol. 2010;185(4):2273–84. doi: 10.4049/jimmunol.1000901.
- Atretkhany KS, Nosenko MA, Gogoleva VS, et al. TNF Neutralization Results in the Delay of Transplantable Tumor Growth and Reduced MDSC Accumulation. Front Immunol. 2016;7:147. doi: 10.3389/fimmu.2016.00147.
- De Veirman K, Van Valckenborgh E, Lahmar Q, et al. Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Front Oncol. 2014;4:349. doi: 10.3389/fonc.2014.00349.
- Ramachandran I, Martner A, Pisklakova A, et al. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol. 2013;190(7):3815–23. doi: 10.4049/jimmunol.1203373.
- De Veirman K, Van Ginderachter JA, Lub S, et al. Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget. 2015;6(12):10532–47. doi: 10.18632/oncotarget.3300.
- Brimnes MK, Vangsted AJ, Knudsen LM, et al. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR–/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010;72(6):540–7. doi: 10.1111/j.1365-2010.02463.x.
- Gorgun GT, Whitehill G, Anderson JL, et al. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013;121(15):2975–87. doi: 10.1182/blood-2012-08-
- Gorgun GТ, Samur MK, Cowens KB, et al. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clin Cancer Res. 2015;21(20):4607–18. doi: 10.1158/1078-CCR-15-0200.
- Busch A, Zeh D, Janzen V, et al. Treatment with lenalidomide induces immuno-activating and counter-regulatory immunosuppressive changes in myeloma patients. Clin Exp Immunol. 2014;177(2):439–53. doi: 10.1111/cei.12343.
- Wang Z, Zhang L, Wang H, et al. Tumor-induced CD14+HLA-DR (-/low) myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunol Immunother. 2015;64(3):389–99. doi: 10.1007/s00262-014-1646-
- De Keersmaecker B, Fostier K, Corthals J, et al. Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation. Cancer Immunol Immunother. 2014;63(10):1023–36. doi: 10.1007/s00262-014-1571-
- Castella B, Foglietta M, Sciancalepore P, et al. Anergic bone marrow Vg9Vd2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma. Oncoimmunology. 2015;4(11):e1047580. doi: 10.1080/2162402X.2015.1047580.
- Giallongo C, Tibullo D, Parrinello NL, et al. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC). Oncotarget. 2016;7(52):85764– doi: 10.18632/oncotarget.7969.
- Lee SE, Lim JY, Ryu DB, et al. Circulating immune cell phenotype can predict the outcome of lenalidomide plus low-dose dexamethasone treatment in patients with refractory/relapsed multiple myeloma. Cancer Immunol Immunother. 2016;65(8):983–94. doi: 10.1007/s00262-016-1861-
- Favaloro J, Liyadipitiya T, Brown R, et al. Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leuk Lymphoma. 2014;55(12):2893–900. doi: 10.3109/10428194.2014.904511.
- Franssen LE, van de Donk NW, Emmelot ME, et al. The impact of circulating suppressor cells in multiple myeloma patients on clinical outcome of DLIs. Bone Marrow Transplant. 2015;50(6):822–8. doi: 10.1038/bmt.2015.48.
- Lin Y, Gustafson MP, Bulur PA, et al. Immunosuppressive CD14+HLA-DRlow/– monocytes in B-cell non-Hodgkin lymphoma. Blood. 2011;117(3):872–81. doi: 10.1182/blood-2010-05-
- Tadmor T, Fell R, Polliack A, et al. Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma—possible link with monocytic myeloid-derived suppressor cells. Hematol 2013;31(2):65–71. doi: 10.1002/hon.2019.
- Gustafson MP, Lin Y, LaPlant B, et al. Immune monitoring using the predictive power of immune profiles. J Immunother Cancer. 2013;1(1):7. doi: 10.1186/2051-1426-1-7.
- Wu C, Wu X, Zhang X, et al. Prognostic significance of peripheral monocytic myeloid-derived suppressor cells and monocytes in patients newly diagnosed with diffuse large B-cell lymphoma. Int J Clin Exp Med. 2015;8(9):15173–81.
- Sato Y, Shimizu K, Shinga J, et al. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma. Oncoimmunology. 2015;4(3):e995541. doi: 10.1080/2162402X.2014.995541.
- Romano A, Parrinello NL, Vetro C, et al. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin Lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol. 2015;168(5):689–700. doi: 10.1111/bjh.13198.
- Marini O, Spina C, Mimiola E, et al. Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget. 2016;19(7):27677–88. doi: 10.18632/oncotarget.8507.
- Azzaoui I, Uhel F, Rossille D, et al. T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid derived suppressor cells expressing IL-10, PD-L1 and S100A12. Blood. 2016;128(8):1081–92. doi: 10.1182/blood-2015-08-
- Zhang H, Li ZL, Ye SB, et al. Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunol Immunother. 2015;64(12):1587- doi: 10.1007/s00262-015-1765-6.
- Christiansson L, Sоderlund S, Svensson E, et al. Increased Level of Myeloid-Derived Suppressor Cells, Programmed Death Receptor Ligand 1/Programmed Death Receptor 1, and Soluble CD25 in Sokal High Risk Chronic Myeloid Leukemia. PLoS One. 2013;8(1):e55818. doi: 10.1371/journal.pone.0055818.
- Giallongo C, Romano A, Parrinello NL, et al. Mesenchymal Stem Cells (MSC) Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC) in Chronic Myeloid Leukemia Patients. PLoS One. 2016;11(7):e0158392. doi: 10.1371/journal.pone.0158392.
- Gustafson МP, Abraham RS, Lin Y, et al. Association of an increased frequency of CD14+HLA-DRlo/neg monocytes with decreased time to progression in chronic lymphocytic leukaemia (CLL). Br J Haematol. 2012;156(5):674–6. doi: 10.1111/j.1365-2011.08902.x.
- Liu J, Zhou Y, Huang Q, et al. CD14+HLA-DRlow/– expression: a novel prognostic factor in chronic lymphocytic leukemia. Oncol 2015;9(3):1167–72. doi: 10.3892/ol.2014.2808.
- Sun H, Li Y, Zhang ZF, et al. Increase in myeloid-derived suppressor cells (MDSCs) associated with minimal residual disease (MRD) detection in adult acute myeloid leukemia. Int J Hematol. 2015;102(5):579–86. doi: 10.1007/s12185-015-1865-
- Gleason MK, Ross JA, Warlick ED, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood. 2014;123(19):3016–26. doi: 10.1182/blood-2013-10-
- Chen X, Eksioglu EA, Zhou J, et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest. 2013;123(11):4595–611. doi: 10.1172/JCI67580.
- Kittang AO, Kordasti S, Sand KE, et al. Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology. 2015;5(2):e1062208. doi: 10.1080/2162402X.2015.1062208.
- Noonan KA, Ghosh N, Rudraraju L, et al. Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol Res. 2014;2(8):725–31. doi: 10.1158/2326-CIR-13-0213.