Теория и практика иммунотерапии, направленной против антигена PRAME

В.А. Мисюрин

ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Всеволод Андреевич Мисюрин, канд. биол. наук, Каширское ш., д. 24, Moсква, Российская Федерация, 115478; тел.: +7(985)436-30-19; e-mail: vsevolod.misyurin@gmail.com

Для цитирования: Мисюрин В.А. Теория и практика иммунотерапии, направленной против антигена PRAME. Клиническая онкогематология. 2018;11(2):138-49.

DOI: 10.21320/2500-2139-2018-11-2-138-149


РЕФЕРАТ

Антиген PRAME, представляющий собой значимую мишень для моноклональных антител, является онкоспецифическим маркером, который активен на всех стадиях дифференцировки опухолевых клеток, и вызывает спонтанный T-клеточный ответ. Поскольку белок PRAME экспрессируется примерно у каждого второго больного с солидными опухолями и онкогематологическими заболеваниями, иммунотерапия против данного антигена имеет значительные перспективы. В настоящем обзоре обсуждается механизм развития спонтанного иммунного ответа против PRAME и роль данного антигена в иммунном надзоре. Рассматривается процесс развития PRAME-специфических T-клеток. Оцениваются риски применения иммунотерапии против PRAME-экспрессирующей клетки. Обсуждаются достоинства и недостатки различных подходов в иммунотерапии, в т. ч. использование дендритноклеточных вакцин, вакцинирование антигеном PRAME, выведение специфических T-клеток и разработка специфических моноклональных антител. Объяснены возможные причины неудач некоторых видов иммунотерапии, представлены пути их преодоления. Поиск литературы, на которой основан данный обзор, проводился в базах данных Pubmed, Scopus и eLibrary по ключевому слову «PRAME». Рассмотрены только те публикации, в которых изучались различные аспекты или создавались средства иммунотерапии, направленной против антигена PRAME.

Ключевые слова: PRAME, иммунотерапия, дендритноклеточные вакцины, пептидные вакцины, T-клеточные вакцины, терапевтические антитела.

Получено: 19 декабря 2017 г.

Принято в печать: 5 февраля 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Lehmann F, Marchand M, Hainaut P, et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol. 1995;25(2):340–7. doi: 10.1002/eji.1830250206.
  2. Ikeda H, Lethe B, Lehmann F, et al. Characterization of an Antigen That Is Recognized on a Melanoma Showing Partial HLA Loss by CTL Expressing an NK Inhibitory Receptor. Immunity. 1997;6(2):199–208. doi: 10.1016/s1074-7613(00)80426-4.
  3. Rezvani K, Yong AS, Tawab A, et al. Ex vivo characterization of polyclonal memory CD8 T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood. 2009;113(10):2245–55. doi: 10.1182/blood-2008-03-144071.
  4. Lutz M, Worschech A, Alb M, et al. Boost and loss of immune responses against tumor-associated antigens in the course of pregnancy as a model for allogeneic immunotherapy. Blood. 2015;125(2):261–72. doi: 10.1182/blood-2014-09-601302.
  5. LaVoy EC, Bollard CM, Hanley PJ, et al. A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exerc Immunol Rev. 2015;21:144–53.
  6. Saldanha-Araujo F, Haddad R, Zanette DL, et al. Cancer/Testis Antigen Expression on Mesenchymal Stem Cells Isolated from Different Tissues. Anticancer Res. 2010;30(12):5023–7. doi: 10.1007/978-94-007-4798-2_11.
  7. Kirkin AF, Dzhandzhugazyan K, Zeuthen J. The Immunogenic Properties of Melanoma-Associated Antigens Recognized by Cytotoxic T Lymphocytes. Exp Clin Immunogenet. 1998;15(1):19–32. doi: 10.1159/000019050.
  8. Luetkens T, Schafhausen P, Uhlich F, et al. Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia. Leuk Res. 2010;34(12):1647–55. doi: 10.1016/j.leukres.2010.03.039.
  9. Luetkens T, Kobold S, Cao Y, et al. Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation. Cancer Immunol Immunother. 2014;63(11):1151–62. doi: 10.1007/s00262-014-1588-x.
  10. Kessler JH, Beekman NJ, Bres-Vloemans SA, et al. Efficient Identification of Novel HLA-A*0201–presented Cytotoxic T Lymphocyte Epitopes in the Widely Expressed Tumor Antigen PRAME by Proteasome-mediated Digestion Analysis. J Exp Med. 2001;193(1):73–88. doi: 10.1084/jem.193.1.73.
  11. Quintarelli C, Dotti G, Hasan ST, et al. High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood. 2011;117(12):3353–62. doi: 10.1182/blood-2010-08-300376.
  12. Kessler JH, Mommaas B, Mutis T, et al. Competition-Based Cellular Peptide Binding Assays for 13 Prevalent HLA Class I Alleles Using Fluorescein-Labeled Synthetic Peptides. Hum Immunol. 2003;64(2):245–55. doi: 10.1016/S0198-8859(02)00787-5.
  13. Kawahara M, Hori T, Matsubara Y, et al. Identification of HLA class I–restricted tumor-associated antigens in adult T cell leukemia cells by mass spectrometric analysis. Exp Hematol. 2006;34(11):1496–504. doi: 10.1016/j.exphem.2006.06.010.
  14. Kessler JH, Khan S, Seifert U, et al. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat Immunol. 2011;12(1):45–53. doi: 10.1038/ni.1974.
  15. Grunebach F, Mirakaj V, Mirakaj V, et al. BCR-ABL Is Not an Immunodominant Antigen in Chronic Myelogenous Leukemia. Cancer Res. 2006;66(11):5892–900. doi: 10.1158/0008-5472.CAN-05-2868.
  16. Greiner J, Schmitt M, Li L, et al. Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood. 2006;108(13):4109–17. doi: 10.1182/blood-2006-01-023127.
  17. Weber G, Caruana I, Rouce RH, et al. Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia – implications for immunotherapy. Clin Cancer Res. 2013;19(18):5079–91. doi: 10.1158/1078-0432.CCR-13-0955.
  18. Schneider V, Zhang L, Rojewski M, et al. Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic T cells against immunogenic leukemia-associated antigens. Int J Cancer. 2015;137(9):2083–92. doi: 10.1002/ijc.29583.
  19. Babiak A, Steinhauser M, Gotz M, et al. Frequent T cell responses against immunogenic targets in lung cancer patients for targeted immunotherapy. Oncol Rep. 2014;31(1):384–90. doi: 10.3892/or.2013.2804.
  20. Greiner J, Ringhoffer M, Simikopinko O, et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol. 2000;28(12):1413–22. doi: 10.1016/S0301-472X(00)00550-6.
  21. Griffioen M, Kessler JH, Borghi M, et al. Detection and Functional Analysis of CD8+ T Cells Specific for PRAME: a Target for T-Cell Therapy. Clin Cancer Res. 2006;12(10):3130–6. doi: 10.1158/1078-0432.CCR-05-2578.
  22. Yao J, Caballero OL, Yung WK, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res. 2014;2(4):371–9. doi: 10.1158/2326-6066.CIR-13-0088.
  23. Qin YZ, Zhu HH, Liu YR, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1442–9. doi: 10.3109/10428194.2012.743656.
  24. Gutierrez-Cosio S, de la Rica L, Ballestar E, et al. Epigenetic regulation of PRAME in acute myeloid leukemia is different compared to CD34+ cells from healthy donors: Effect of 5-AZA treatment. Leuk Res. 2012;36(7):895–9. doi: 10.1016/j.leukres.2012.02.030.
  25. Greiner J, Ringhoffer M, Taniguchi M, et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer. 2004;108(5):704–11. doi: 10.1002/ijc.11623.
  26. Paydas S, Tanriverdi K, Yavuz S, et al. PRAME mRNA Levels in Cases With Acute Leukemia: Clinical Importance and Future Prospects. Am J Hematol. 2005;79(4):257–61.
  27. Gerber JM, Qin L, Kowalski J, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86(1):31–7. doi: 10.1002/ajh.21915.
  28. Yong AS, Keyvanfar K, Eniafe R, et al. Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemia-associated antigens: implications for the graft-versus-leukemia effect and peptide vaccine-based immunotherapy. Leukemia. 2008;22(9):1721–7. doi: 10.1038/leu.2008.161.
  29. Steger B, Milosevic S, Doessinger G, et al. CD4+ and CD8+ T-cell reactions against leukemia-associated- or minor-histocompatibility-antigens in AML-patients after allogeneic SCT. Immunobiology. 2014;219(4):247–60. doi: 10.1016/j.imbio.2013.10.008.
  30. Doolan P, Clynes M, Kennedy S, et al. Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res Treat. 2008;109(2):359–65. doi: 10.1007/s10549-007-9643-3.
  31. Altvater B, Kailayangiri S, Theimann N, et al. Common Ewing sarcoma-associated antigens fail to induce natural T cell responses in both patients and healthy individual. Cancer Immunol Immunother. 2014;63(10):1047–60. doi: 10.1007/s00262-014-1574-3.
  32. Hughes A, Clarson J, Tang C, et al. CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors. Blood. 2017;129(9):1166–1176. doi: 10.1182/blood-2016-10-745992.
  33. Schmitt M, Li L, Giannopoulos K, et al. Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking costimulatory molecules. Exp Hematol. 2006;34(12):1709–19. doi: 10.1016/j.exphem.2006.07.009.
  34. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8(1):59–73. doi: 10.1038/nri2216.
  35. Morandi F, Chiesa S, Bocca P, et al. Tumor mRNA–Transfected Dendritic Cells Stimulate the Generation of CTL That Recognize Neuroblastoma-Associated Antigens and Kill Tumor Cells: Immunotherapeutic Implications. Neoplasia. 2006;8(10):833–42. doi: 10.1593/neo.06415.
  36. Winkler C, Steingrube DS, Altermann W, et al. Hodgkin’s lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol Immunother. 2012;61(10):1769–79. doi: 10.1007/s00262-012-1239-z.
  37. Gerdemann U, Katari U, Christin AS, et al. Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma. Mol Ther. 2011;19(12):2258–68. doi: 10.1038/mt.2011.167.
  38. Mohamed YS, Bashawri LA, Vatte C, et al. The in vitro generation of multi-tumor antigen-specific cytotoxic T cell clones: Candidates for leukemia adoptive immunotherapy following allogeneic stem cell transplantation. Mol Immunol. 2016;77:79–88. doi: 10.1016/j.molimm.2016.07.012.
  39. Li L, Schmitt A, Reinhardt P, et al. Reconstitution of CD40 and CD80 in dendritic cells generated from blasts of patients with acute myeloid leukemia. Cancer Immun. 2003;3:8.
  40. Li L, Reinhardt P, Schmitt A, et al. Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother. 2005;54(7):685–93. doi: 10.1007/s00262-004-0631-8.
  41. Li L, Giannopoulos K, Reinhardt P, et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol. 2006;28(4):855–61. doi: 10.3892/ijo.28.4.855.
  42. Altvater B, Pscherer S, Landmeier S, et al. Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens. Cancer Immunol Immunother. 2012;61(3):385–96. doi: 10.1007/s00262-011-1111-6.
  43. Matsushita M, Ikeda H, Kizaki M, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol. 2001;112(4):916–26. doi: 10.1046/j.1365-2141.2001.02670.x.
  44. van den Ancker W, Ruben JM, Westers TM, et al. Priming of PRAME- and WT1-specific CD8+ T cells in healthy donors but not in AML patients in complete remission. Oncoimmunology. 2013;2(4):e23971. doi: 10.4161/onci.23971.
  45. Yao Y, Zhou J, Wang L, et al. Increased PRAME-Specific CTL Killing of Acute Myeloid Leukemia Cells by Either a Novel Histone Deacetylase Inhibitor Chidamide Alone or Combined Treatment with Decitabine. PLoS One. 2013;8(8):e70522. doi: 10.1371/journal.pone.0070522.
  46. Zhang M, Graor H, Visioni A, et al. T Cells Derived From Human Melanoma Draining Lymph Nodes Mediate Melanoma-specific Antitumor Responses In Vitro and In Vivo in Human Melanoma Xenograft Model. J Immunother. 2015;38(6):229–38. doi: 10.1097/CJI.0000000000000078.
  47. Yan M, Himoudi N, Basu BP, et al. Increased PRAME antigen-specific killing of malignant cell lines by low avidity CTL clones, following treatment with 5-Aza-20-Deoxycytidine. Cancer Immunol Immunother. 2011;60(9):1243–55. doi: 10.1007/s00262-011-1024-4.
  48. Quintarelli C, Dotti G, De Angelis B, et al. Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood. 2008;112(5):1876–85. doi: 10.1182/blood-2008-04-150045.
  49. Amir AL, van der Steen DM, van Loenen MM, et al. PRAME-Specific Allo-HLA–Restricted T Cells with Potent Antitumor Reactivity Useful for Therapeutic T-Cell Receptor Gene Transfer. Clin Cancer Res. 2011;17(17):5615–25. doi: 10.1158/1078-0432.CCR-11-1066.
  50. van Loenen MM, de Boer R, Hagedoorn RS, et al. Multi-cistronic vector encoding optimized safety switch for adoptive therapy with T-cell receptor-modified T cells. Gene Ther. 2013;20(8):861–7. doi: 10.1038/gt.2013.4.
  51. Spel L, Boelens JJ, van der Steen DM, et al. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma. Oncotarget. 2015;6(34):35770–81. doi: 10.18632/oncotarget.5657.
  52. Weber JS, Vogelzang NJ, Ernstoff MS, et al. A Phase 1 Study of a Vaccine Targeting Preferentially Expressed Antigen in Melanoma and Prostate-specific Membrane Antigen in Patients With Advanced Solid Tumors. J Immunother. 2011;34(7):556–67. doi: 10.1097/CJI.0b013e3182280db1.
  53. Garcon N, Silvano J, Kuper CF, et al. Non-clinical safety evaluation of repeated intramuscular administration of the AS15 immunostimulant combined with various antigens in rabbits and cynomolgus monkeys. J Appl Toxicol. 2016;36(2):238–56. doi: 10.1002/jat.3167.
  54. Gerard C, Baudson N, Ory T, et al. A Comprehensive Preclinical Model Evaluating the Recombinant PRAME Antigen Combined With the AS15 Immunostimulant to Fight Against PRAME-expressing Tumors. J Immunother. 2015;38(8):311–20. doi: 10.1097/CJI.0000000000000095.
  55. Pujol JL, De Pas T, Rittmeyer A, et al. Safety and Immunogenicity of the PRAME Cancer Immunotherapeutic in Patients with Resected Non–Small Cell Lung Cancer: A Phase I Dose Escalation Study. J Thorac Oncol. 2016;11(12):2208–17. doi: 10.1016/j.jtho.2016.08.120.
  56. Gutzmer R, Rivoltini L, Levchenko E, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: results of a phase I dose escalation study. ESMO Open. 2016;1(4):e000068.
  57. Blais N, Martin D, Palmantier RM. Vaccin. Patent PCT/EP2008/050290. Available from: https://patentscope.wipo.int/search/ru/detail.jsf?docId=WO2008087102&redirectedID=true. (accessed 08.12.2017).
  58. Chang AY, Dao T, Gejman RS, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 2017;127(7):2705–18. doi: 10.1172/JCI92335.
  59. Pankov D, Sjostrom L, Kalidindi T, et al. In vivo immuno-targeting of an extracellular epitope of membrane bound preferentially expressed antigen in melanoma (PRAME). Oncotarget. 2017;8(39):65917–31. doi: 10.18632/oncotarget.19579.
  60. Финашутина Ю.П., Мисюрин А.В., Ахлынина Т.В. и др. Получение рекомбинантного раково-тестикулярного белка PRAME и моноклональных антител к нему. Российский биотерапевтический журнал. 2015;14(3):29–36.[Finashutina YuP, Misyurin AV, Akhlynina TV, et al. Production of recombinant PRAME cancer testis antigen and its specific monoclonal antibodies. Rossiiskii bioterapevticheskii zhurnal. 2015;14(3):29–36. (In Russ)]
  61. Мисюрин А.В., Финашутина Ю.П. Антигенная композиция и ее терапевтическое применение для профилактики и лечения онкологических заболеваний, рекомбинантная плазмидная ДНК, обеспечивающая синтез гибридного белка, а также способ получения белка. Патент РФ на изобретение № 2590701/13.04.29. Бюл. № 19. Доступно по: http://www.fips.ru/cdfi/fips.dll/en?ty=29&docid=2590701. Ссылка активна на 08.12.2017.[Misyurin AV, Finashutina YuP. Antigennaya kompozitsiya i ee terapevticheskoe primenenie dlya profilaktiki i lecheniya onkologicheskikh zabolevanii, rekombinantnaya plazmidnaya DNK, obespechivayushchaya sintez gibridnogo belka, a takzhe sposob polucheniya belka. Patent RUS No. 2590701/13.04.29. Byul. No. 19. Available from: http://www.fips.ru/cdfi/fips.dll/en?ty=29&docid=2590701. (accessed 08.12.2017) (In Russ)]
  62. Лыжко Н.А., Ахлынина Т.В., Мисюрин А.В. и др. Повышение уровня экспрессии гена PRAME в опухолевых клетках сопровождается локализацией белка в клеточном ядре. Российский биотерапевтический журнал. 2015;14(4):19–30.[Lyzhko NA, Ahlynina TV, Misyurin AV, et al. The increased PRAME expression in cancer cells is associated with deposit of the protein in cell nucleus. Rossiiskii bioterapevticheskii zhurnal. 2015;14(4):19–30. (In Russ)]
  63. Лыжко Н.А., Мисюрин В.А., Финашутина Ю.П. и др. Проявление цитостатического эффекта моноклональных антител к белку PRAME. Российский биотерапевтический журнал. 2016;15(4):53–8. doi: 10.17650/1726-9784-2016-15-4-53-58.[Lyzhko NA, Misyurin VA, Finashutina YuP, et al. Development of cytostatic effect of monoclonal antibodies to the protein PRAME. Rossiiskii bioterapevticheskii zhurnal. 2016;15(4):53–8. doi: 10.17650/1726-9784-2016-15-4-53-58. (In Russ)]
  64. Dillman RO. Cancer immunotherapy. Cancer Biother Radiopharm 2011;26:1–64. doi: 10.1089/cbr.2010.0902.
  65. Theisen D, Murphy K. The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Res. 2017;6:98. doi: 10.12688/f1000research.9997.1.
  66. Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005;122(6):835–47. doi: 10.1016/j.cell.2005.07.003.
  67. De Carvalho DD, Mello BP, Pereira WO, Amarante-Mendes GP. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mil Med. 2013;13(2):296–304. doi: 10.2174/1566524011313020006.
  68. Мисюрин В.А. Клиническое значение экспрессии гена PRAME при онкогематологических заболеваниях. Клиническая онкогематология. 2018;11(1):26–33. doi: 10.21320/2500-2139-2018-11-1-26-33.
    [Misyurin VA. Clinical Significance of the PRAME Gene Expression in Oncohematological Diseases. Clinical oncohematology