А.А. Силютина, И.И. Гин, Н.М. Матюхина, Е.Н. Балаян, П.А. Бутылин
ФГБУ «Северо-Западный федеральный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341
Для переписки: Павел Андреевич Бутылин, канд. биол. наук, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; e-mail: butylinp@gmail.com
Для цитирования: Силютина А.А., Гин И.И., Матюхина Н.М. и др. Модели миелофиброза (обзор литературы и собственные данные). Клиническая онкогематология. 2017;10(1):75–84.
DOI: 10.21320/2500-2139-2017-10-1-75-84
РЕФЕРАТ
Актуальность и цели. Развитие хронических миелопролиферативных заболеваний проходит длительный латентный период, затрудняя исследования механизмов патогенеза. Наблюдения, отмеченные в клинической практике, зачастую требуют экспериментальной проверки. Механизмы онкологической трансформации, связанные с возникновением мутаций, встречающихся при хронических миелопролиферативных заболеваниях, были подтверждены на моделях трансгенных животных. Биологические модели позволили выявить комплексную природу развития миелофиброза. Однако изучение отдельных клеточных механизмов требует создания новых моделей. В работе представлен как обзор опубликованных моделей развития миелопролиферативных заболеваний, в основном первичного миелофиброза, так и результаты исследования разработанной клеточной линии с экспрессией JAK2 V617F. Цель настоящей работы — создание клеточной линии с экспрессией трансформирующей мутации JAK2 V617F в клетках острого моноцитарного лейкоза THP-1.
Методы. Основой для создания трансгенной клеточной линии послужила линия клеток моноцитарного лейкоза THP-1, способная дифференцироваться в макрофаги. Мутация V617F была получена методом направленного мутагенеза. Было создано две трансгенных линии: одна с экспрессией гена JAK2 с мутацией V617F, другая — JAK2 дикого типа.
Результаты. Обе трансгенные линии характеризовались повышенной экспрессией JAK2 по сравнению с немодифицированными клетками. При рутинном культивировании трансгенные THP-1 сохраняли морфологию моноцитов. После обработки форболовым эфиром THP-1 дифференцировались в макрофаги и прикреплялись к культуральному пластику. Адгезировавшие клетки принимали различную форму: часть отличалась сферической формой, у других отмечены псевдоподии. Значимых различий по доле жизнеспособных клеток не наблюдалось. Однако макрофаги с экспрессией мутантного гена JAK2 и JAK2 дикого типа имели тенденцию к уменьшению количества нежизнеспособных клеток при культивировании.
Заключение. Полученная клеточная модель может служить объектом для оценки влияния мутации JAK2 V617F на про- и антифибротический потенциал макрофагов, что может пролить свет на патогенетическую роль макрофагов в развитии миелофибороза. Кроме того, с помощью данной модели можно исследовать новые методы терапии и диагностики как первичного, так и вторичного миелофиброза.
Ключевые слова: Ph-негативные хронические миелопролиферативные заболевания, первичный миелофиброз, JAK2 V617F, трансгенные животные.
Получено: 15 сентября 2016 г.
Принято в печать: 13 декабря 2016 г.
ЛИТЕРАТУРА
- Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100(7):2292–302. doi: 10.1182/blood-2002-04-1199.
- Hoffman R, Rondelli D. Biology and treatment of primary myelofibrosis. Hematol Am Soc Hematol Educ Program. 2007;1:346–54. doi: 10.1182/asheducation-2007.1.346.
- Mesa RA, Niblack J, Wadleigh M, et al. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international internet-based survey of 1179 MPD patients. Cancer. 2007;109(1):68–76. doi: 10.1002/cncr.22365.
- Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
- Scherber R, Dueck AC, Johansson P, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood. 2011;118(2):401–8. doi: 10.1182/blood-2011-01-328955.
- Barosi G, Mesa RA, Thiele J, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22(2):437–8. doi: 10.1038/sj.leu.2404914.
- Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med. 2000;342(17):1255–65. doi: 10.1056/nejm200004273421706.
- Jacobson RJ, Salo A, Fialkow PJ. Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood. 1978;51:189–94.
- Reeder TL, Bailey RJ, Dewald GW, Tefferi A. Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood. 2003;101(5):1981–3. doi: 10.1182/blood-2002-07-2341.
- Reilly JT. Idiopathic myelofibrosis: pathogenesis, natural history and management. Blood Rev. 1997;11(4):233–42. doi: 10.1016/s0268-960x(97)90022-9.
- Mehta J, Wang H, Iqbal SU, Mesa R. Epidemiology of myeloproliferative neoplasms (MPN) in the United States. Leuk Lymphoma. 2014;55(3):595–600. doi: 10.3109/10428194.2013.813500.
- Kaushansky K. Thrombopoietin: The primary regulator of platelet production. Blood. 1995;86(2):419–31.
- de Sauvage FJ, Carver-Moore K, Luoh SM, et al. Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med. 1996;183(2):651–6.
- Vannucchi AM, Villeval J-L, Wagner-Ballon O, et al. Animal Models of Myelofibrosis. In: Conn PM, ed. Sourcebook of Models for Biomedical Research. Totowa: Humana Press Inc.; 2008. pр. 713–23. doi: 10.1007/s12223-008-0071-5.
- Ulich TR, del Castillo J, Senaldi G, et al. Systemic hematologic effects of PEG-rHuMGDF-induced megakaryocyte hyperplasia in mice. Blood. 1996;87(12):5006–15.
- Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood. 1997;90(11):4369–83.
- Yan XQ, Lacey D, Fletcher F, et al. Chronic exposure to retroviral vector encoded MGDF (MPL-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood. 1995;86(11):4025–33.
- Ohwada A, Rafii S, Moore MA, Crystal RG. In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation-and chemotherapy-induced bone marrow suppression. Blood. 1996;88(3):778–84.
- Cannizzo SJ, Frey BM, Raffi S, et al. Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA. Nat Biotechnol. 1997;15(6):570–3. doi: 10.1038/nbt0697-570.
- Abina MA, Tulliez M, Duffour MT, et al. Thrombopoietin (TPO) knockout phenotype induced by cross-reactive antibodies against TPO following injection of mice with recombinant adenovirus encoding human TPO. J Immunol. 1998;160(9):4481–9.
- Frey BM, Rafii S, Teterson M, et al. Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: Insights into the pathophysiology of osteomyelofibrosis. J Immunol. 1998;160(2):691–9.
- Zhou W, Toombs CF, Zou T, et al. Transgenic mice overexpressing human c-MPL ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood. 1997;89(5):1551–9.
- Kakumitsu H, Kamezaki K, Shimoda K, et al. Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res. 2005;29(7):761–9. doi: 10.1016/j.leukres.2004.12.009.
- Yanagida M, Ide Y, Imai A, et al. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats. Br J Haematol. 1997;99(4):739–45.
- Abina MA, Tulliez M, Lacout C, et al. Major effects of TPO delivered by a single injection of a recombinant adenovirus on prevention of septicemia and anemia associated with myelosuppression in mice: Risk of sustained expression inducing myelofibrosis due to immunosuppression. Gene Ther. 1998;5(4):497–506. doi: 10.1038/sj.gt.3300638.
- Shultz LD, SchweitzerPA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-SCID mice. J. Immunol. 1995;154:180–91.
- Serreze DV, Gaedeke JW, Leiter EH. Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C. Proc Natl Acad Sci USA. 1993;90(20):9625–9. doi: 10.1073/pnas.90.20.9625.
- Wagner-Ballon O, Hedia Chagraoui H, Eric Prina E, et al. Monocyte/Macrophage Dysfunctions Do Not Impair the Promotion of Myelofibrosis by High Levels of Thrombopoietin. J Immunol. 2006;176(11):6425–33. doi: 10.4049/jimmunol.176.11.6425.
- Tefferi A. Experimental myelofibrosis in mice and the implications to human disease. Leuk Res. 2005;29(7):723–6. doi: 10.1016/j.leukres.2004.12.006.
- Tsai SF, Martin DI, Zon LI, et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature. 1989;339(6224):446–51. doi: 10.1038/339446a0.
- Romeo PH, Prandini MH, Joulin V, et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature. 1990;344(6265):447–9. doi: 10.1038/344447a0.
- Yu C, Cantor AB, Yang H, et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med. 2002;195(11):1387–95. doi: 10.1084/jem.20020656.
- Migliaccio AR, Rana RA, Sanchez M, et al. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med. 2003;197(3):281–96. doi: 10.1084/jem.20021149.
- McDevitt MA, Shivdasani RA, Fujiwara Y, et al. A “knockdown” mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci USA. 1997;94(13): 6781–5. doi: 10.1073/pnas.94.13.6781.
- Shivdasani RA, Fujiwara Y, McDevitt MA, et al. A line-age-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 1997;16(13):3965–73. doi: 10.1093/emboj/16.13.3965.
- Vyas P, Ault K, Jackson CW, et al. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood. 1999;93(9):2867–75.
- Centurione L, Di Baldassarre A, Zingariello M, et al. Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1(low) mice. Blood. 2004;104(12):3573–80. doi: 10.1182/blood-2004-01-0193.
- Vannucchi AM, Bianchi L, Cellai C, et al. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood. 2002;100(4):1123–32. doi: 10.1182/blood-2002-06-1913.
- Vannucchi AM, Migliaccio AR, Paoletti F, et al. Pathogenesis of myelofibrosis with myeloid metaplasia: Lessons from mouse models of the disease. Semin Oncol. 2005;32(4):365–72. doi: 10.1053/j.seminoncol.2005.04.008.
- Radich J. The Molecular Biology of Myeloproliferative Disorders. Cancer Cell. 2010;18(1):7–8. doi: 10.1016/j.ccr.2010.06.006.
- Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61. doi: 10.1016/s0140-6736(05)74230-6.
- Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi: 10.1056/nejmoa051113.
- Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023.
- Kiladjian JJ. The spectrum of JAK2-positive myeloproliferative neoplasms. Hematol Am Soc Hematol Educ Program. 2012;2012:561–6. doi: 10.1182/asheducation-2012.1.561.
- Levine RL, Gilliland DG. Myeloproliferative disorders. Blood. 2008;112(6):2190–8. doi: 10.1182/blood-2008-03-077966.
- Chen M, Cheng A, Chen YQ, et al. The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. Proc Natl Acad Sci USA. 1997;94(13):6910–5. doi: 10.1073/pnas.94.13.6910.
- Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002;277(49):47954–63. doi: 10.1074/jbc.m205156200.
- Griffith J, Black J, Faerman C, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell. 2004;13(2):169–78. doi: 10.1016/s1097-2765(03)00505-7.
- Lindauer K, Loerting T, Liedl KR, et al. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Engin. Design Select. 2001;14(1):27–37. doi: 10.1093/protein/14.1.27.
- Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–95. doi: 10.1016/s0092-8674(00)81167-8.
- Levine RL, Loriaux M, Huntly BJ, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005;106(10):3377–9. doi: 10.1182/blood-2005-05-1898.
- Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia-chromosome negative CML and megakaryocytic leukemia. Blood. 2005;106(10):3370–3. doi: 10.1182/blood-2005-05-1800.
- Steensma DP, Dewald GW, Lasho TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and the myelodysplastic syndrome. Blood. 2005;106(4):1207–9. doi: 10.1182/blood-2005-03-1183.
- James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.
- Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006;108(7):2435–7. doi: 10.1182/blood-2006-04-018259.
- Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107(11):4274–81. doi: 10.1182/blood-2005-12-4824.
- Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108(5):1652–60. doi: 10.1182/blood-2006-02-002030.
- Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2-V617F to wild type JAK2 determines the MPD phenotypes in transgenic mice. Blood. 2007;111(8):3931–40. doi: 10.1182/blood-2007-08-107748.
- Xing S, Ho WT, Zhao W, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood. 2008;111(10):5109–17. doi: 10.1182/blood-2007-05-091579.
- Marty C, Lacout C, Martin A, et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood. 2010;116(5):783–7. doi: 10.1182/blood-2009-12-257063.
- Li J, Kent DG, Chen E, Green AR. Mouse models of myeloproliferative neoplasms: JAK of all grades. Dis Model Mech. 2011;4(3):311–7. doi: 10.1242/dmm.006817.
- Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270.
- Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: A study of 1182 patients. Blood. 2006;108(10):3472–6. doi: 10.1182/blood-2006-04-018879.
- Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.
- Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
- Wang WA, Groenendyk J, Michalak M. Calreticulin signaling in health and disease. Int J Biochem Cell Biol. 2012;44(6):842–6. doi: 10.1016/j.biocel.2012.02.009.
- Michalak M, Groenendyk J, Szabo E, et al. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009;417(3):651–66. doi: 10.1042/BJ20081847.
- Gold LI, Eggleton P, Sweetwyne MT, et al. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J. 2010;24(3):665–83. doi: 10.1096/fj.09-145482.
- Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2012;32(7):805–18. doi: 10.1038/onc.2012.130.
- Rumi E, Pietra D, Ferretti V, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544–51. doi: 10.1182/blood-2013-11-539098.
- Cabagnols X, Defour JP, Ugo V, et al. Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution. Leukemia. 2014;29(1):249–52. doi: 10.1038/leu.2014.270.
- Marty C, Pecquet C, Nivarthi H, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127(10):1317–24. doi: 10.1182/blood-2015-11-679571.
- Chachoua I, Pecquet C, El-Khoury M, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325–35. doi: 10.1182/blood-2015-11-681932.
- Thiele J, Kvasnicka HM, Boeltken B. Resident bone marrow macrophages in idiopathic (primary) myelofibrosis (IMF): a histochemical and morphometric study on sequential trephine biopsies. Leuk Res. 1999;23(11):983–5. doi: 10.1016/s0145-2126(99)00120-4.
- Tsuchiya S, Kobayashi Y, Goto Y, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982;42(4):1530–6.