Перспективы применения иммуномодулирующих препаратов и модуляторов цереблон Е3-лигазы в лечении множественной миеломы

С.В. Семочкин1,2

1 МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2-й Боткинский пр-д, д. 3, Москва, Российская Федерация, 125284

2 ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» Минздрава России, ул. Островитянова, д. 1, Москва, Российская Федерация, 117997

Для переписки: Сергей Вячеславович Семочкин, д-р мед. наук, профессор, 2-й Боткинский пр-д, д. 3, Москва, Российская Федерация, 125284; e-mail: semochkin_sv@rsmu.ru

Для цитирования: Семочкин С.В. Перспективы применения иммуномодулирующих препаратов и модуляторов цереблон Е3-лигазы в лечении множественной миеломы. Клиническая онкогематология. 2023;16(3):229–41.

DOI: 10.21320/2500-2139-2023-16-3-229-241


РЕФЕРАТ

За последние десятилетия прогресс в лечении множественной миеломы (ММ) связан с лучшим пониманием биологии этого заболевания и внедрением в практику новых классов лекарственных средств, таких как иммуномодулирующие препараты (IMiD), ингибиторы протеасом (ИП) и моноклональные антитела (МАТ). Современные IMiD (леналидомид, помалидомид) являются производными талидомида, которые, несмотря на сходство химической структуры, проявляют лишь относительную перекрестную резистентность. Леналидомид — иммуномодулятор 2-го поколения с высокой противоопухолевой активностью и благоприятным профилем безопасности. В 2006 г. применение леналидомида в комбинации с дексаметазоном (схема Rd) было одобрено FDA (США) для лечения рецидивов/рефрактерной MM, а через 9 лет, в 2015 г., — для впервые диагностированной ММ. В 2015–2019 гг. для лечения рецидивов MM были разработаны схемы, построенные на комбинации Rd с бортезомибом (VRd), карфилзомибом (KRd), иксазомибом (IRd), элотузумабом (ERd) и даратумумабом (DRd), — так называемые триплеты. Помалидомид — препарат 3-го поколения, используемый у пациентов с рефрактерностью к леналидомиду. Для лечения пациентов с рецидивами/рефрактерной ММ, которые получили не менее двух линий терапии, включавших леналидомид и бортезомиб, в практику внедрены схемы из трех препаратов на основе помалидомида и дексаметазона в комбинации с элотузумабом (EPd), изатуксимабом (Isa-Pd) и даратумумабом (DPd). В 2010 г. была открыта молекулярная мишень действия IMiD — белок цереблон (CRBN), входящий в ферментный комплекс CRBN E3-лигазы. Понимание данного механизма позволило создать новое семейство производных талидомида, получившее название модуляторов CRBN E3-лигазы (CELMoD). Два препарата этой группы (ибердомид, мезигдомид) в исследованиях I–II фазы продемонстрировали обнадеживающую активность при ММ с рефрактерностью к трем классам противоопухолевых препаратов (IMiD, ИП и анти-CD38 МАТ). Фокус представленного обзора направлен на проспективные исследования IMiD и CELMoD на разных этапах лечения ММ.

Ключевые слова: множественная миелома, иммуномодулирующие препараты, модуляторы цереблон Е3-лигазы, леналидомид, помалидомид, ибердомиб, мезигдомид.

Получено: 25 января 2023 г.

Принято в печать: 28 мая 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Менделеева Л.П., Вотякова О.М., Рехтина И.Г. и др. Множественная миелома. Современная онкология. 2020;22(4):6–28. doi: 10.26442/18151434.2020.4.200457.
    [Mendeleeva LP, Votjakova OM, Rehtina IG, et al. Multiple myeloma. Clinical recommendations. Journal of Modern Oncology. 2020;22(4):6–28. doi: 10.26442/18151434.2020.4.200457. (In Russ)]
  2. Usmani SZ, Hoering A, Cavo M, et al. Clinical predictors of long-term survival in newly diagnosed transplant eligible multiple myeloma—An IMWG Research Project. Blood Cancer J. 2018;8(12):123. doi: 10.1038/s41408-018-0155-7.
  3. Rajkumar SV. Multiple myeloma: Every year a new standard? Hematol Oncol. 2019;37(Suppl 1):62–5. doi: 10.1002/hon.2586.
  4. Семочкин С.В. Биологические основы применения иммуномодулирующих препаратов в лечении множественной миеломы. Онкогематология. 2010;(1):21–31. doi: 10.17650/1818-8346-2010-0-1-.
    [Semochkin SV. Biological basis of immunomodulatory preparations using in treatment of multiple myeloma. Oncohematology. 2010;(1):21–31. doi: 10.17650/1818-8346-2010-0-1-. (In Russ)]
  5. Lenz W, Knapp K. Thalidomide embryopathy. Dtsch Med Wochenschr. 1962;87(24):1232–42. doi: 10.1055/s-0028-1111892.
  6. Kelsey Thalidomide update: regulatory aspects. Teratology. 1988;38(3):221–6. doi: 10.1002/tera.1420380305.
  7. Barlogie B, Desikan R, Eddlemon P, et al. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: Identification of prognostic factors in a phase 2 study of 169 patients. Blood. 2001;98(2):492–4. doi: 10.1182/blood.v98.2.492.
  8. Torre CD, Zambello R, Cacciavillani M, et al. Lenalidomide long-term neurotoxicity: Clinical and neurophysiologic prospective study. Neurology. 2016;87(11):1161–6. doi: 10.1212/WNL.0000000000003093.
  9. Fotiou D, Gavriatopoulou M, Terpos E, Dimopoulos MA. Pomalidomide- and dexamethasone-based regimens in the treatment of refractory/relapsed multiple myeloma. Ther Adv Hematol. 2022;13:20406207221090089. doi: 10.1177/20406207221090089.
  10. Charlinski G, Vesole DH, Jurczyszyn A. Rapid Progress in the Use of Immunomodulatory Drugs and Cereblon E3 Ligase Modulators in the Treatment of Multiple Myeloma. Cancers (Basel). 2021;13(18):4666. doi: 10.3390/cancers13184666.
  11. Barankiewicz J, Salomon-Perzynski A, Misiewicz-Krzeminska I, Lech-Maranda E. CRL4CRBN E3 Ligase Complex as a Therapeutic Target in Multiple Myeloma. Cancers (Basel). 2022;14(18):4492. doi: 10.3390/cancers14184492.
  12. Mori T, Ito T, Liu S, et al. Structural basis of thalidomide enantiomer binding to cereblon. Sci Rep. 2018;8(1):1294. doi: 10.1038/s41598-018-19202-7.
  13. Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5. doi: 10.1126/science.1244851.
  14. Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305–9. doi: 10.1126/science.1244917.
  15. Read KA, Jones DM, Freud AG, Oestreich KJ. Established and emergent roles for Ikaros transcription factors in lymphoid cell development and function. Immunol Rev. 2021;300(1):82–99. doi: 10.1111/imr.12936.
  16. Bjorklund CC, Lu L, Kang J, et al. Rate of CRL4(CRBN) substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood Cancer J. 2015;5(10):e354. doi: 10.1038/bcj.2015.66.
  17. Harada T, Ozaki S, Oda A, et al. Association of Th1 and Th2 cytokines with transient inflammatory reaction during lenalidomide plus dexamethasone therapy in multiple myeloma. Int J Hematol. 2013;97(6):743–8. doi: 10.1007/s12185-013-1321-0.
  18. Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4 (CRBN). Br J Haematol. 2014;164(6):811–21. doi: 10.1111/bjh.12708.
  19. Lagrue K, Carisey A, Morgan DJ, et al. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds. Blood. 2015;126(1):50–60. doi: 10.1182/blood-2015-01-625004.
  20. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98(1):210–6. doi: 10.1182/blood.V98.1.210.
  21. Fabro S, Schumacher H, Smith RL, et al. The metabolism of thalidomide: some biological effects of thalidomide and its metabolites. Br J Pharmacol Chemother. 1965;25(2):352–62. doi: 10.1111/j.1476-5381.1965.tb02055.x.
  22. Yamamoto J, Ito T, Yamaguchi Y, Handa H. Discovery of CRBN as a target of thalidomide: a breakthrough for progress in the development of protein degraders. Chem Soc Rev. 2022;51(15):6234–50. doi: 10.1039/d2cs00116k.
  23. Connarn JN, Hwang R, Gao Y, et al. Population Pharmacokinetics of Lenalidomide in Healthy Volunteers and Patients With Hematologic Malignancies. Clin Pharmacol Drug Dev. 2018;7(5):465–73. doi: 10.1002/cpdd.372.
  24. Kronke J, Fink EC, Hollenbach PW, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature. 2015;523(7559):183–8. doi: 10.1038/nature14610.
  25. Li Y, Wang X, O’Mara E, et al. Population pharmacokinetics of pomalidomide in patients with relapsed or refractory multiple myeloma with various degrees of impaired renal function. Clin Pharmacol. 2017;9:133–45. doi: 10.2147/CPAA.S144606.
  26. Shimizu N, Asatsuma-Okumura T, Yamamoto J, et al. PLZF and its fusion proteins are pomalidomide-dependent CRBN neosubstrates. Commun Biol. 2021;4(1):1277. doi: 10.1038/s42003-021-02801-y.
  27. Kasserra C, Assaf M, Hoffmann M, et al. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug-drug interaction potential in vitro and in healthy subjects. J Clin Pharmacol. 2015;55(2):168–78. doi: 10.1002/jcph.384.
  28. Matyskiela ME, Zhang W, Man HW, et al. A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J Med Chem. 2018;61(2):535–42. doi: 10.1021/acs.jmedchem.6b01921.
  29. Gooding S, Ansari-Pour N, Towfic F, et al. Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood. 2021;137(2):232–7. doi: 10.1182/blood.2020007081.
  30. Durie BGM, Hoering A, Sexton R, et al. Longer term follow-up of the randomized phase III trial SWOG S0777: bortezomib, lenalidomide and dexamethasone vs. lenalidomide and dexamethasone in patients (Pts) with previously untreated multiple myeloma without an intent for immediate autologous stem cell transplant (ASCT). Blood Cancer J. 2020;10(5):53. doi: 10.1038/s41408-020-0311-8.
  31. Perrot A, Lauwers-Cances V, Cazaubiel T, et al. Early versus late autologous stem cell transplant in newly diagnosed multiple myeloma: long-term follow-up analysis of the IFM 2009 trial. Blood. 2020;136(Suppl 1):39. doi: 10.1182/blood-2020-134538.
  32. Richardson PG, Jacobus SJ, Weller EA, et al. Lenalidomide, bortezomib, and dexamethasone (RVd) ± autologous stem cell transplantation (ASCT) and R maintenance to progression for newly diagnosed multiple myeloma (NDMM): The phase 3 DETERMINATION trial. J Clin Oncol. 2022;40(17_suppl):LBA4. doi: 10.1200/jco.2022.40.17_suppl.lba4.
  33. Kumar SK, Jacobus SJ, Cohen AD, et al. Carfilzomib or bortezomib in combination with lenalidomide and dexamethasone for patients with newly diagnosed multiple myeloma without intention for immediate autologous stem-cell transplantation (ENDURANCE): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2020;21(10):1317–30. doi: 10.1016/S1470-2045(20)30452-6.
  34. Tan C, Nemirovsky D, Derkach A, et al. Carfilzomib, Lenalidomide and Dexamethasone (KRd) Vs Bortezomib, Lenalidomide, and Dexamethasone (VRd) As Induction Therapy in Newly Diagnosed High-Risk Multiple Myeloma. Blood. 2022;140(Suppl 1):1817–9. doi: 10.1182/blood-2022-169161.
  35. Gay F, Musto P, Rota-Scalabrini D, et al. Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (FORTE): a randomised, open-label, phase 2 trial. Lancet Oncol. 2021;22(12):1705–20. doi: 10.1016/S1470-2045(21)00535-0.
  36. Семочкин С.В. Новые ингибиторы протеасомы в терапии множественной миеломы. Онкогематология. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40.
    [Semochkin SV. New proteasome inhibitors in the management of multiple myeloma. Oncohematology. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40. (In Russ)]
  37. Goldschmidt H, Mai EK, Bertschet U, et al. Elotuzumab in Combination with Lenalidomide, Bortezomib, Dexamethasone and Autologous Transplantation for Newly-Diagnosed Multiple Myeloma: Results from the Randomized Phase III GMMG-HD6 Trial. Blood. 2021;138(Suppl 1):486. doi: 10.1182/blood-2021-147323.
  38. Usmani SZ, Hoering A, Ailawadhi S, et al. Bortezomib, lenalidomide, and dexamethasone with or without elotuzumab in patients with untreated, high-risk multiple myeloma (SWOG-1211): primary analysis of a randomised, phase 2 trial. Lancet Haematol. 2021;8(1):e45–e54. doi: 10.1016/S2352-3026(20)30354-9.
  39. Laubach JP, Kaufman JL, Sborov DW, et al. Daratumumab (DARA) plus lenalidomide, bortezomib, and dexamethasone (RVd) in patients (Pts) with transplant-eligible newly diagnosed multiple myeloma (NDMM): updated analysis of Griffin after 24 months of maintenance. Blood. 2021;138 (Suppl 1):79. doi: 10.1182/blood-2021-149024.
  40. Goldschmidt H, Mai EK, Bertsch U, et al. Addition of isatuximab to lenalidomide, bortezomib, and dexamethasone as induction therapy for newly diagnosed, transplantation-eligible patients with multiple myeloma (GMMG-HD7): part 1 of an open-label, multicentre, randomised, active-controlled, phase 3 trial. Lancet Haematol. 2022;9(11):e810–e821. doi: 10.1016/S2352-3026(22)00263-0.
  41. McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide Maintenance After Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: A Meta-Analysis. J Clin Oncol. 2017;35(29):3279–89. doi: 10.1200/JCO.2017.72.6679.
  42. Jackson GH, Davies FE, Pawlyn C, et al. Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2019;20(1):57–73. doi: 10.1016/S1470-2045(18)30687-9.
  43. Pawlyn C, Menzies T, Davies FE, et al. Defining the Optimal Duration of Lenalidomide Maintenance after Autologous Stem Cell Transplant – Data from the Myeloma XI Trial. Blood. 2022;140(Suppl 1):1371–2. doi: 10.1182/blood-2022-165376.
  44. Facon T, Dimopoulos MA, Dispenzieri A, et al. Final analysis of survival outcomes in the phase 3 FIRST trial of up-front treatment for multiple myeloma. Blood. 2018;131(3):301–10. doi: 10.1182/blood-2017-07-795047.
  45. Facon T, Venner CP, Bahlis NJ, et al. Oral ixazomib, lenalidomide, and dexamethasone for transplant-ineligible patients with newly diagnosed multiple myeloma. Blood. 2021;137(26):3616–28. doi: 10.1182/blood.2020008787.
  46. Kumar SK, Moreau P, Bahlis NJ, et al. Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) Alone in Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma (NDMM): Updated Analysis of the Phase 3 Maia Study. Blood. 2022;140(Suppl 1):10150–3. doi: 10.1182/blood-2022-163335.
  47. Moreau P, Kumar SK, Miguel JS, et al. Treatment of relapsed and refractory multiple myeloma: recommendations from the International Myeloma Working Group. Lancet Oncol. 2021;22(3):e105–e118. doi: 10.1016/S1470-2045(20)30756-7.
  48. Moreau P, Masszi T, Grzasko N, et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;374(17):1621–34. doi: 10.1056/NEJMoa1516282.
  49. Richardson PG, Kumar SK, Masszi T, et al. Final Overall Survival Analysis of the TOURMALINE-MM1 Phase III Trial of Ixazomib, Lenalidomide, and Dexamethasone in Patients With Relapsed or Refractory Multiple Myeloma. J Clin Oncol. 2021;39(22):2430–42. doi: 10.1200/JCO.21.00972.
  50. Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373(7):621–31. doi: 10.1056/NEJMoa1505654.
  51. Dimopoulos MA, Lonial S, White D, et al. Elotuzumab, lenalidomide, and dexamethasone in RRMM: final overall survival results from the phase 3 randomized ELOQUENT-2 study. Blood Cancer J. 2020;10(9):91. doi: 10.1038/s41408-020-00357-4.
  52. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi: 10.1056/NEJMoa1411321.
  53. Siegel DS, Dimopoulos MA, Ludwig H, et al. Improvement in Overall Survival With Carfilzomib, Lenalidomide, and Dexamethasone in Patients With Relapsed or Refractory Multiple Myeloma. J Clin Oncol 2018;36(8):728–34. doi: 10.1200/JCO.2017.76.5032.
  54. Bahlis NJ, Dimopoulos MA, White DJ, et al. Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended follow-up of POLLUX, a randomized, open-label, phase 3 study. 2020;34(7):1875–84. doi: 10.1038/s41375-020-0711-6.
  55. Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with previously treated multiple myeloma: overall survival results from phase 3 POLLUX trial. Hemasphere. 2022;6(Suppl):13. doi: 10.1097/01.HS9.0000829592.26407.09.
  56. Manda S, Yimer HA, Noga SJ, et al. Feasibility of Long-term Proteasome Inhibition in Multiple Myeloma by in-class Transition From Bortezomib to Ixazomib. Сlin Lymphoma Myeloma Leuk. 2020;20(11):e910–e925. doi: 10.1016/j.clml.2020.06.024.
  57. Бессмельцев С.С. Режимы на основе помалидомида и дексаметазона при лечении рефрактерной/рецидивирующей множественной миеломы. Вестник гематологии. 2022;18(4):4–20.
    [Bessmeltsev SS. Pomalidomide- and dexamethasone-based regimens in the treatment of refractory/relapsed multiple myeloma. Vestnik gematologii. 2022;18(4):4–20. (In Russ)]
  58. Richardson PG, Oriol A, Beksac M, et al. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(6):781–94. doi: 10.1016/S1470-2045(19)30152-4.
  59. Dimopoulos MA, Terpos E, Boccadoro M, et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(6):801–12. doi: 10.1016/S1470-2045(21)00128-5.
  60. Dimopoulos MA, Terpos E, Boccadoro M, et al. Subcutaneous daratumumab plus pomalidomide and dexamethasone (D-Pd) versus pomalidomide and dexamethasone (Pd) alone in patients with relapsed or refractory multiple myeloma (RRMM): overall survival results from the phase 3 APOLLO study. Blood. 2022;140(Suppl 1):7272–4. doi 10.1182/blood-2022–163483.
  61. Attal M, Richardson PG, Rajkumar SV, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394(10214):2096–107. doi: 10.1016/S0140-6736(19)32556-5.
  62. Richardson PG, Perrot A, San-Miguel J, et al. Isatuximab Plus Pomalidomide/Low-Dose Dexamethasone Versus Pomalidomide/Low-Dose Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma (ICARIA-MM): Characterization of Subsequent Antimyeloma Therapies. Blood. 2022;140(Suppl 1):608–10. doi: 10.1182/blood-2022-159710.
  63. Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N Engl J Med. 2018;379(19):1811–22. doi: 10.1056/NEJMoa1805762.
  64. Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab Plus Pomalidomide and Dexamethasone for Relapsed/Refractory Multiple Myeloma: Final Overall Survival Analysis From the Randomized Phase II ELOQUENT-3 Trial. J Clin Oncol. 2023;41(3):568–78. doi: 10.1200/JCO.21.02815.
  65. Pasvolsky O, Yeshurun M, Fraser R, et al. Maintenance therapy after second autologous hematopoietic cell transplantation for multiple myeloma. A CIBMTR analysis. Bone Marrow Transplant. 2022;57(1):31–7. doi: 10.1038/s41409-021-01455-y.
  66. Garderet L, Kuhnowski F, Berge В, et al. Phase II Study of the Combination of Pomalidomide with Dexamethasone As Maintenance Therapy after First Relapse Treatment with PCD Followed or Not By Autologous Stem Cell Transplant in Multiple Myeloma Patients. Blood. 2021;138(Suppl 1):2753. doi: 10.1182/blood-2021-152136.
  67. Thakurta A, Pierceall WE, Amatangelo MD, et al. Developing next generation immunomodulatory drugs and their combinations in multiple myeloma. Oncotarget. 2021;12(15):1555–63. doi: 10.18632/oncotarget.27973.
  68. Ye Y, Gaudy A, Schafer P, et al. First-in-Human, Single- and Multiple-Ascending-Dose Studies in Healthy Subjects to Assess Pharmacokinetics, Pharmacodynamics, and Safety/Tolerability of Iberdomide, a Novel Cereblon E3 Ligase Modulator. Clin Pharmacol Drug Dev. 2021;10(5):471–85. doi: 10.1002/cpdd.869.
  69. You W, Pang J. Pharmacokinetics, bioavailability and metabolism of CC-92480 in rat by liquid chromatography combined with electrospray ionization tandem mass spectrometry. Biomed Chromatogr. 2021;35(9):e5139. doi: 10.1002/bmc.5139.
  70. Van de Donk NWC, Popat R, Hulin C, et al. Results from CC-220-MM-001 Dose-expansion Phase of Iberdomide plus Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma. Hemasphere. 2022;6:14–5. doi: 10.1097/01.HS9.0000829600.37424.88.
  71. Lonial S, Abdallah A, Anwer F, et al. Iberdomide (IBER) in Combination with Dexamethasone (DEX) in Relapsed/Refractory Multiple Myeloma (RRMM): Results from the Anti-B-Cell Maturation Antigen (BCMA)-Exposed Cohort of the CC-220-MM-001 Trial. Blood. 2022;140(Suppl 1):4398–400. doi: 10.1182/blood-2022-158180.
  72. Richardson PG, Trudel S, Quach H, et al. Mezigdomide (CC-92480), a Potent, Novel Cereblon E3 Ligase Modulator (CELMoD), Combined with Dexamethasone (DEX) in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Preliminary Results from the Dose-Expansion Phase of the CC-92480-MM-001 Trial. Blood. 2022;140(Suppl 1):1366–8. doi: 10.1182/blood-2022-157945.
  73. Семочкин С.В. Механизмы действия противоопухолевых иммуномодуляторов — от тератогенности к терапии множественной миеломы. Гематология и трансфузиология. 2022;67(2):240–60. doi: 10.35754/0234-5730-2022-67-2-240-260.
    [Semochkin SV. Mechanisms of action of immunomodulatory drugs — from teratogenicity to treatment of multiple myeloma. Russian journal of hematology and transfusiology. 2022;67(2):240–60. doi: 10.35754/0234-5730-2022-67-2-240-260. (In Russ)]