Роль лейкоцитов в формировании нейтрофильных внеклеточных ловушек и тромбообразовании при Ph-негативных миелопролиферативных новообразованиях (обзор литературы)

Б.Т. Джумабаева

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Болдукыз Толгонбаевна Джумабаева, д-р мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(495)612-64-63, +7(926)271-92-82; e-mail: bola.blood@yandex.ru

Для цитирования: Джумабаева Б.Т. Роль лейкоцитов в формировании нейтрофильных внеклеточных ловушек и тромбообразовании при Ph-негативных миелопролиферативных новообразованиях (обзор литературы). Клиническая онкогематология. 2023;16(3):263–7.

DOI: 10.21320/2500-2139-2023-16-3-263-267


РЕФЕРАТ

Тромботические осложнения нередко служат причиной смерти пациентов с хроническими Ph-негативными миелопролиферативными новообразованиями (МПН). Несмотря на многочисленные исследования, патогенез тромбообразования при МПН остается неясным. Его механизм сложный, многофакторный. Один из основных этапов тромбогенеза характеризуется активацией клеточных механизмов и образованием нейтрофильных внеклеточных ловушек (neutrophil extracellular traps — NET). NET состоят из нитей ДНК, гистонов, гранулярных белков и наряду с уничтожением патогенов обеспечивают идеальную матрицу для активации тромбоцитов и механизмов коагуляции.

Ключевые слова: миелопролиферативные новообразования, нейтрофилы, тромбоз, нейтрофильные внеклеточные ловушки (NET).

Получено: 14 декабря 2022 г.

Принято в печать: 29 мая 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. 2017;129(6):680–92. doi: 10.1182/blood-2016-10-695957.
  2. Falanga A, Marchetti M. Thrombosis in Myeloproliferative Neoplasms. Semin Thromb Hemost. 2014;40(3):348–58. doi:1055/s-0034-1370794.
  3. Barbui T, Finazzi G, Falanga, A. Myeloproliferative neoplasms and thrombosis. Blood. 2013;122(13):2176–84. doi: 1182/blood-2013-03-460154.
  4. Artoni A, Bucciarelli P, Martinelli I. Cerebral thrombosis and myeloproliferative neoplasms. Curr Neurol Neurosci Rep. 2014;14(11):496. doi:1007/s11910-014-0496-y.
  5. Kaifie A, Kirschner M, Wolf D, et al. Study Alliance Leukemia (SAL). Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): analysis from the German SAL-MPN-registry. J Hematol Oncol. 2016;9(1):18. doi: 10.1186/s13045-016-0242-9.
  6. Hultcrantz M, Bjorkholm M, Dickman PW, et al. Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms: A population-based cohort study. Ann Intern Med. 2018;168(5):317–25. doi:7326/M17-0028.
  7. Smalberg JH, Arends LR, Valla DC, et al. Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood. 2012;120(25):4921–8. doi: 10.1182/blood-2011-09-376517.
  8. Gangat N, Wolanskyj AP, Schwager SM, et al. Leukocytosis at diagnosis and the risk of subsequent thrombosis in patients with low-risk essential thrombocythemia and polycythemia vera. 2009;115(24):5740–5. doi: 10.1002/cncr.24664
  9. Tefferi A, Gangat N, Wolanskyj A. The interaction between leukocytosis and other risk factors for thrombosis in essential thrombocythemia. Blood. 2007;109(9): doi: 10.1182/blood-2007-01-066985.
  10. Marin Oyarzun C.P, Heller P.G. Platelets as mediators of thromboinflammation in chronic myeloproliferative neoplasms. Front Immunol. 2019;10: doi: 10.3389/fimmu.2019.01373.
  11. Ferrer-Marin F, Cuenca-Zamora EJ, Guijarro-Carrillo PJ, Teruel-Montoya R. Emerging Role of Neutrophils in the Thrombosis of Chronic Myeloproliferative Neoplasms. Int J Mol Sci. 2021;22(3):1143. doi: 10.3390/ijms22031143.
  12. Landolfi R, Di Gennaro L, Barbui T, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. 2007;109(6):2446–52. doi: 10.1182/blood-2006-08-042515.
  13. Tefferi A, Pardanani A. Myeloproliferative neoplasms: A contemporary review. JAMA Oncol. 2015;1(1):97–105. doi: 1001/jamaoncol.2015.89.
  14. Carobbio A, Ferrari A, Masciulli A, et al. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: A systematic review and meta-analysis. Blood Adv. 2019;3(11):1729–37. doi: 10.1182/bloodadvances.
  15. Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: Is leukocytosis a causative factor? 2009;114(4):759–63. doi: 10.1182/blood-2009-02-206797.
  16. Campbell PJ, MacLean C, Beer PA, et al. Correlation of blood counts with vascular complications in essential thrombocythemia: Analysis of the prospective PT1 cohort. 2012;120(7):1409–11. doi: 10.1182/blood-2012-04-424911.
  17. Carobbio A, Thiele J, Passamonti F, et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: An international study of 891 patients. 2011;117(22):5857–9. doi: 10.1182/blood-2011-02-339002.
  18. Repsold L, Joubert AM. Platelet Function, Role in Thrombosis, Inflammation, and Consequences in Chronic Myeloproliferative Disorders. Cells. 2021;10(11):3034. doi: 10.3390/cells10113034.
  19. Nangalia J, Green AR. Myeloproliferative neoplasms: From origins to outcomes. Hematology Am Soc Hematol Educ Program. 2017;2017(1):470–9. doi: 10.1182/asheducation-2017.1.470.
  20. Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. doi: 10.1126/scitranslmed.aan8292.
  21. Wilkins BS. Myeloproliferative neoplasms. Diagn Histopathol. 2021;27(9):373–9.
  22. Harrison CN, Lee JS. Myeloproliferative neoplasms. 2017;45:275–9.
  23. Edelmann B, Gupta N, Schnoeder TM, et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest. 2018;128(10):4359–71. doi: 10.1172/JCI90312.
  24. Falanga A, Marchetti M, Barbui T, Smith CW. Pathogenesis of Thrombosis in Essential Thrombocythemia and Polycythemia Vera: The Role of Neutrophils. Semin Hematol. 2005;42(4):239–47. doi: 10.1053/j.seminhematol.2005.05.023.
  25. Gupta N, Edelmann B, Schnoeder TM, et al. JAK2-V617F activates β1-integrin-mediated adhesion of granulocytes to vascular cell adhesion molecule 1. 2017;31(5):1223–6. doi: 10.1038/leu.2017.26.
  26. Lisman T. Platelet–neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;37(3):567–76. doi: 10.1007/s00441-017-2727-4.
  27. Arellano-Rodrigo E, Alvarez-Larran A, Reverter JC, et al. Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. 2006;91(2):169–75.
  28. Li, P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–62. doi:1084/jem.20100239.
  29. Leshner M, Wang S, Lewis C, et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307. doi:3389/fimmu.2012.00307.
  30. Thalin S, Hisada Y, Lundstrom S, et al. Neutrophil Extracellular Traps: Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis Review. Arterioscler Thromb Vasc Biol. 2019;39(9):1724–38. doi: 10.1161/ATVBAHA.119.312463.
  31. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87. doi:1038/nm.4294.
  32. Desai J, Mulay SR, Nakazawa D, Anders HJ. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol Life Sci. 2016;73(11–12):2211–9. doi:1007/s00018-016-2195-0.
  33. Von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35. doi:1084/jem.20112322.
  34. Massberg S, Grahl L, von Bruehl M-L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96. doi:1038/nm.2184.
  35. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–5. doi: 10.1073/pnas.1005743107.
  36. Steppich BA, Seitz I, Busch G, et al. Modulation of tissue factor and tissue factor pathway inhibitor-1 by neutrophil proteases. Thromb Haemost. 2008;100(6):1068–75.
  37. Jorda RE, Nelson RM, Kilpatrick J, et al. Inactivation of human antithrombin by neutrophil elastase. Kinetics of the heparin-dependent reaction. J Biol Chem. 1989;264(18):10493–500.
  38. Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis—the journey of TF through NETs. Front Immunol. 2012;3:385. doi:3389/fimmu.2012.00385.
  39. Schmidt S, Daniliants D, Hiller E, et al. Increased levels of NETosis in myeloproliferative neoplasms are not linked to thrombotic events. Blood Adv. 2021;5(18):3515–27. doi: 10.1182/bloodadvances.2020004061.