Роль лейкоцитов в формировании нейтрофильных внеклеточных ловушек и тромбообразовании при Ph-негативных миелопролиферативных новообразованиях (обзор литературы)

Б.Т. Джумабаева

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Болдукыз Толгонбаевна Джумабаева, д-р мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(495)612-64-63, +7(926)271-92-82; e-mail: bola.blood@yandex.ru

Для цитирования: Джумабаева Б.Т. Роль лейкоцитов в формировании нейтрофильных внеклеточных ловушек и тромбообразовании при Ph-негативных миелопролиферативных новообразованиях (обзор литературы). Клиническая онкогематология. 2023;16(3):263–7.

DOI: 10.21320/2500-2139-2023-16-3-263-267


РЕФЕРАТ

Тромботические осложнения нередко служат причиной смерти пациентов с хроническими Ph-негативными миелопролиферативными новообразованиями (МПН). Несмотря на многочисленные исследования, патогенез тромбообразования при МПН остается неясным. Его механизм сложный, многофакторный. Один из основных этапов тромбогенеза характеризуется активацией клеточных механизмов и образованием нейтрофильных внеклеточных ловушек (neutrophil extracellular traps — NET). NET состоят из нитей ДНК, гистонов, гранулярных белков и наряду с уничтожением патогенов обеспечивают идеальную матрицу для активации тромбоцитов и механизмов коагуляции.

Ключевые слова: миелопролиферативные новообразования, нейтрофилы, тромбоз, нейтрофильные внеклеточные ловушки (NET).

Получено: 14 декабря 2022 г.

Принято в печать: 29 мая 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. 2017;129(6):680–92. doi: 10.1182/blood-2016-10-695957.
  2. Falanga A, Marchetti M. Thrombosis in Myeloproliferative Neoplasms. Semin Thromb Hemost. 2014;40(3):348–58. doi:1055/s-0034-1370794.
  3. Barbui T, Finazzi G, Falanga, A. Myeloproliferative neoplasms and thrombosis. Blood. 2013;122(13):2176–84. doi: 1182/blood-2013-03-460154.
  4. Artoni A, Bucciarelli P, Martinelli I. Cerebral thrombosis and myeloproliferative neoplasms. Curr Neurol Neurosci Rep. 2014;14(11):496. doi:1007/s11910-014-0496-y.
  5. Kaifie A, Kirschner M, Wolf D, et al. Study Alliance Leukemia (SAL). Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): analysis from the German SAL-MPN-registry. J Hematol Oncol. 2016;9(1):18. doi: 10.1186/s13045-016-0242-9.
  6. Hultcrantz M, Bjorkholm M, Dickman PW, et al. Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms: A population-based cohort study. Ann Intern Med. 2018;168(5):317–25. doi:7326/M17-0028.
  7. Smalberg JH, Arends LR, Valla DC, et al. Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood. 2012;120(25):4921–8. doi: 10.1182/blood-2011-09-376517.
  8. Gangat N, Wolanskyj AP, Schwager SM, et al. Leukocytosis at diagnosis and the risk of subsequent thrombosis in patients with low-risk essential thrombocythemia and polycythemia vera. 2009;115(24):5740–5. doi: 10.1002/cncr.24664
  9. Tefferi A, Gangat N, Wolanskyj A. The interaction between leukocytosis and other risk factors for thrombosis in essential thrombocythemia. Blood. 2007;109(9): doi: 10.1182/blood-2007-01-066985.
  10. Marin Oyarzun C.P, Heller P.G. Platelets as mediators of thromboinflammation in chronic myeloproliferative neoplasms. Front Immunol. 2019;10: doi: 10.3389/fimmu.2019.01373.
  11. Ferrer-Marin F, Cuenca-Zamora EJ, Guijarro-Carrillo PJ, Teruel-Montoya R. Emerging Role of Neutrophils in the Thrombosis of Chronic Myeloproliferative Neoplasms. Int J Mol Sci. 2021;22(3):1143. doi: 10.3390/ijms22031143.
  12. Landolfi R, Di Gennaro L, Barbui T, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. 2007;109(6):2446–52. doi: 10.1182/blood-2006-08-042515.
  13. Tefferi A, Pardanani A. Myeloproliferative neoplasms: A contemporary review. JAMA Oncol. 2015;1(1):97–105. doi: 1001/jamaoncol.2015.89.
  14. Carobbio A, Ferrari A, Masciulli A, et al. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: A systematic review and meta-analysis. Blood Adv. 2019;3(11):1729–37. doi: 10.1182/bloodadvances.
  15. Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: Is leukocytosis a causative factor? 2009;114(4):759–63. doi: 10.1182/blood-2009-02-206797.
  16. Campbell PJ, MacLean C, Beer PA, et al. Correlation of blood counts with vascular complications in essential thrombocythemia: Analysis of the prospective PT1 cohort. 2012;120(7):1409–11. doi: 10.1182/blood-2012-04-424911.
  17. Carobbio A, Thiele J, Passamonti F, et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: An international study of 891 patients. 2011;117(22):5857–9. doi: 10.1182/blood-2011-02-339002.
  18. Repsold L, Joubert AM. Platelet Function, Role in Thrombosis, Inflammation, and Consequences in Chronic Myeloproliferative Disorders. Cells. 2021;10(11):3034. doi: 10.3390/cells10113034.
  19. Nangalia J, Green AR. Myeloproliferative neoplasms: From origins to outcomes. Hematology Am Soc Hematol Educ Program. 2017;2017(1):470–9. doi: 10.1182/asheducation-2017.1.470.
  20. Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. doi: 10.1126/scitranslmed.aan8292.
  21. Wilkins BS. Myeloproliferative neoplasms. Diagn Histopathol. 2021;27(9):373–9.
  22. Harrison CN, Lee JS. Myeloproliferative neoplasms. 2017;45:275–9.
  23. Edelmann B, Gupta N, Schnoeder TM, et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest. 2018;128(10):4359–71. doi: 10.1172/JCI90312.
  24. Falanga A, Marchetti M, Barbui T, Smith CW. Pathogenesis of Thrombosis in Essential Thrombocythemia and Polycythemia Vera: The Role of Neutrophils. Semin Hematol. 2005;42(4):239–47. doi: 10.1053/j.seminhematol.2005.05.023.
  25. Gupta N, Edelmann B, Schnoeder TM, et al. JAK2-V617F activates β1-integrin-mediated adhesion of granulocytes to vascular cell adhesion molecule 1. 2017;31(5):1223–6. doi: 10.1038/leu.2017.26.
  26. Lisman T. Platelet–neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;37(3):567–76. doi: 10.1007/s00441-017-2727-4.
  27. Arellano-Rodrigo E, Alvarez-Larran A, Reverter JC, et al. Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. 2006;91(2):169–75.
  28. Li, P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–62. doi:1084/jem.20100239.
  29. Leshner M, Wang S, Lewis C, et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307. doi:3389/fimmu.2012.00307.
  30. Thalin S, Hisada Y, Lundstrom S, et al. Neutrophil Extracellular Traps: Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis Review. Arterioscler Thromb Vasc Biol. 2019;39(9):1724–38. doi: 10.1161/ATVBAHA.119.312463.
  31. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87. doi:1038/nm.4294.
  32. Desai J, Mulay SR, Nakazawa D, Anders HJ. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol Life Sci. 2016;73(11–12):2211–9. doi:1007/s00018-016-2195-0.
  33. Von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35. doi:1084/jem.20112322.
  34. Massberg S, Grahl L, von Bruehl M-L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96. doi:1038/nm.2184.
  35. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–5. doi: 10.1073/pnas.1005743107.
  36. Steppich BA, Seitz I, Busch G, et al. Modulation of tissue factor and tissue factor pathway inhibitor-1 by neutrophil proteases. Thromb Haemost. 2008;100(6):1068–75.
  37. Jorda RE, Nelson RM, Kilpatrick J, et al. Inactivation of human antithrombin by neutrophil elastase. Kinetics of the heparin-dependent reaction. J Biol Chem. 1989;264(18):10493–500.
  38. Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis—the journey of TF through NETs. Front Immunol. 2012;3:385. doi:3389/fimmu.2012.00385.
  39. Schmidt S, Daniliants D, Hiller E, et al. Increased levels of NETosis in myeloproliferative neoplasms are not linked to thrombotic events. Blood Adv. 2021;5(18):3515–27. doi: 10.1182/bloodadvances.2020004061.

Особенности течения новой коронавирусной инфекции COVID-19 у пациентов с онкогематологическими заболеваниями

Н.А. Романенко, Е.Р. Шилова, Л.В. Стельмашенко, Е.И. Кайтанджан, А.В. Кулешова, Н.П. Стижак, В.Н. Чеботкевич, С.В. Сидоркевич, С.В. Грицаев, С.С. Бессмельцев

ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Николай Александрович Романенко, д-р мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(812)717-58-57; e-mail: rom-nik@yandex.ru

Для цитирования: Романенко Н.А., Шилова Е.Р., Стельмашенко Л.В. и др. Особенности течения новой коронавирусной инфекции COVID-19 у пациентов с онкогематологическими заболеваниями. Клиническая онкогематология. 2023;16(1):101–8.

DOI: 10.21320/2500-2139-2023-16-1-101-108


РЕФЕРАТ

Обоснование. Новая коронавирусная инфекция SARS-CoV-2 (COVID-19) относится к особо опасным респираторным заболеваниям, характеризуется полиорганными нарушениями с преимущественным поражением респираторного тракта и летальностью в популяции 2–5 %. Однако у онкогематологических пациентов, получавших противоопухолевое лечение, летальность значительно выше.

Цель. Провести анализ исходов COVID-19 у пациентов с гематологическим злокачественными опухолями, получавших лекарственное противоопухолевое лечение.

Материалы и методы. Анализ течения COVID-19 проводили у 32 пациентов с опухолями системы крови в возрасте 31–81 год (медиана 62 года). Начало заболевания устанавливалось от даты первого положительного ПЦР-теста на COVID-19. Пациентов переводили в специализированный инфекционный стационар для лечения новой коронавирусной инфекции. Наличие пневмонии подтверждалось с помощью стандартной рентгенографии и КТ. Осуществляли мониторинг сатурации крови, температуры тела, ЭКГ, частоты дыхания. Средняя и тяжелая степени течения COVID-19 отмечались у 17 (53,1 %) из 32 пациентов. У 15 (46,9 %) больных состояние расценивалось как удовлетворительное. Для сравнения выделена контрольная группа пациентов (n = 28) в возрасте 32–79 лет (медиана 63 года) с гематологическими злокачественными опухолями, но без COVID-19.

Результаты. Из 32 больных, включенных в анализ, на фоне нарастающей дыхательной и полиорганной недостаточности умерло 9 (28,1 %) на 3–17-й день (в среднем через 8,6 ± 4,6 дня) от даты первого положительного ПЦР-теста на COVID-19. Летальные исходы констатированы преимущественно у больных множественной миеломой (n = 5), а также у 1 пациента с макроглобулинемией Вальденстрема. В контрольной группе (n = 28) с аналогичными гематологическими опухолями без COVID-19 летальные исходы в течение 12 мес. наблюдения имели место у 3 (10,7 %) пациентов. В качестве иллюстрации в статье представлено клиническое наблюдение течения коронавирусной инфекции у пациента с макроглобулинемией Вальденстрема — заболевания из группы моноклональных гаммапатий с преимущественным поражением костного мозга.

Заключение. COVID-19 является особо опасным вирусным заболеванием с высокой летальностью у пациентов с гематологическими злокачественными опухолями, особенно из категории плазмоклеточных дискразий.

Ключевые слова: новая коронавирусная инфекция, множественная миелома, пневмония, тромбоз, сатурация крови, макроглобулинемия Вальденстрема.

Получено: 6 июля 2022 г.

Принято в печать: 3 декабря 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции COVID-19. Версия 15 (22.02.2022), 245 с. [электронный документ]. Доступно по: www.ВМР_COVID-19_V15.pdf. Ссылка активна на 23.05.2022.
    [Interim methodological guidelines. Prophylaxis, diagnosis, and treatment of new coronavirus infection COVID-19. Version 15 (22.02.2022), 245 p. (Internet) Available from: www.ВМР_COVID-19_V15.pdf. Accessed 23.05.2022. (In Russ)]
  2. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207. doi: 10.1056/NEJMoa2001316.
  3. Баклаушев В.П., Кулемзин С.В., Горчаков А.А. и др. COVID-19. Этиология, патогенез, диагностика и лечение. Клиническая практика. 2020;11(1):7–20. doi: 10.17816/clinpract
    [Baklaushev VP, Kulemzin SV, Gorchakov АА, et al. COVID-19. Etiology, Pathogenesis, Diagnosis and Treatment. Journal of clinical practice. 2020;11(1):7–20. doi: 10.17816/clinpract26339. (In Russ)]
  4. Болевич C.Б., Болевич С.С. Комплексный механизм развития СOVID-19. Сеченовский вестник. 2020;11(2):50–61. doi: 10.47093/2218-7332.2020.11.2.50-61.
    [Bolevich SB, Bolevich SS. Complex mechanism of COVID-19 development. Sechenov medical journal. 2020;11(2):50–61. doi: 10.47093/2218-7332.2020.11.2.50-61. (In Russ)]
  5. Поддубная И.В., Тумян Г.С., Трофимова О.П. и др. Особенности ведения онкогематологических пациентов в условиях пандемии СОVID-19. Современная онкология. 2020;22(3):45–58. doi: 10.26442/18151434.2020.3.200152.
    [Poddubnaya IV, Tumian GS, Trofimova OP, et al. Features of management of oncohematological patients in the context of the COVID-19 pandemic. Journal of modern oncology. 2020;22(3):45–58. doi: 10.26442/18151434.2020.3.200152. (In Russ)]
  6. Кулешова А.В., Искова И.И., Киселева Е.Е., Чеботкевич В.Н. Респираторные вирусные инфекции, в т. ч. вызванные коронавирусами, у онкологических и онкогематологических больных. Медицинский академический журнал. 2021;21(3):117–20. doi: 10.17816/MAJ
    [Kuleshova AV, Iskova II, Kiseleva EE, Chebotkevich VN. Respiratory viral infections including caused by coronaviruses, in oncological and oncohematological patients. Medical academic journal. 2021;21(3):117–20. doi: 10.17816/MAJ78565. (In Russ)]
  7. Mato A, Roeker L, Lamanna N, et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136(10):1134–43. doi: 10.1182/blood.2020006965.
  8. The Lancet Oncology. COVID-19 and cancer: 1 year on. Lancet Oncol. 2021;22(4):411. doi: 10.1016/S1470-2045(21)00148-0.
  9. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции COVID-19. Версия 3 (03.03.2020), 62 с. [электронный документ]. Доступно по: www.ВМР_COVID-19_V3.pdf. Ссылка активна на 07.06.2022.
    [Interim methodological guidelines. Prophylaxis, diagnosis, and treatment of new coronavirus infection COVID-19. Version 3 (03.03.2020), 62 p. (Internet) Available from: www.ВМР_COVID-19_V3.pdf. Accessed 07.06.22. (In Russ)]
  10. Романенко Н.А., Бессмельцев С.С., Чечеткин А.В. Коррекция иммунного статуса пациентов иммуноглобулином человека для внутривенного введения. Казанский медицинский журнал. 2017;98(5):775–83. doi: 10.17750/KMJ2017-775.
    [Romanenko NA, Bessmeltsev SS, Chechetkin AV. Correction of patients’ immune status with human intravenous immunoglobulin. Kazan medical journal. 2017;98(5):775–83. doi: 10.17750/KMJ2017-775. (In Russ)]
  11. Mouthon L, Fermand JP, GottenbergE. Management of secondary immune deficiencies: what is the role of immunoglobulins? Curr Opin Allergy Clin Immunol. 2013;13(Suppl 2):S56–S67. doi: 10.1097/01.all.0000433132.16436.b5.
  12. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79. doi: 10.1111/j.1365-2141.2007.06705.x.
  13. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

Нарушения гемостаза у пациентов с впервые диагностированными острыми лейкозами

О.А. Полеводова, Г.М. Галстян, В.В. Троицкая, Е.Б. Орел, М.Ю. Дроков, Е.Н. Паровичникова

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Геннадий Мартинович Галстян, д-р мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: 8(495)612-48-59; e-mail: gengalst@gmail.com

Для цитирования: Полеводова О.А., Галстян Г.М., Троицкая В.В. и др. Нарушения гемостаза у пациентов с впервые диагностированными острыми лейкозами. Клиническая онкогематология. 2021;14(2):231–8.

DOI: 10.21320/2500-2139-2021-14-2-231-238


РЕФЕРАТ

Цель. Изучить нарушения гемостаза у пациентов с впервые диагностированными острыми лейкозами (ОЛ) до начала противоопухолевого лечения.

Материалы и методы. В исследование включено 107 пациентов с впервые диагностированными ОЛ в возрасте 18–80 лет, госпитализированных в ФГБУ «НМИЦ гематологии» МЗ РФ. Острый лимфобластный лейкоз (ОЛЛ) был у 37 больных, острый миелоидный лейкоз (ОМЛ) — у 46, острый промиелоцитарный лейкоз (ОПЛ) — у 24. Исследовали геморрагические и тромботические осложнения, содержание тромбоцитов, определяли АЧТВ и протромбин, концентрацию фибриногена, выполняли тромбоэластографию (ТЭГ; нативные тесты, тесты на функциональный фибриноген) и ротационную тромбоэластометрию (РОТЭМ; EXTEM, INTEM, FIBTEM, APTEM). Статистическую обработку проводили с помощью пакета программ SAS 9.4.

Результаты. В дебюте ОЛ геморрагический синдром был выявлен у 34 (32 %) из 107 пациентов. Он проявлялся петехиями (n = 16), подкожными гематомами (n = 12), десневыми (n = 10) и носовыми (n = 6) кровотечениями, маточными кровотечениями (n = 2), гематурией (n = 2), желудочно-кишечным кровотечением (n = 1), кровоизлияниями в мозг (n = 6), гематомой в параорбитальной области (n = 1). Гипокоагуляция по данным ТЭГ и РОТЭМ чаще отмечалась у больных ОПЛ. Гиперфибринолиз был выявлен только с помощью РОТЭМ у 54 % больных ОПЛ, у 8 % с ОЛЛ и 4 % с ОМЛ. Больные ОПЛ отличались от остальных больных ОЛ концентрацией фибриногена < 1,75 г/л (чувствительность 83,3 %, специфичность 83,13 %), концентрацией D-димера > 2686 мкг/л (чувствительность 72,73 %, специфичность 64,79 %), MCFFIBTEM < 12,5 мм (чувствительность 80 %, специфичность 80 %), МАFF < 9,7 мм (чувствительность 86,96 %, специфичность 90,12 %).

Заключение. Параметрами, отличающими ОПЛ от других видов ОЛ, оказались гипофибриногенемия, повышение концентрации D-димера, изменения при РОТЭМ, гиперфибринолиз.

Ключевые слова: система гемостаза, острый лейкоз, геморрагический синдром, тромбоз, интегральные тесты, тромбоэластометрия, тромбоэластография.

Получено: 2 декабря 2020 г.

Принято в печать: 5 марта 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2018. 1008 с.
    [Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika Publ.; 2018. 1008 p. (In Russ)]
  2. Rea B, Frank D. An uncommon manifestation of acute leukemia. Gastrointest Endosc. 2017;86(1):240–2. doi: 10.1016/j.gie.2016.12.010.
  3. Gallo G, Bigliardi S, Cesinaro A. A case of extramedullary hematopoiesis presenting as hemorrhagic panniculitis and evolving in acute myeloid leukemia. J Cutan Pathol. 2019;46(10):775–7. doi: 10.1111/cup.13498.
  4. Lieberman F, Villgran V, Normolle D, et al. Intracranial Hemorrhage in Patients Newly Diagnosed with Acute Myeloid Leukemia and Hyperleukocytosis. Acta Haematol. 2017;138(2):116–8. doi: 10.1159/000478690.
  5. Галстян Г.М., Кречетова А.В., Троицкая В.В. и др. Высокодозная терапия концентратом антитромбина III больных септическим шоком в состоянии агранулоцитоза. Анестезиология и реаниматология. 2014;59(4):39–45.
    [Galstyan GM, Krechetova AV, Troitskaya VV, et al. High-dose therapy with antithrombin III in agranulocytosis patients with septic shock. Anesteziologiya i reanimatologiya. 2014;59(4):39–45. (In Russ)]
  6. Mitrovic M, Suvajdzic N, Bogdanovic A, et al. International Society of Thrombosis and Hemostasis Scoring System for disseminated intravascular coagulation >6: a new predictor of hemorrhagic early death in acute promyelocytic leukemia. Med Oncol. 2013;30(1):478. doi: 10.1007/s12032-013-0478-y.
  7. Coombs CC, Tavakkoli M, Tallman MS. Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J. 2015;5(4):e304. doi: 10.1038/bcj.2015.25.
  8. Di Bona E, Avvisati G, Castaman G, et al. Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol. 2000;108(4):689–95. doi: 10.1046/j.1365-2141.2000.01936.x.
  9. Breccia M, Latagliata R, Cannella L, et al. Early hemorrhagic death before starting therapy in acute promyelocytic leukemia: association with high WBC count, late diagnosis and delayed treatment initiation. Haematologica. 2010;95(5):853–4. doi: 10.3324/haematol.2009.017962.
  10. de la Serna J, Montesinos P, Vellenga E, et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. 2008;111(7):3395–402. doi: 10.1182/blood-2007-07-100669.
  11. Дементьева И.И., Морозов Ю.А., Чарная М.А. и др. Технологии POINT OF CARE в клинике неотложных состояний. Клиническая лабораторная диагностика. 2013;7:5–10.
    [Dement’eva II, Morozov YuA, Charnaya MA, et al. POINT OF CARE technologies under clinic emergency conditions. Klinicheskaya laboratornaya diagnostika. 2013;7:5–10. (In Russ)]
  12. Lang T, Bauters A, Braun SL, et al. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinol. 2005;16(4):301–10. doi: 10.1097/01.mbc.0000169225.31173.19.
  13. Rollig C, Ehninger G. How I treat hyperleukocytosis in acute myeloid leukemia. Blood. 2015;125(21):3246–52. doi: 10.1182/blood-2014-10-551507.
  14. Schochl H, Frietsch T, Pavelka M, et al. Hyperfibrinolysis After Major Trauma: Differential Diagnosis of Lysis Patterns and Prognostic Value of Thrombelastometry. J Trauma Inj Infect Crit Care. 2009;67(1):125–31. doi: 10.1097/TA.0b013e31818b2483.
  15. Баркаган З.С., Момот А.П. Диагностика и контролируемая терапия нарушений гемостаза. М.: Ньюдиамед, 2008. С. 103–13.
    [Barkagan ZS, Momot AP. Diagnostika i kontroliruemaya terapiya narushenii gemostaza. (Diagnosis and monitor therapy of hemostasis disorders.) Moscow: N’yudiamed Publ.; 2008. 103–13. (In Russ)]
  16. Буланов А.Ю., Яцков К.В., Буланова Е.Л. и др. Тромбоэластография: клиническая значимость теста на функциональный фибриноген. Вестник интенсивной терапии. 2017;1:5–11.
    [Bulanov AYu, Yatskov KV, Bulanova EL, et al. Thromboelastography: the clinical significance of the functional fibrinogen test. Vestnik intensivnoi terapii. 2017;1:5–11. (In Russ)]
  17. Chapman MP, Moore EE, Ramos CR, et al. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7. doi: 10.1097/TA.0b013e3182aa9c9f.
  18. Gonzalez E, Moore EE, Moore HB. Management of Trauma-Induced Coagulopathy with Thrombelastography. Crit Care Clin. 2017;33(1):119–34. doi: 10.1016/j.ccc.2016.09.002.
  19. Hemker HC, Giesen P, Al Dieri R, et al. Calibrated Automated Thrombin Generation Measurement in Clotting Plasma. Pathophysiol Haemost Thromb. 2003;33(1):4–15. doi: 10.1159/000071636.
  20. McCullough J, Vesole DH, Benjamin RJ, et al. Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: The SPRINT trial. Blood. 2004;104(5):1534–41. doi: 10.1182/blood-2003-12-4443.
  21. Савченко В.Г., Паровичникова Е.Н., Соколов А.Н. и др. Клинические рекомендации по диагностике и лечению острого промиелоцитарного лейкоза у взрослых. Национальное гематологическое общество. 2014. (электронный документ) Доступно по: https://docplayer.ru/50397388-Klinicheskie-rekomendacii-po-diagnostike-i-lecheniyu-ostrogo-promielocitarnogo-leykoza-u-vzroslyh.html. Ссылка активна на 5.02.2021.
    [Savchenko VG, Parovichnikova EN, Sokolov AN, et al. Clinical guidelines on diagnosis and treatment of adult acute promyelocytic leukemia. National Society of Hematology. 201 [Internet] Available from: https://docplayer.ru/50397388-Klinicheskie-rekomendacii-po-diagnostike-i-lecheniyu-ostrogo-promielocitarnogo-leykoza-u-vzroslyh.html. (accessed 02.2021) (In Russ)]
  22. Воробьев А.И., Бронштейн М.И., Баранов А.Е. О промиелоцитарном варианте острого лейкоза. Вестник АМН СССР. 1968;4:36–45.
    [Vorob’ev AI, Bronshtein MI, Baranov AE. On promyelocytic variant of acute leukemia. Vestnik AMN SSSR. 1968;4:36–45. (In Russ)]
  23. Avvisati G, ten Cate JW, Sturk A, et al. Acquired alpha-2-antiplasmin deficiency in acute promyelocytic leukaemia. Br J Haematol. 1988;70(1):43–8. doi: 10.1111/j.1365-2141.1988.tb02432.x.
  24. Wijermans PW, Rebel VI, Ossenkoppele GJ, et al. Combined procoagulant activity and proteolytic activity of acute promyelocytic leukemic cells: reversal of the bleeding disorder by cell differentiation. Blood. 1989;73(3):800–5. doi: 10.1182/blood.V73.3.800.bloodjournal733800.
  25. Wada K, Takahashi H, Hanano M, et al. Plasma urokinase-type plasminogen activator in patients with leukemias. Leuk Lymphoma. 1994;15(5–6):499–502. doi: 10.3109/10428199409049754.
  26. Menell JS, Cesarman GM, Jacovina AT, et al. Annexin II and Bleeding in Acute Promyelocytic Leukemia. N Engl J Med. 1999;340(13):994–1004. doi: 10.1056/NEJM199904013401303.
  27. Longstaff C. Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemost. 2018;16(4):652–62. doi: 10.1111/jth.13957.
  28. Negrier C, Ninet J, Bordet J, et al. Use of calibrated automated thrombinography ± thrombomodulin to recognise the prothrombotic phenotype. Thromb Haemost. 2017;96(5):562–7. doi: 10.1160/th06-03-0179.
  29. Abuelkasem E, Lu S, Tanaka K, et al. Comparison between thrombelastography and thromboelastometry in hyperfibrinolysis detection during adult liver transplantation. Br J Anaesth. 2016;116(4):507–12. doi: 10.1093/bja/aew023.
  30. da Luz LT, Nascimento B, Rizoli S. Thrombelastography (TEG®): practical considerations on its clinical use in trauma resuscitation. Scand J Trauma Resusc Emerg Med. 2013;21(1):29. doi: 10.1186/1757-7241-21-29.
  31. Moore HB, Moore EE, Liras IN, et al. Acute Fibrinolysis Shutdown after Injury Occurs Frequently and Increases Mortality: A Multicenter Evaluation of 2,540 Severely Injured Patients. J Am Coll Surg. 2016;222(4):347–55. doi: 10.1016/J.JAMCOLLSURG.2016.01.006.
  32. Lou Y, Suo S, Tong H, et al. Hypofibrinogenemia as a clue in the presumptive diagnosis of acute promyelocytic leukemia. Leuk Res. 2016;50:11–6. doi: 10.1016/j.leukres.2016.09.006.
  33. Zhang X, Hu Y, Bao L, et al. Arsenic trioxide downregulates the expression of annexin II in bone marrow cells from patients with acute myelogenous leukemia. Chin Med J (Engl). 2009;122(17):1969–73. doi: 10.3760/cma.j.issn.0366-6999.2009.17.002.
  34. Stein EM, Tallman MS. Provocative pearls in diagnosing and treating acute promyelocytic leukemia. Oncology (Williston Park). 2012;26(7):636–41.
  35. Yanada M, Matsushita T, Asou N, et al. Severe hemorrhagic complications during remission induction therapy for acute promyelocytic leukemia: incidence, risk factors, and influence on outcome. Eur J Haematol. 2007;78(3):213–9. doi: 10.1111/j.1600-0609.2006.00803.x.
  36. Choudhry A, DeLoughery TG. Bleeding and thrombosis in acute promyelocytic leukemia. Am J Hematol. 2012;87(6):596–603. doi: 10.1002/ajh.23158.
  37. Grisariu S, Spectre G, Kalish Y, et al. Increased risk of central venous catheter–associated thrombosis in acute promyelocytic leukemia: a single-institution experience. 2013;90(5):397–403. doi: 10.1111/ejh.12087.

Материалы II конференции «Актуальные вопросы диагностики и лечения Ph-негативных и Ph-позитивных миелопролиферативных заболеваний» (15–16 марта 2019 г., ФГБУ «НМИЦ гематологии» Минздрава России, Москва)

А.Л. Меликян1, А.Г. Туркина1, И.Н. Суборцева1, Е.Ю. Челышева1, А.М. Ковригина1, В.А. Шуваев2, В.В. Байков3, О.Ю. Виноградова4,5,6, С.М. Куликов1, А.Н. Петрова1, А.В. Быкова1, А.-П.А. Пошивай2, Ю.Ю. Власова3, М.М. Чукавина7, О.Д. Сердюк8, К.В. Наумова9, Н.Т. Сиордия10, Н.С. Лазорко10, Р.В. Грозов10, Э.И. Мулло11, А.С. Максимова12, О.М. Сендерова13, О.В. Каня13, М.С. Фоминых2,25, Д.И. Шихбабаева4, Е.А. Белякова14, И.С. Мартынкевич2, Л.Б. Полушкина2, М.Н. Зенина2, Е.В. Ефремова2, В.И. Ругаль2, Л.П. Папаян2, Н.Е. Корсакова2, О.Ю. Матвиенко2, Е.Б. Сырцева15, С.В. Гаппоев16, М.В. Барабанщикова3, М.О. Иванова3, К.Д. Капланов17, Е.С.  Рогова9, К.Б. Тризна18, А.С. Жевняк19, О.Е. Очирова20, А.А. Шахаева20, А.С. Лямкина21, И.П. Михно22, Ю.Б. Черных23, Т.В. Чуданова23, И.Н. Контиевский23, Н.Н. Глонина24, М.В. Бурундукова22

1 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

3 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

4 ГБУЗ «Городская клиническая больница им. С.П. Боткина» ДЗМ, 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

5 ФГБУ «НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

6 ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» Минздрава России, ул. Островитянова, д. 1, Москва, Российская Федерация, 117997

7 ГБУЗ МО «Коломенская ЦРБ», ул. Октябрьской революции, д. 318, Коломна, Московская область, Российская Федерация, 140401

8 ГБУЗ «Клинический онкологический диспансер № 1» Минздрава Краснодарского края, ул. Димитрова, д. 146, Краснодар, Российская Федерация, 350040

9 ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, пр-т Карла Маркса, д. 165б, Самара, Российская Федерация, 443086

10 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

11 ГБУЗ МО «Чеховская районная больница № 2», ул. Гагарина, д. 37, Чехов, Московская область, Российская Федерация, 142300

12 ГАУЗ «Городская клиническая больница № 16», ул. Гагарина, д. 121, Казань, Российская Федерация, 420039

13 ГБУЗ «Иркутская ордена “Знак Почета” областная клиническая больница», микрорайон Юбилейный, д. 100, Иркутск, Российская Федерация, 664049

14 ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, ул. Кирочная, д. 41, Санкт-Петербург, Российская Федерация, 191015

15 КГБУЗ «Красноярская межрайонная городская больница № 7», ул. Академика Павлова, д. 4, Красноярск, Российская Федерация, 660003

16 КГБУЗ «Красноярское краевое патолого-анатомическое бюро», ул. Партизана Железняка, д. 3д, Красноярск, Российская Федерация, 660022

17 ГБУЗ «Волгоградский областной клинический онкологический диспансер», ул. Землячки, д. 78, Волгоград, Российская Федерация, 400138

18 ОГАУЗ «Томская областная клиническая больница», ул. Ивана Черных, д. 96, Томск, Российская Федерация, 634063

19 ОГБУЗ «Патологоанатомическое бюро», ул. Ивана Черных, д. 96, стр. 9, Томск, Российская Федерация, 634063

20 ГБУЗ «Республиканская клиническая больница им. Н.А. Семашко» Минздрава Республики Бурятия, ул. Павлова, д. 12, Улан-Удэ, Российская Федерация, 670031

21 ФГБУ ВО «Новосибирский государственный медицинский университет» Минздрава России, Красный пр-т, д. 52, Новосибирск, Российская Федерация, 630091

22 ГБУЗ Новосибирской области «Городская клиническая больница № 2», ул. Ползунова, д. 21, Новосибирск, Российская Федерация, 630051

23 ГБУЗ МО «МОНИКИ им. М.Ф. Владимирского», ул. Щепкина, д. 61/2, Москва, Российская Федерация, 129110

24 КГБУЗ «Краевая клиническая больница № 1 им. проф. С.И. Сергеева», ул. Краснодарская, д. 9, Хабаровск, Российская Федерация, 680009

25 ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7-9, Санкт-Петербург, Российская Федерация, 199034

Для переписки: Ирина Николаевна Суборцева, канд. мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: soubortseva@yandex.ru

Для цитирования: Меликян А.Л., Туркина А.Г., Суборцева И.Н. и др. Материалы II конференции «Актуальные вопросы диагностики и лечения Ph-негативных и Ph-позитивных миелопролиферативных заболеваний» (15–16 марта 2019 г., ФГБУ «НМИЦ гематологии» Минздрава России, Москва). Клиническая онкогематология. 2020;13(2):199–231.


РЕФЕРАТ

Публикация содержит материалы докладов, представленных на II конференции «Актуальные вопросы диагностики и лечения Ph-негативных и Ph-позитивных миелопролиферативных заболеваний», которая состоялась 15–16 марта 2019 г. в ФГБУ «НМИЦ гематологии» Минздрава России (Москва). Цель конференции — профессиональное общение врачей-клиницистов, специализирующихся на лечении миелопролиферативных заболеваний (МПЗ), и научных экспертов в данной сфере, обмен мнениями по внедрению современных методов диагностики и лечения Ph-позитивных и Ph-негативных МПЗ. Тематика сообщений охватывала широкий спектр редких и нестандартных клинических ситуаций. Особенно важной была возможность их детального обсуждения при панельной дискуссии, а также в формате интерактивных сессий. Такой формат конференции позволил привести в настоящей публикации мнения экспертов. Подчеркивается важная роль комплексной диагностики МПЗ с использованием морфологического исследования трепанобиоптатов костного мозга и проведения молекулярно-генетических исследований. Исходя из этого, второй день конференции был посвящен тщательному разбору морфологических характеристик представленных случаев по материалам трепанобиоптатов костного мозга.

Ключевые слова: миелопролиферативные заболевания, хронический миелоидный лейкоз, эссенциальная тромбоцитемия, истинная полицитемия, первичный миелофиброз, тромбоз, JAK2V617F, CALR, MPL, секвенирование нового поколения, руксолитиниб.

Получено: 30 сентября 2019 г.

Принято в печать: 5 марта 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Rychter A, Jerzmanowski P, Holub A, et al. Treatment adherence in chronic myeloid leukaemia patients receiving tyrosine kinase inhibitors. Med Oncol. 2017;34(6):104. doi: 10.1007/s12032-017-0958-6.

  2. Челышева Е.Ю., Галактионова А.В., Туркина А.Г. Проблема приверженности терапии хронического миелолейкоза: понять пациента и найти решения. Клиническая онкогематология. 2013;6(2):157–65.

    [Chelysheva EYu, Galaktionova AV, Turkina AG. The problem of adherence to therapy in chronic myeloid leukemia: understanding the patient and making a decision. Klinicheskaya onkogematologiya. 2013;6(2):157–65. (In Russ)]

  3. Туркина А.Г., Зарицкий А.Ю., Шуваев В.А. и др. Клинические рекомендации по диагностике и лечению хронического миелолейкоза. Клиническая онкогематология. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316.

    [Turkina AG, Zaritskii AYu, Shuvaev VA, et al. Clinical Recommendations for the Diagnosis and Treatment of Chronic Myeloid Leukemia. Clinical oncohematology. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316. (In Russ)]

  4. Deininger MW, Cortes J, Paquette R, et al. The prognosis for patients with chronic myeloid leukemia who have clonal cytogenetic abnormalities in Philadelphia chromosome-negative cells. Cancer. 2007;110(7):1509–19. doi: 10.1002/cncr.22936.

  5. Richter J, Soderlund S, Lubking A, et al. Musculoskeletal Pain in Patients With Chronic Myeloid Leukemia After Discontinuation of Imatinib: A Tyrosine Kinase Inhibitor Withdrawal Syndrome? J Clin Oncol. 2014;32(25):2821–3. doi: 10.1200/jco.2014.55.6910.

  6. Туркина А.Г., Немченко И.С., Челышева Е.Ю. и др. Национальные клинические рекомендации: диагностика и лечение миелопролиферативных заболеваний с эозинофилией и идиопатического гиперэозинофильного синдрома. Гематология и трансфузиология. 2016;61(3):1–24.

    [Turkina AG, Nemchenko IS, Chelysheva EYu, et al. National clinical guidelines: Diagnosis and treatment of myeloproliferative neoplasms with eosinophilia and idiopathic hypereosinophilic syndrome. Gematologiya i transfuziologiya. 2016;61(3):1–24. (In Russ)]

  7. Samuelson BT, Vesely SK, Chai-Adisaksopha C, et al. The impact of ruxolitinib on thrombosis in patients with polycythemia vera and myelofibrosis: a meta-analysis. Blood Coagul Fibrinol. 2016;27(6):648–52. doi: 10.1097/MBC.0000000000000446.

  8. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-06-721662.

  9. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;1:25–60.

    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical guidelines on diagnosis and treatment of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, and primary myelofibrosis) (2016 edition). Gematologiya i transfuziologiya. 2017;1:25–60. (In Russ)]

  10. Marchioli R, Finazzi G, Landolfi R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32. doi: 10.1200/jco.2005.07.062.

  11. Barbui T, Vannucchi AM, Buxhofer-Ausch V, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5(11):e369. doi: 10.1038/bcj.2015.94.

  12. Rumi E, Pietra D, Pascutto C, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124(7):1062–9. doi: 10.1182/blood-2014-05-578435.

  13. Tefferi A, Lasho TL, Tischer A, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood. 2014;124(15):2465–6. doi: 10.1182/blood-2014-07-588426.

  14. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28(7):1494–500. doi: 10.1038/leu.2014.57.

  15. Полушкина Л.Б., Мартынкевич И.С., Шуваев В.А. и др. Молекулярно-генетические и цитогенетические особенности первичного миелофиброза. Гены и клетки. 2016;11(3):113–22.

    [Polushkina LB, Martynkevich IS, Shuvaev VA, et al. Molecular genetic and cytogenetic characteristics of primary Geny i kletki. 2016;11(3):113–22. (In Russ)]

  16. Tefferi A, Lasho TL, Finke CM, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1(2):105–11. doi: 10.1182/bloodadvances.2016000208.

  17. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156. doi: 10.1186/s13045-017-0527-7.

  18. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. 2014;124(21):405. doi: 10.1182/blood.v124.21.405.405.

  19. Wei JJ, Kallenbach LR, Kreider M, et al. Resolution of cutaneous sarcoidosis after Janus kinase inhibitor therapy for concomitant polycythemia vera. JAAD Case Rep. 2019;5(4):360–1. doi: 10.1016/j.jdcr.2019.02.006.

  20. Garcia-Pagan JC, Buscarini E, Janssen HLA, et al. EASL Clinical Practice Guidelines: Vascular diseases of the liver. J Hepatol. 2016;64(1):179–202. doi: 10.1016/j.jhep.2015.07.040.

  21. Шмаков Р.Г., Полушкина Е.С. Особенности репродуктивной функции у женщин с онкогематологическими заболеваниями. Современная онкология. 2008;10(3):68–9.

    [Shmakov RG, Polushkina ES. Reproductive function characteristics in women with oncohematological diseases. Sovremennaya onkologiya. 2008;10(3):68–9. (In Russ)]

  22. Griesshammer M, Sadjadian P, Wille K. Contemporary management of patients with BCR-ABL1-negative myeloproliferative neoplasms during pregnancy. Expert Rev Hematol. 2018;11(9):697–706. doi: 10.1080/17474086.2018.1506325.

  23. Schwartz LC, Mascarenhas J. Current and evolving understanding of atypical chronic myeloid leukemia. Blood Rev. 2019;33:74–81. doi: 10.1016/j.blre.2018.07.004.

 

 

Тромбогеморрагические осложнения при лечении больных острым лимфобластным лейкозом L-аспарагиназой

Г.М. Галстян, О.А. Полеводова, А.В. Баженов, В.В. Троицкая, О.А. Гаврилина, Д.Г. Гительзон, А.Э. Васильев, Е.Н. Паровичникова

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Геннадий Мартинович Галстян, д-р мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(916)488-50-73; e-mail: gengalst@gmail.com

Для цитирования: Галстян Г.М., Полеводова О.А., Баженов А.В. и др. Тромбогеморрагические осложнения при лечении больных острым лимфобластным лейкозом L-аспарагиназой. Клиническая онкогематология. 2018;11(1):89-99.

DOI: 10.21320/2500-2139-2018-11-1-89-99


РЕФЕРАТ

Настоящая статья представляет собой обзор литературы, посвященный применению L-аспарагиназы (АСП) при остром лимфобластном лейкозе (ОЛЛ), с описанием 2 собственных клинических наблюдений. Лечение АСП при проведении индукции ремиссии осложнилось у пациентов венозными тромбозами и кровоизлиянием в ЦНС. В обоих случаях эти осложнения возникли на фоне сниженной плазменной активности антитромбина III (АТ), гипофибриногенемии и тромбоцитопении. Обсуждаются факторы риска возникновения тромбогеморрагических осложнений у больных ОЛЛ во время лечения АСП, роль в их развитии сочетанной терапии АСП с антрациклинами, пероральными контрацептивами, глюкокортикостероидами, наличия тромбофилии и центрального венозного катетера. Описаны возможные механизмы развития тромбозов, определены наиболее вероятные сроки их возникновения, локализация. В статье приводятся различные варианты профилактики и лечения тромбогеморрагических осложнений у больных ОЛЛ во время лечения АСП. Рекомендуется у всех больных ОЛЛ, получающих АСП, исследовать в плазме концентрацию фибриногена и активность АТ до начала лечения, на 3-й день после введения препарата и далее каждые 5–7 дней на протяжении 3 нед. после введения. Новые пероральные антикоагулянты не зависят от активности АТ в крови и могут использоваться для профилактики и лечения тромботических осложнений, связанных с АСП. Приводятся рекомендации по коррекции содержания АТ и гипофибриногенемии.

Ключевые слова: L-аспарагиназа, осложнения, тромбоз, тромбоэластография, антитромбин III, гипофибриногенемия, тромбоцитопения, новые пероральные антикоагулянты.

Получено: 16 августа 2017 г.

Принято в печать: 27 октября 2017 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Савченко В.Г., Паровичникова Е.Н., Афанасьев Б.В. и др. Национальные клинические рекомендации по диагностике и лечению острых миелоидных лейкозов взрослых. Гематология и трансфузиология. 2014;59(1):1–32. [Savchenko VG, Parovichnikova EN, Afanas’ev BV, et al. National clinical recommendations for the diagnosis and treatment of acute myeloid leukemia in adults. Gematologiya i transfuziologiya. 2014;59(1):1–32. (In Russ)]
  2. Asselin BL. The three asparaginases. In: Kaspers GJL, Pieters R, Veerman AJP, eds. Drug Resistance in Leukemia and Lymphoma III. Advances in Experimental Medicine and Biology, vol. 457. Boston: Springer; 1999. pp. 621–9. doi: 10.1007/978-1-4615-4811-9_69.
  3. Попа А.В. Возможности адекватного выбора различных препаратов аспарагиназы. Онкогематология. 2007;1:52–6. [Popa AV. The abilities of adequate choice of different asparaginase products. Onkogematologiya. 2007;1:52–6. (In Russ)]
  4. Priest JR, Ramsay NK, Steinherz PG, et al. A syndrome of thrombosis and hemorrhage complicating L-asparaginase therapy for childhood acute lymphoblastic leukemia. J Pediatr. 1982;100(6):984–9. doi: 10.1016/s0022-3476(82)80535-0.
  5. Caruso V, Iacoviello L, Castelnuovo A Di, et al. Thrombotic complications in childhood acute lymphoblastic leukemia : a meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood. 2006;108(7):2216–22. doi: 10.1182/blood-2006-04-015511.
  6. Rozen L, Noubouossie D, Dedeken L, et al. Different profile of thrombin generation in children with acute lymphoblastic leukaemia treated with native or pegylated asparaginase: A cohort study. Pediatr Blood Cancer. 2017;26(2):294–301. doi: 10.1002/pbc.26228.
  7. Caruso V, Iacoviello L, Di Castelnuovo A, et al. Venous thrombotic complications in adults undergoing induction treatment for acute lymphoblastic leukemia: results from a meta-analysis. J Thromb Haemost. 2007;5(3):621–3. doi: 10.1111/j.1538-7836.2007.02383.x.
  8. Ranta S, Heyman MM, Jahnukainen K, et al. Antithrombin deficiency after prolonged asparaginase treatment in children with acute lymphoblastic leukemia. Blood Coagul Fibrinol.  2013;24(7):749–56. doi: 10.1097/mbc.0b013e328363b147.
  9. Abbott LS, Deevska M, Fernandez CV, et al. The impact of prophylactic fresh-frozen plasma and cryoprecipitate on the incidence of central nervous system thrombosis and hemorrhage in children with acute lymphoblastic leukemia receiving asparaginase. Blood. 2009;114(25):5146–51. doi: 10.1182/blood-2009-07-231084.
  10. Grace RF, Dahlberg SE, Neuberg D, et al. The frequency and management of asparaginase-related thrombosis in paediatric and adult patients with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute consortium protocols. Br J Haematol. 2011;152(4):452–9. doi: 10.1111/j.1365-2141.2010.08524.x.
  11. Merlen C, Bonnefoy A, Wagner E, et al. L-Asparaginase Lowers Plasma Antithrombin and Mannan-Binding-Lectin Levels: Impact on Thrombotic and Infectious Events in Children With Acute Lymphoblastic Leukemia. Pediatr Blood Cancer. 2015;62(8):1381–7. doi: 10.1002/pbc.25515.
  12. Mizrahi T, Leclerc J-M, David M, et al. ABO Group as a Thrombotic Risk Factor in Children With Acute Lymphoblastic Leukemia: A Retrospective Study of 523 Patients. J Pediatr Hematol Oncol. 2015;37(5):e328–32. doi: 10.1097/mph.0000000000000333.
  13. Lauw MN, Van der Holt B, Middeldorp S, et al. Venous thromboembolism in adults treated for acute lymphoblastic leukaemia: Effect of fresh frozen plasma supplementation. Thromb Haemost. 2013;109(4):633–42. doi: 10.1160/th12-11-0845.
  14. Mitchell LG, Andrew M, Hanna K, et al. A prospective cohort study determining the prevalence of thrombotic events in children with acute lymphoblastic leukemia and a central venous line who are treated with L-asparaginase: results of the Prophylactic Antithrombin Replacement in Kids with Acute Lymphoblastic Leukemia Treated with Asparaginase (PARKAA) Study. Cancer. 2003;97(2):508–16. doi: 10.1002/cncr.11042.
  15. Sibai H, Seki JT, Wang TQ, et al. Venous thromboembolism prevention during asparaginase-based therapy for acute lymphoblastic leukemia. Curr Oncol. 2016;23(4):e355–61. doi: 10.3747/co.23.3077.
  16. Goyal G, Bhatt VR. L-asparaginase and venous thromboembolism in acute lymphocytic leukemia. Fut Oncol. 2015;11(17):2459–70. doi: 10.2217/fon.15.114.
  17. Couturier M-A, Huguet F, Chevallier P, et al. Cerebral venous thrombosis in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma during induction chemotherapy with l-asparaginase: The GRAALL experience. Am J Hematol. 2015;90(11):986–91. doi: 10.1002/ajh.24130.
  18. Wani NA, Kosar T, Pala NA, Qureshi UA. Sagittal sinus thrombosis due to L-asparaginase. J Pediatr Neurosci. 2010;5(1):32–5. doi: 10.4103/1817-1745.66683.
  19. Guzman-Uribe P, Vargas-Ruiz AG. Thrombosis in Leukemia: Incidence, Causes, and Practical Management. Curr Oncol Rep. 2015;17(5):444. doi: 10.1007/s11912-015-0444-2.
  20. Huguet F, Leguay T, Raffoux E, et al. Pediatric-inspired therapy in adults with philadelphia chromosome-negative acute lymphoblastic leukemia: The GRAALL-2003 study. J Clin Oncol. 2009;27(6):911–8. doi: 10.1200/jco.2008.18.6916.
  21. Santoro N, Colombini A, Silvestri D, et al. Screening for coagulopathy and identification of children with acute lymphoblastic leukemia at a higher risk of symptomatic venous thrombosis: an AIEOP experience. J Pediatr Hematol Oncol. 2013;35(5):348–55. doi: 10.1097/mph.0b013e31828dc614.
  22. Pui C, Chesney CM, Bergum PW, et al. Lack of pathogenetic role of proteins C and S in thrombosis associated with asparaginase-prednisone-vincristine therapy for leukaemia. Br J Haematol. 1986;64(2):283–90. doi: 10.1111/j.1365-2141.1986.tb04121.x.
  23. Mauz-Korholz C, Junker R, Gobel U, Nowak-Gottl U. Prothrombotic risk factors in children with acute lymphoblastic leukemia treated with delayed E. coli asparaginase (COALL-92 and 97 protocols). Thromb Haemost. 2000;83(6):840–3.
  24. Risseeuw-Appel IM, Dekker I, Hop WC, Hahlen K. Minimal effects of E. coli and Erwinia asparaginase on the coagulation system in childhood acute lymphoblastic leukemia: a randomized study. Med Pediatr Oncol. 1994;23(4):335–43. doi: 10.1002/mpo.2950230404.
  25. Domenech C, Thomas X, Chabaud S, et al. L-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: Results of the GRASPALL 2005-01 randomized trial. Br J Haematol. 2011;153(1):58–65. doi: 10.1111/j.1365-2141.2011.08588.x.
  26. Nowak-Gottl U, Ahlke E, Fleischhack G, et al. Thromboembolic events in children with acute lymphoblastic leukemia (BFM protocols): prednisone versus dexamethasone administration. Blood. 2003;101(7):2529–33. doi: 10.1182/blood-2002-06-1901.
  27. Hernandez-Espinosa D, Minano A, Ordonez A, et al. Dexamethasone induces a heat-stress response that ameliorates the conformational consequences on antithrombin of L-asparaginase treatment. J Thromb Haemostasis. 2009;7(7):1128–33. doi: 10.1111/j.1538-7836.2009.03449.x.
  28. Hunault-Berger M, Chevallier P, Delain M, et al. Changes in antithrombin and fibrinogen levels during induction chemotherapy with L-asparaginase in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Use of supportive coagulation therapy and clinical outcome: The CAPELAL study. Haematologica. 2008;93(10):1488–94. doi: 10.3324/haematol.12948.
  29. Ueno T, Ohtawa K, Mitsui K, et al. Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia. 1997;11(11):1858–61. doi: 10.1038/sj.leu.2400834.
  30. Sugimoto K, Suzuki HI, Fujimura T, et al. A clinically attainable dose of L-asparaginase targets glutamine addiction in lymphoid cell lines. Cancer Sci. 2015;106(11):1534–43. doi: 10.1111/cas.12807.
  31. De Stefano V, Za T, Ciminello A, et al. Haemostatic alterations induced by treatment with asparaginases and clinical consequences. Thromb Haemost. 2015;113(2):247–61. doi: 10.1160/th14-04-0372.
  32. Giordano P, Molinari AC, Del Vecchio GC, et al. Prospective study of hemostatic alterations in children with acute lymphoblastic leukemia. Am J Hematol. 2010;85(5):325–30. doi: 10.1002/ajh.21665.
  33. Nowak-Gottl U, Boos J, Wolff J, et al. Asparaginase decreases clotting factors in vitro: a possible pitfall? Int J Clin Lab Res. 1995;25(3):146–8. doi: 10.1007/bf02592556.
  34. Bushman JE, Palmieri D, Whinna HC, Church FC. Insight into the mechanism of asparaginase-induced depletion of antithrombin III in treatment of childhood acute lymphoblastic leukemia. Leuk Res. 2000;24(7):559–65. doi: 10.1016/s0145-2126(00)00017-5.
  35. Priest JR, Ramsay NKC, Bennett AJ, et al. The effect of L-asparaginase on antithrombin, plasminogen, and plasma coagulation during therapy for acute lymphoblastic leukemia. J Pediatr. 1982;100(6):990–5. doi: 10.1016/s0022-3476(82)80536-2.
  36. Mazzucconi MG, Gugliotta L, Leone G, et al. Antithrombin III infusion suppresses the hypercoagulable state in adult acute lymphoblastic leukaemia patients treated with a low dose of Escherichia coli L-asparaginase. A GIMEMA study. Blood Coagul Fibrinol. 1994;5(1):23–8. doi: 10.1097/00001721-199402000-00004.
  37. Mitchell L, Andrew M, Hanna K, et al. Trend to efficacy and safety using antithrombin concentrate in prevention of thrombosis in children receiving l-asparaginase for acute lymphoblastic leukemia. Results of the PAARKA study. Thromb Haemost. 2003;90(2):235–44. doi: 10.1160/th02-11-0283.
  38. Farrell K, Fyfe A, Allan J, et al. An antithrombin replacement strategy during asparaginase therapy for acute lymphoblastic leukemia is associated with a reduction in thrombotic events. Leuk Lymphoma. 2016;57(11):2567–74. doi: 10.3109/10428194.2016.1165815.
  39. Elhasid R, Lanir N, Sharon R, et al. Prophylactic therapy with enoxaparin during L-asparaginase treatment in children with acute lymphoblastic leukemia. Blood Coagul Fibrinol. 2001;12(5):367–70. doi: 10.1097/00001721-200107000-00005.
  40. Meister B, Kropshofer G, Klein-Franke A, et al. Comparison of low-molecular-weight heparin and antithrombin versus antithrombin alone for the prevention of symptomatic venous thromboembolism in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;50(2):298–303. doi: 10.1002/pbc.21222.
  41. Plander M, Szendrei T, Bodo I, Ivanyi JL. Successful treatment with rivaroxaban of an extended superficial vein thrombosis in a patient with acquired antithrombin deficiency due to Peg-asparaginase treatment. Ann Hematol. 2015;94(7):1257–8. doi: 10.1007/s00277-015-2368-1.