История вопроса о роли биопсии костного мозга в системе стадирования классической лимфомы Ходжкина и современный взгляд в эру ПЭТ-КТ (обзор литературы)

А.А. Даниленко, Н.А. Фалалеева, С.В. Шахтарина

Медицинский радиологический научный центр им. А.Ф. Цыба — филиал ФГБУ «НМИЦ радиологии» Минздрава России, ул. Королева, д. 4, Обнинск, Калужская область, Российская Федерация, 249036

Для переписки: Анатолий Александрович Даниленко, д-р мед. наук, ул. Королева, д. 4, Обнинск, Российская Федерация, 249036; тел.: +7(909)250-18-10; e-mail: danilenkoanatol@mail.ru

Для цитирования: Даниленко А.А., Фалалеева Н.А., Шахтарина С.В. История вопроса о роли биопсии костного мозга в системе стадирования классической лимфомы Ходжкина и современный взгляд в эру ПЭТ-КТ (обзор литературы). Клиническая онкогематология. 2023;16(4):351–60.

DOI: 10.21320/2500-2139-2023-16-4-351-360


РЕФЕРАТ

Стадирование лимфомы Ходжкина представляет собой основу для выбора оптимальной программы лечения. Неотъемлемой частью стадирования в течение долгого времени оставалась оценка костного мозга. Исследование вовлеченности костного мозга в опухолевый процесс включает в себя применение методов лучевой диагностики и морфологического исследования его образцов, получаемых методом трепанобиопсии. На протяжении пяти десятилетий использования трепанобиопсии отношение онкологов и гематологов к этой инвазивной и болезненной манипуляции остается противоречивым — от полного отрицания до необходимости проведения ее каждому или большинству пациентов. Данный обзор посвящен истории вопроса и целесообразности применения трепанобиопсии у больных классической лимфомой Ходжкина.

Ключевые слова: лимфома Ходжкина, костный мозг, трепанобиопсия.

Получено: 26 марта 2023 г.

Принято в печать: 2 сентября 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi: 10.3322/caac.21708.
  2. Sasse S, Brockelmann PJ, Goergen H, et al. Long-Term Follow-Up of Contemporary Treatment in Early-Stage Hodgkin Lymphoma: Updated Analyses of the German Hodgkin Study Group HD7, HD8, HD10, and HD11 Trials. J Clin Oncol. 2017;35:1999–2007. doi: 10.1200/JCO.2016.70.9410.
  3. Subramanian G, Basu D, Badhe B, Dutta TK. Role of bone marrow trephine biopsy in the diagnosis of marrow involvement in Hodgkin’s disease. Indian J Pathol Microbiol. 2007;50(3):640–3.
  4. Weiler-Sagie M, Kagna O, Dann EJ, et al. Characterizing bone marrow involvement in Hodgkin’s lymphoma by FDG-PET/CT. Eur J Nucl Med Mol Imaging. 2014;41(6):1133–40. doi: 10.1007/s00259-014-2706-x
  5. Ghedini G. Per la patogenesi e per la diagnosi delle malattie del sangue e degli organi emopoietici, punture esplorativa del midollo osseo. Clinic Medica Italiana. 1908;47:724–36.
  6. Seyfarth C. Eine einfache Methode zur diagnostichen Entnahme von Knochenmark beim Lebenden. Arch fur Schiffs-und Tropen-Hygiene, Pathologie und Therapie exotischer Krankheiten. 1922;26:337–41.
  7. Arinkin MI. Die Intravitale Untersuchungsmethodik des Knochenmarks. Folia Haematologica. 1929;38:233–40.
  8. Arjeff MJ. Zur Methodik der Diagnostischen Punktion des Brustbeines. Folia Haematologica. 1931;45:55.
  9. Воробьев А.И. И.А. Кассирский и его вклад в медицину. М.: Медицина, 1988.
    [Vorob’ev AI. I.A. Kassirskii i ego vklad v meditsinu. (I.A. Kassirskii and his contribution to medicine.) Moscow: Meditsina; 1988. (In Russ)]
  10. Rubinstein MA. The technic and diagnostic value of aspiration of bone marrow from the iliac crest. Ann Intern Med. 1950;32:1905–8.
  11. Bierman HR. Bone marrow aspiration of the posterior iliac crest, an additional safe site. California Med. 1952;77:138–9.
  12. Jamshidi K, Swaim WR. Bone marrow biopsy with unaltered architecture: a new biopsy device. J Lab Clin Med. 1971;77(2):335–42.
  13. Hernandez-Garcia MT, Hernandez-Nieto L, Perez-Gonzalez E, Brito-Barroso ML. Bone marrow trephine biopsy: anterior superior iliac spine versus posterior superior iliac spine. Clin Lab Haematol. 1993;15(1):15–9. doi: 10.1111/j.1365-2257.1993.tb00117.x.
  14. Tomasian A, Jennings JW. Bone marrow aspiration and biopsy: techniques and practice implications. Skeletal Radiol. 2022;51(1):81–8. doi: 10.1007/s00256-021-03882-w.
  15. Draganski E, Deason T, Craig FE. Bone Marrow Aspiration and Biopsy Performed by RNs: A Review of Clinical Practice. Am J Nurs. 2019;119(9):47–53. doi: 10.1097/01.NAJ.0000580260.18537.ca.
  16. Криволапов Ю.А. Биопсия костного мозга: научно-практическое издание. М.: Практическая медицина, 2014. 528 с.
    [Krivolapov YuA. Biopsiya kostnogo mozga: nauchno-prakticheskoe izdanie. (Bone marrow biopsy: research and practice edition.) Moscow: Prakticheskaya meditsina Publ.; 2014. 528 p. (In Russ)]
  17. Howell SJ, Grey M, Changet L, et al. The value of bone marrow examination in the staging of Hodgkin’s lymphoma: a review of 955 cases seen in a regional cancer centre. Br J Haematol. 2002;119(2):408–11. doi: 10.1046/j.1365-2141.2002.03842.x.
  18. Fend F, Kremer M. Diagnosis and classification of malignant lymphoma and related entities in the bone marrow trephine biopsy. Pathobiology. 2007;74(2):133–43. doi: 10.1159/000101712.
  19. Brunning RD, Bloomfield CD, McKenna RW, Peterson LA. Bilateral trephine bone marrow biopsies in lymphoma and other neoplastic diseases. Ann Intern Med. 1975;82(3):365–6. doi: 10.7326/0003-4819-82-3-365.
  20. Levis A, Pietrasanta D, Godio L, et al. A large-scale study of bone marrow involvement in patients with Hodgkin’s lymphoma. Clin Lymphoma. 2004;5(1):50–5. doi: 10.3816/clm.2004.n.010.
  21. Wang J, Weiss LM, Chang KL, et al. Diagnostic utility of bilateral bone marrow examination: significance of morphologic and ancillary technique study in malignancy. Cancer. 2002;94(5):1522–31. doi: 10.1002/cncr.10364.
  22. Menon NC, Buchanan JG. Bilateral trephine bone marrow biopsies in Hodgkin’s and non-Hodgkin’s lymphoma. Pathology. 1979;11(1):53–7. doi: 10.3109/00313027909063538.
  23. Almeida J, Garcia-Marcos MA, Vallejo C, et al. Results of a series of 104 consecutive bilateral bone marrow biopsy specimens in lymphoproliferative disorders. Sangre (Barc). 1995;40(5):365–8.
  24. Luoni M, Fava S, Declich PJ. Bone marrow biopsy for staging Hodgkin’s lymphoma: the value of bilateral or unilateral trephine biopsy. J Clin Oncol. 1996;14(2):682–3. doi: 10.1200/JCO.1996.14.2.682.
  25. Kluin-Nelemans HC, Noordijk EM. Staging of patients with Hodgkin’s disease: what should be done? Leukemia. 1990;4(2):132–5.
  26. Bartl R, Frisch B, Burkhardt R, et al. Assessment of bone marrow histology in the malignant lymphomas (non-Hodgkin’s): correlation with clinical factors for diagnosis, prognosis, classification and staging. Br J Haematol. 1982;51(4):511–30. doi: 10.1111/j.1365-2141.1982.tb02815.x.
  27. Straus DJ, Gaynor JJ, Myers J, et al. Prognostic factors among 185 adults with newly diagnosed advanced Hodgkin’s disease treated with alternating potentially noncross-resistant chemotherapy and intermediate-dose radiation therapy. J Clin Oncol. 1990;8(7):1173–86. doi: 10.1200/JCO.1990.8.7.1173.
  28. Даниленко А.А. Поражение костного мозга у больных лимфогранулематозом (диагностика, клинические формы, патогенез): Автореф. дис. … канд. мед. наук. М., 2004.
    [Danilenko AA. Porazhenie kostnogo mozga u bolnykh limfogranulematozom (diagnostika, klinicheskie formy, patogenez). (Bone marrow lesions in Hodgkin lymphoma patients (diagnosis, clinical presentations, pathogenesis). [dissertation] Moscow; 2004. (In Russ)]
  29. Kaplan HS. Contiguity and progression in Hodgkin’s disease. Cancer Res. 1971;31(11):1811–3.
  30. Macintyre EA, Vaughan Hudson B, Linch DC, et al. The value of staging bone marrow trephine biopsy in Hodgkin’s disease. Eur J Haematol. 1987;39(1):66–70. doi: 10.1111/j.1600-0609.1987.tb00166.x.
  31. Carbone PP, Kaplan HS, Musshoff K, et al. Report of the Committee on Hodgkin’s Disease Staging Classification. Cancer Res. 1971;31(11):1860–1.
  32. Hines-Thomas MR, Howard SC, Hudson MM, et al. Utility of bone marrow biopsy at diagnosis in pediatric Hodgkin’s lymphoma. Haematologica. 2010;95(10):1691–6. doi: 10.3324/haematol.2010.025072.
  33. Ellis ME, Diehl LF, Granger E, Elson E. Trephine needle bone marrow biopsy in the initial staging of Hodgkin disease: sensitivity and specificity of the Ann Arbor staging procedure criteria. Am J Hematol. 1989;30(3):115–20. doi: 10.1002/ajh.2830300302.25.
  34. Doll DC, Ringenberg QS, Anderson SP, et al. Bone marrow biopsy in the initial staging of Hodgkin’s disease. Med Pediatr Oncol. 1989;17(1):1–5. doi: 10.1002/mpo. 2950170102.
  35. Munker R, Hasenclever D, Brosteanu O, et al. Bone marrow involvement in Hodgkin’s disease: an analysis of 135 consecutive cases. German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 1995;13(2):403–9. doi: 10.1200/JCO.1995.13.2.403.
  36. Howard MR, Taylor PR, Lucraft HH, et al. Bone marrow examination in newly diagnosed Hodgkin’s disease: current practice in the United Kingdom. Br J Cancer. 1995;71(1):210–2. doi: 10.1038/bjc.1995.43.
  37. MacCormick R, Covert A, Gross M. Primary bony involvement in Hodgkin’s disease. CMAJ. 1989;140(9):1059–60.
  38. Borg MF, Chowdhury AD, Bhoopal S, Benjamin CS. Bone involvement in Hodgkin’s disease. Australas Radiol. 1993;37(1):63–6. doi: 10.1111/j.1440-1673.1993.tb 00011.x.
  39. Ostrowski ML, Inwards CY, Strickler JG. Osseous Hodgkin disease. Cancer. 1999;85(5):1166–78. doi: 10.1002/(sici)1097-0142(19990301)85:5<1166::aid-cncr22>3.0.co;2-v.
  40. Langley CR, Garrett SJ, Urand J, et al. Primary multifocal osseous Hodgkin’s lymphoma. World J Surg Oncol. 2008;6:34. doi: 10.1186/1477-7819-6-34.
  41. Anderson KC, Kaplan WD, Leonard RC, et al. Role of 99mTc methylene diphosphonate bone imaging in the management of lymphoma. Cancer Treat Rep. 1985;69(12):1347–51.
  42. Ferrant A, Rodhain J, Michaux JL, et al. Detection of skeletal involvement in Hodgkin’s disease: A comparison of radiography, bone scanning, and bone marrow biopsy in 38 patients. Cancer. 1975;35(5):1346–53. doi: 10.1002/1097-0142(197505)35:5<1346::aid-cncr2820350516>3.0.co;2-i.
  43. Daffner RH, Lupetin AR, Dash N, et al. MRI in the detection of malignant infiltration of bone marrow. Am J Roentgenol. 1986;146(2):353–8. doi: 10.2214/ajr.146.2.353.
  44. Vogler JB, Murphy WA. Bone marrow imaging. Radiology. 1988;168(3):679–93. doi: 10.1148/radiology.168.3.3043546.
  45. Guckel F, Semmler W, Dohner H, et al. NMR tomographic imaging of bone marrow infiltrates in malignant lymphoma. Rofo. 1989;150(1):26–31. doi: 10.1055/s-2008-1046968.
  46. Chiarilli MG, Delli Pizzi A, Mastrodicasa D, et al. Bone marrow magnetic resonance imaging: physiologic and pathologic findings that radiologist should know. Radiol Med. 2021;126(2):264–76. doi: 10.1007/s11547-020-01239-2.
  47. Hoane BR, Shields AF, Porter BA, Shulman HM. Detection of lymphomatous bone marrow involvement with magnetic resonance imaging. Blood. 1991;78(3):728–38.
  48. Dohner H, Guckel F, Knauf W, et al. Magnetic resonance imaging of bone marrow in lymphoproliferative disorders: correlation with bone marrow biopsy. Br J Haematol. 1989;73(1):12–7. doi: 10.1111/j.1365-2141.1989.tb00211.x.
  49. Linden A, Zankovich R, Theissen P, et al. Malignant lymphoma: bone marrow imaging versus biopsy. Radiology. 1989;173(2):335–9. doi: 10.1148/radiology.173.2.2678249.
  50. Shields AF, Porter BA, Churchley S, et al. The detection of bone marrow involvement by lymphoma using magnetic resonance imaging. J Clin Oncol. 1987;5(2):225–30. doi: 10.1200/JCO.1987.5.2.225.
  51. Tardivon AA, Munck JN, Shapeero LG. Can clinical data help to screen patients with lymphoma for MR imaging of bone marrow? Ann Oncol. 1995;6(8):795–800. doi: 10.1093/oxfordjournals.annonc.a059318.
  52. Skillings JR, Bramwell V, Nicholson RL, et al. A prospective study of magnetic resonance imaging in lymphoma staging. Cancer. 1991;67(7):1838–43. doi: 10.1002/1097-0142(19910401)67:7<1838::aid-cncr2820670704>3.0.co;2-o.
  53. Vinnicombe SJ, Reznek RH. Computerised tomography in the staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2003;30(Suppl 1):S42–S55. doi: 10.1007/s00259-003-1159-4.
  54. Kniseley RM, Andrews GA, Edwards CL, Hayes RL. Bone-marrow and skeletal scanning. Radiol Clin North Am. 1969;7(2):265–80.
  55. Lilien DL, Berger HG, Anderson DP, Bennett LR. 111 In-chloride: a new agent for bone marrow imaging. J Nucl Med. 1973;14(3):184–6.
  56. Krause T, Eisenmann N, Reinhardt M, et al. Bone marrow scintigraphy using technetium-99m antigranulocyte antibody in malignant lymphomas. Ann Oncol. 1999;10(1):79–85. doi: 10.1023/a:1008356910239.
  57. Lister TA, Crowther D, Sutcliffe SB, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7(11):1630–6. doi: 10.1200/JCO.1989.7.11.1630.
  58. Dahlbom M, Hoffman EJ, Hoh CK, et al. Whole-body positron emission tomography: Part I. Methods and performance characteristics. J Nucl Med. 1992;33(6):1191–9.
  59. Hoh CK, Hawkins RA, Glaspy JA, et al. Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr. 1993;17(4):582–9. doi: 10.1097/00004728-199307000-00012.
  60. Basu S, Hess S, Nielsen Braad PE, et al. The Basic Principles of FDG-PET/CT Imaging. PET Clin. 2014;9(4):355–70. doi: 10.1016/j.cpet.2014.07.006.
  61. Paul R. Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med. 1987;28(3):288–92.
  62. Newman JS, Francis IR, Kaminski MR, Wahl RL. Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: correlation with CT. Radiology. 1994;190(1):111–6. doi: 10.1148/radiology.190.1.8259386.
  63. Hoh CK, Glaspy J, Rosen P, et al. Whole-body FDG-PET imaging for staging of Hodgkin’s disease and lymphoma. J Nucl Med. 1997;38(3):343–8.
  64. Buchmann I, Reinhardt M, Elsner K, et al. 2-(fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer. 2001;91(5):889–99.
  65. Schaefer NG, Hany TF, Taverna C et al. Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging – do we need contrast-enhanced CT? Radiology. 2004;232(3):823–9. doi: 10.1148/radiol.2323030985.
  66. Hoh CK, Hawkins RA, Dahlbom M, et al. Whole body skeletal imaging with [18F]fluoride ion and PET. J Comput Assist Tomogr. 1993;17(1):34–41. doi: 10.1097/00004728-199301000-00005.
  67. Bangerter M, Moog F, Buchmann I, et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol. 1998;9(10):1117–22. doi: 10.1023/a:1008486928190.
  68. Meignan M, Gallamini A, Haioun C. Report on the First International Workshop on Interim-PET-Scan in Lymphoma. Leuk Lymphoma. 2009;50(8):1257–60. doi: 10.1080/10428190903040048.
  69. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58. doi: 10.1200/JCO.2013.53.5229.
  70. Moulin-Romsee G, Hindie E, Cuenca X, et al. (18)F-FDG PET/CT bone/bone marrow findings in Hodgkin’s lymphoma may circumvent the use of bone marrow trephine biopsy at diagnosis staging. Eur J Nucl Med Mol Imaging. 2010;37(6):1095–105. doi: 10.1007/s00259-009-1377-5.
  71. Adams HJ, Kwee TC, de Keizer B, et al. Systematic review and meta-analysis on the diagnostic performance of FDG-PET/CT in detecting bone marrow involvement in newly diagnosed Hodgkin lymphoma: is bone marrow biopsy still necessary? Ann Oncol. 2014;25(5):921–7. doi: 10.1093/annonc/mdt533.
  72. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. doi: 10.1200/JCO.2013.54.8800.
  73. Puccini B, Nassi L, Minoia C, et al. Role of bone marrow biopsy in staging of patients with classical Hodgkin’s lymphoma undergoing positron emission tomography/computed tomography. Ann Hematol. 2017;96(7):1147–53. doi: 10.1007/s00277-017-2996-8.
  74. Voltin CA, Goergen H, Baues C, et al. Value of bone marrow biopsy in Hodgkin lymphoma patients staged by FDG PET: results from the German Hodgkin Study Group trials HD16, HD17, and HD18. Ann Oncol. 2018;29(9):1926–31. doi: 10.1093/annonc/mdy250.
  75. Gallamini A. Hodgkin lymphoma staging 50 years later: no more knives or needles! Ann Oncol. 2018;29(9):1892–3. doi: 10.1093/annonc/mdy262.
  76. Gaudio F, Pedote P, Niccoli Asabella A, et al. Bone Involvement in Hodgkin’s Lymphoma: Clinical Features and Outcome. Acta Haematol. 2018;140(3):178–82. doi: 10.1159/000490489.
  77. Kwee TC, de Klerk JMH, Nix M, et al. Benign Bone Conditions That May Be FDG-avid and Mimic Malignancy. Semin Nucl Med. 2017;47(4):322–51. doi: 10.1053/j.semnuclmed. 2017.02.004.

Роль лейкоцитов в формировании нейтрофильных внеклеточных ловушек и тромбообразовании при Ph-негативных миелопролиферативных новообразованиях (обзор литературы)

Б.Т. Джумабаева

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Болдукыз Толгонбаевна Джумабаева, д-р мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(495)612-64-63, +7(926)271-92-82; e-mail: bola.blood@yandex.ru

Для цитирования: Джумабаева Б.Т. Роль лейкоцитов в формировании нейтрофильных внеклеточных ловушек и тромбообразовании при Ph-негативных миелопролиферативных новообразованиях (обзор литературы). Клиническая онкогематология. 2023;16(3):263–7.

DOI: 10.21320/2500-2139-2023-16-3-263-267


РЕФЕРАТ

Тромботические осложнения нередко служат причиной смерти пациентов с хроническими Ph-негативными миелопролиферативными новообразованиями (МПН). Несмотря на многочисленные исследования, патогенез тромбообразования при МПН остается неясным. Его механизм сложный, многофакторный. Один из основных этапов тромбогенеза характеризуется активацией клеточных механизмов и образованием нейтрофильных внеклеточных ловушек (neutrophil extracellular traps — NET). NET состоят из нитей ДНК, гистонов, гранулярных белков и наряду с уничтожением патогенов обеспечивают идеальную матрицу для активации тромбоцитов и механизмов коагуляции.

Ключевые слова: миелопролиферативные новообразования, нейтрофилы, тромбоз, нейтрофильные внеклеточные ловушки (NET).

Получено: 14 декабря 2022 г.

Принято в печать: 29 мая 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. 2017;129(6):680–92. doi: 10.1182/blood-2016-10-695957.
  2. Falanga A, Marchetti M. Thrombosis in Myeloproliferative Neoplasms. Semin Thromb Hemost. 2014;40(3):348–58. doi:1055/s-0034-1370794.
  3. Barbui T, Finazzi G, Falanga, A. Myeloproliferative neoplasms and thrombosis. Blood. 2013;122(13):2176–84. doi: 1182/blood-2013-03-460154.
  4. Artoni A, Bucciarelli P, Martinelli I. Cerebral thrombosis and myeloproliferative neoplasms. Curr Neurol Neurosci Rep. 2014;14(11):496. doi:1007/s11910-014-0496-y.
  5. Kaifie A, Kirschner M, Wolf D, et al. Study Alliance Leukemia (SAL). Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): analysis from the German SAL-MPN-registry. J Hematol Oncol. 2016;9(1):18. doi: 10.1186/s13045-016-0242-9.
  6. Hultcrantz M, Bjorkholm M, Dickman PW, et al. Risk for arterial and venous thrombosis in patients with myeloproliferative neoplasms: A population-based cohort study. Ann Intern Med. 2018;168(5):317–25. doi:7326/M17-0028.
  7. Smalberg JH, Arends LR, Valla DC, et al. Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood. 2012;120(25):4921–8. doi: 10.1182/blood-2011-09-376517.
  8. Gangat N, Wolanskyj AP, Schwager SM, et al. Leukocytosis at diagnosis and the risk of subsequent thrombosis in patients with low-risk essential thrombocythemia and polycythemia vera. 2009;115(24):5740–5. doi: 10.1002/cncr.24664
  9. Tefferi A, Gangat N, Wolanskyj A. The interaction between leukocytosis and other risk factors for thrombosis in essential thrombocythemia. Blood. 2007;109(9): doi: 10.1182/blood-2007-01-066985.
  10. Marin Oyarzun C.P, Heller P.G. Platelets as mediators of thromboinflammation in chronic myeloproliferative neoplasms. Front Immunol. 2019;10: doi: 10.3389/fimmu.2019.01373.
  11. Ferrer-Marin F, Cuenca-Zamora EJ, Guijarro-Carrillo PJ, Teruel-Montoya R. Emerging Role of Neutrophils in the Thrombosis of Chronic Myeloproliferative Neoplasms. Int J Mol Sci. 2021;22(3):1143. doi: 10.3390/ijms22031143.
  12. Landolfi R, Di Gennaro L, Barbui T, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. 2007;109(6):2446–52. doi: 10.1182/blood-2006-08-042515.
  13. Tefferi A, Pardanani A. Myeloproliferative neoplasms: A contemporary review. JAMA Oncol. 2015;1(1):97–105. doi: 1001/jamaoncol.2015.89.
  14. Carobbio A, Ferrari A, Masciulli A, et al. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: A systematic review and meta-analysis. Blood Adv. 2019;3(11):1729–37. doi: 10.1182/bloodadvances.
  15. Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: Is leukocytosis a causative factor? 2009;114(4):759–63. doi: 10.1182/blood-2009-02-206797.
  16. Campbell PJ, MacLean C, Beer PA, et al. Correlation of blood counts with vascular complications in essential thrombocythemia: Analysis of the prospective PT1 cohort. 2012;120(7):1409–11. doi: 10.1182/blood-2012-04-424911.
  17. Carobbio A, Thiele J, Passamonti F, et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: An international study of 891 patients. 2011;117(22):5857–9. doi: 10.1182/blood-2011-02-339002.
  18. Repsold L, Joubert AM. Platelet Function, Role in Thrombosis, Inflammation, and Consequences in Chronic Myeloproliferative Disorders. Cells. 2021;10(11):3034. doi: 10.3390/cells10113034.
  19. Nangalia J, Green AR. Myeloproliferative neoplasms: From origins to outcomes. Hematology Am Soc Hematol Educ Program. 2017;2017(1):470–9. doi: 10.1182/asheducation-2017.1.470.
  20. Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. doi: 10.1126/scitranslmed.aan8292.
  21. Wilkins BS. Myeloproliferative neoplasms. Diagn Histopathol. 2021;27(9):373–9.
  22. Harrison CN, Lee JS. Myeloproliferative neoplasms. 2017;45:275–9.
  23. Edelmann B, Gupta N, Schnoeder TM, et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest. 2018;128(10):4359–71. doi: 10.1172/JCI90312.
  24. Falanga A, Marchetti M, Barbui T, Smith CW. Pathogenesis of Thrombosis in Essential Thrombocythemia and Polycythemia Vera: The Role of Neutrophils. Semin Hematol. 2005;42(4):239–47. doi: 10.1053/j.seminhematol.2005.05.023.
  25. Gupta N, Edelmann B, Schnoeder TM, et al. JAK2-V617F activates β1-integrin-mediated adhesion of granulocytes to vascular cell adhesion molecule 1. 2017;31(5):1223–6. doi: 10.1038/leu.2017.26.
  26. Lisman T. Platelet–neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;37(3):567–76. doi: 10.1007/s00441-017-2727-4.
  27. Arellano-Rodrigo E, Alvarez-Larran A, Reverter JC, et al. Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. 2006;91(2):169–75.
  28. Li, P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–62. doi:1084/jem.20100239.
  29. Leshner M, Wang S, Lewis C, et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307. doi:3389/fimmu.2012.00307.
  30. Thalin S, Hisada Y, Lundstrom S, et al. Neutrophil Extracellular Traps: Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis Review. Arterioscler Thromb Vasc Biol. 2019;39(9):1724–38. doi: 10.1161/ATVBAHA.119.312463.
  31. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87. doi:1038/nm.4294.
  32. Desai J, Mulay SR, Nakazawa D, Anders HJ. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol Life Sci. 2016;73(11–12):2211–9. doi:1007/s00018-016-2195-0.
  33. Von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35. doi:1084/jem.20112322.
  34. Massberg S, Grahl L, von Bruehl M-L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96. doi:1038/nm.2184.
  35. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–5. doi: 10.1073/pnas.1005743107.
  36. Steppich BA, Seitz I, Busch G, et al. Modulation of tissue factor and tissue factor pathway inhibitor-1 by neutrophil proteases. Thromb Haemost. 2008;100(6):1068–75.
  37. Jorda RE, Nelson RM, Kilpatrick J, et al. Inactivation of human antithrombin by neutrophil elastase. Kinetics of the heparin-dependent reaction. J Biol Chem. 1989;264(18):10493–500.
  38. Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis—the journey of TF through NETs. Front Immunol. 2012;3:385. doi:3389/fimmu.2012.00385.
  39. Schmidt S, Daniliants D, Hiller E, et al. Increased levels of NETosis in myeloproliferative neoplasms are not linked to thrombotic events. Blood Adv. 2021;5(18):3515–27. doi: 10.1182/bloodadvances.2020004061.

Классическая лимфома Ходжкина: структура опухоли и прогностическое значение иммунного микроокружения

А.А. Гусак, К.В. Лепик, Л.В. Федорова, В.В. Маркелов, В.В. Байков

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Артем Александрович Гусак, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: artemgusak@yandex.ru

Для цитирования: Гусак А.А., Лепик К.В., Федорова Л.В., Маркелов В.В., Байков В.В. Классическая лимфома Ходжкина: структура опухоли и прогностическое значение иммунного микроокружения. Клиническая онкогематология. 2023;16(3):242–62.

DOI: 10.21320/2500-2139-2023-16-3-242-262


РЕФЕРАТ

Классическая лимфома Ходжкина (ЛХ) представляет собой уникальное злокачественное новообразование лимфатической системы, характеризующееся наличием опухолевых клеток (Ходжкина и Рид—Штернберга) в воспалительном и иммуносупрессивном микроокружении. Микроокружение ЛХ — комплексная динамичная среда, включающая иммунные клетки, стромальные элементы и компоненты внеклеточного матрикса, которые взаимодействуют друг с другом и с опухолевыми клетками. От характера этих взаимодействий во многом зависит как прогрессирование заболевания, так и ответ на терапию. В настоящее время возрастает интерес к изучению структуры и функции микроокружения ЛХ, его прогностического значения, потенциала его компонентов в качестве новых мишеней для лекарственной терапии. В последнее десятилетие значительно улучшились результаты лечения рефрактерных форм ЛХ, в частности, за счет применения ингибиторов PD-1 ниволумаба и пембролизумаба. Высокая чувствительность ЛХ к анти-PD-1-терапии обусловлена формированием PD-1/PD-L1-ассоциированной ниши в ткани опухоли. Основой ниши является интенсивная экспрессия PD-L1 опухолевыми клетками, макрофагами и экспрессия его рецептора PD-1 Т-клетками и М2-макрофагами. Накапливается все больше сведений о возможных механизмах противоопухолевого ответа у пациентов с ЛХ при анти-PD-1-терапии, противоречащих концепции классического CD8-опосредованного ответа при солидных опухолях. Вероятно, цитотоксические эффекты анти-PD-1-терапии в ткани ЛХ достигаются путем взаимодействия между опухолевыми клетками, макрофагами и CD4-позитивными Т-лимфоцитами. В обзоре представлены сведения о структурных и регуляторных взаимоотношениях опухолевых клеток и элементов микроокружения, описываются новые терапевтические подходы, основанные на использовании в качестве мишеней различных компонентов опухолевого микроокружения, суммированы имеющиеся к настоящему времени данные о возможности прогнозирования на основе изучения характеристик микроокружения ЛХ.

Ключевые слова: классическая лимфома Ходжкина, микроокружение, иммунные контрольные точки, поляризация макрофагов, иммуносупрессивная ниша.

Получено: 12 апреля 2023 г.

Принято в печать: 25 июня 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14(8):517–34. doi: 10.1038/nrc3774.
  2. Gallaher JA, Brown JS, Anderson ARA. The impact of proliferation-migration trade-offs on phenotypic evolution in cancer. Sci Rep. 2019;9(1):2425. doi: 10.1038/s41598-019-39636-x.
  3. Kuppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Invest. 2012;122(10):3439–47. doi: 10.1172/JCI61245.
  4. Hertel CB, Zhou XG, Hamilton-Dutoit SJ, Junker S. Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma. Oncogene. 2002;21(32):4908–20. doi: 10.1038/sj.onc.1205629.
  5. Kuppers R, Rajewsky K. The origin of Hodgkin and Reed/Sternberg cells in Hodgkin’s disease. Annu Rev Immunol. 1998;16:471–93. doi: 10.1146/annurev.immunol.16.1.471.
  6. Schwering I, Brauninger A, Klein U, et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;101(4):1505–12. doi: 10.1182/blood-2002-03-0839.
  7. Weniger MA, Kuppers R. NF-κB deregulation in Hodgkin lymphoma. Semin Cancer Biol. 2016;39:32–9. doi: 10.1016/j.semcancer.2016.05.001.
  8. Tiacci E, Ladewig E, Schiavoni G, et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood. 2018;131(22):2454–65. doi: 10.1182/blood-2017-11-814913.
  9. Garces de Los Fayos Alonso I, Liang HC, Turner SD, et al. The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas. Cancers (Basel). 2018;10(4):93. doi: 10.3390/cancers10040093.
  10. Jundt F, Anagnostopoulos I, Forster R, et al. Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood. 2002;99(9):3398–403. doi: 10.1182/blood.v99.9.3398.
  11. Zheng B, Fiumara P, Li YV, et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood. 2003;102(3):1019–27. doi: 10.1182/blood-2002-11-3507.
  12. Aravinth SP, Rajendran S, Li Y, et al. Epstein-Barr virus-encoded LMP1 induces ectopic CD137 expression on Hodgkin and Reed-Sternberg cells via the PI3K-AKT-mTOR pathway. Leuk Lymphoma. 2019;60(11):2697–704. doi: 10.1080/10428194.2019.1607330.
  13. Tiacci E, Doring C, Brune V, et al. Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood. 2012;120(23):4609–20. doi: 10.1182/blood-2012-05-428896.
  14. Gruss HJ, Hirschstein D, Wright B, et al. Expression and function of CD40 on Hodgkin and Reed-Sternberg cells and the possible relevance for Hodgkin’s disease. Blood. 1994;84(7):2305–14.
  15. Gruss HJ, Duyster J, Herrmann F. Structural and biological features of the TNF receptor and TNF ligand superfamilies: interactive signals in the pathobiology of Hodgkin’s disease. Ann Oncol. 1996;7(Suppl 4):19–26. doi: 10.1093/annonc/7.suppl_4.s19.
  16. Yurchenko M, Sidorenko SP. Hodgkin’s lymphoma: the role of cell surface receptors in regulation of tumor cell fate. Exp Oncol. 2010;32(4):214–23.
  17. Chiu A, Xu W, He B, et al. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood. 2007;109(2):729–39. doi: 10.1182/blood-2006-04-015958.
  18. Brune MM, Juskevicius D, Haslbauer J, et al. Genomic Landscape of Hodgkin Lymphoma. Cancers (Basel). 2021;13(4):682. doi: 10.3390/cancers13040682.
  19. Steidl C, Telenius A, Shah SP, et al. Genome-wide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood. 2010;116(3):418–27. doi: 10.1182/blood-2009-12-257345.
  20. Thomas RK, Kallenborn A, Wickenhauser C, et al. expression of c-FLIP in Hodgkin and Reed-Sternberg cells. Am J Pathol. 2002;160(4):1521–8. doi: 10.1016/S0002-9440(10)62578-3.
  21. Zhao X, Qiu W, Kung J, et al. Bortezomib induces caspase-dependent apoptosis in Hodgkin lymphoma cell lines and is associated with reduced c-FLIP expression: a gene expression profiling study with implications for potential combination therapies. Leuk Res. 2008;32(2):275–85. doi: 10.1016/j.leukres.2007.05.024.
  22. Maggio EM, Van Den Berg A, de Jong D, et al. Low frequency of FAS mutations in Reed-Sternberg cells of Hodgkin’s lymphoma. Am J Pathol. 2003;162(1):29–35. doi: 10.1016/S0002-9440(10)63795-9.
  23. Metkar SS, Naresh KN, Redkar AA, et al. Expression of Fas and Fas ligand in Hodgkin’s disease. Leuk Lymphoma. 1999;33(5–6):521–30. doi: 10.3109/10428199909058456.
  24. Verbeke CS, Wenthe U, Grobholz R, Zentgraf H. Fas ligand expression in Hodgkin lymphoma. Am J Surg Pathol. 2001;25(3):388–94. doi: 10.1097/00000478-200103000-00014.
  25. Mathas S, Lietz A, Anagnostopoulos I, et al. c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med. 2004;199(8):1041–52. doi: 10.1084/jem.20031080.
  26. Weniger MA, Kuppers R. Molecular biology of Hodgkin lymphoma. Leukemia. 2021;35(4):968–81. doi: 10.1038/s41375-021-01204-6.
  27. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J Clin Oncol. 2016;34(23):2690–7. doi: 10.1200/JCO.2016.66.4482.
  28. Ai L, Xu A, Xu J. Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. Adv Exp Med Biol. 2020;1248:33–59. doi: 10.1007/978-981-15-3266-5_3.
  29. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi: 10.1182/blood-2010-05-282780.
  30. Green MR, Rodig S, Juszczynski P, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18(6):1611–8. doi: 10.1158/1078-0432.CCR-11-1942.
  31. Steidl C, Shah SP, Woolcock BW, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471(7338):377–81. doi: 10.1038/nature09754.
  32. Reichel J, Chadburn A, Rubinstein PG, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood. 2015;125(7):1061–72. doi: 10.1182/blood-2014-11-610436.
  33. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol. 2021;12:636568. doi: 10.3389/fimmu.2021.636568.
  34. Thibodeau J, Bourgeois-Daigneault MC, Lapointe R. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology. 2012;1(6):908–16. doi: 10.4161/onci.21205.
  35. Roemer MG, Advani RH, Redd RA, et al. Classical Hodgkin Lymphoma with Reduced β2M/MHC Class I Expression Is Associated with Inferior Outcome Independent of 9p24.1 Status. Cancer Immunol Res. 2016;4(11):910–6. doi: 10.1158/2326-6066.CIR-16-0201.
  36. Roemer MGM, Redd RA, Cader FZ, et al. Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. J Clin Oncol. 2018;36(10):942–50. doi: 10.1200/JCO.2017.77.3994.
  37. Murray P, Bell A. Contribution of the Epstein-Barr Virus to the Pathogenesis of Hodgkin Lymphoma. Curr Top Microbiol Immunol. 2015;390(Pt 1):287–313. doi: 10.1007/978-3-319-22822-8_12.
  38. Xu M, Zhang WL, Zhu Q, et al. Genome-wide profiling of Epstein-Barr virus integration by targeted sequencing in Epstein-Barr virus associated malignancies. Theranostics. 2019;9(4):1115–24. doi: 10.7150/thno.29622.
  39. Massini G, Siemer D, Hohaus S. EBV in Hodgkin Lymphoma. Mediterr J Hematol Infect Dis. 2009;1(2):e2009013. doi: 10.4084/MJHID.2009.013.
  40. Murray PG, Young LS. An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood. 2019;134(7):591–6. doi: 10.1182/blood.2019000568.
  41. Carbone A, Gloghini A. Epstein Barr Virus-Associated Hodgkin Lymphoma. Cancers (Basel). 2018;10(6):163. doi: 10.3390/cancers10060163.
  42. Santisteban-Espejo A, Perez-Requena J, Atienza-Cuevas L, et al. Prognostic Role of the Expression of Latent-Membrane Protein 1 of Epstein-Barr Virus in Classical Hodgkin Lymphoma. Viruses. 2021;13(12):2523. doi: 10.3390/v13122523.
  43. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27. doi: 10.1038/nrc2542.
  44. Rengstl B, Newrzela S, Heinrich T, et al. Incomplete cytokinesis and re-fusion of small mononucleated Hodgkin cells lead to giant multinucleated Reed-Sternberg cells. Proc Natl Acad Sci USA. 2013;110(51):20729–34. doi: 10.1073/pnas.1312509110.
  45. Aldinucci D, Gloghini A, Pinto A, et al. The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol. 2010;221(3):248–63. doi: 10.1002/path.2711.
  46. Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36(7):1720–48. doi: 10.1038/s41375-022-01620-2.
  47. Bennett MH, Tu A, Hudson GV. Analysis of grade 1 Hodgkin’s disease (Report no 6). Clin Radiol. 1981;32(5):491–8. doi: 10.1016/s0009-9260(81)80174-2.
  48. Bennett MH, MacLennan KA, Easterling MJ, et al. The prognostic significance of cellular subtypes in nodular sclerosing Hodgkin’s disease: an analysis of 271 non-laparotomised cases (BNLI report no. 22). Clin Radiol. 1983;34(5):497–501. doi: 10.1016/s0009-9260(83)80148-2.
  49. MacLennan KA, Bennett MH, Tu A, et al. Relationship of histopathologic features to survival and relapse in nodular sclerosing Hodgkin’s disease. A study of 1659 patients. Cancer. 1989;64(8):1686–93. doi: 10.1002/1097-0142(19891015)64:8<1686::aid-cncr2820640822>3.0.co;2-i.
  50. Van Spronsen DJ, Vrints LW, Hofstra G, et al. Disappearance of prognostic significance of histopathological grading of nodular sclerosing Hodgkin’s disease for unselected patients, 1972–92. Br J Haematol. 1997;96(2):322–7. doi: 10.1046/j.1365-2141.1997.d01-2010.x.
  51. Pileri SA, Ascani S, Leoncini L, et al. Hodgkin’s lymphoma: the pathologist’s viewpoint. J Clin Pathol. 2002;55(3):162–76. doi: 10.1136/jcp.55.3.162.
  52. Lorenzen J, Thiele J, Fischer R. The mummified Hodgkin cell: cell death in Hodgkin’s disease. J Pathol. 1997;182(3):288–98. doi: 10.1002/(SICI)1096-9896(199707)182:3<288::AID-PATH859>3.0.CO;2-3.
  53. Eberle FC, Mani H, Jaffe ES. Histopathology of Hodgkin’s lymphoma. Cancer J. 2009;15(2):129–37. doi: 10.1097/PPO.0b013e31819e31cf.
  54. Wang HW, Balakrishna JP, Pittaluga S, Jaffe ES. Diagnosis of Hodgkin lymphoma in the modern era. Br J Haematol. 2019;184(1):45–59. doi: 10.1111/bjh.15614.
  55. Tzankov A, Bourgau C, Kaiser A, et al. Rare expression of T-cell markers in classical Hodgkin’s lymphoma. Mod Pathol. 2005;18(12):1542–9. doi: 10.1038/modpathol.3800473.
  56. Venkataraman G, Song JY, Tzankov A, et al. Aberrant T-cell antigen expression in classical Hodgkin lymphoma is associated with decreased event-free survival and overall survival. Blood. 2013;121(10):1795–804. doi: 10.1182/blood-2012-06-439455.
  57. Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–73. doi: 10.7150/jca.17648.
  58. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118(1):9–16. doi: 10.1038/bjc.2017.434.
  59. Andre MPE, Carde P, Viviani S, et al. Long-term overall survival and toxicities of ABVD vs BEACOPP in advanced Hodgkin lymphoma: A pooled analysis of four randomized trials. Cancer Med. 2020;9(18):6565–75. doi: 10.1002/cam4.3298.
  60. Engert A, Diehl V, Franklin J, et al. Escalated-Dose BEACOPP in the treatment of patients with advanced-stage Hodgkin’s lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol. 2009;27(27):4548–54. doi: 10.1200/JCO.2008.19.8820.
  61. Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: A randomised trial. Lancet. 2002;359(9323):2065–71. doi: 10.1016/S0140-6736(02)08938-9.
  62. Arai S, Fanale M, Devos S, et al. Defining a Hodgkin lymphoma population for novel therapeutics after relapse from autologous hematopoietic cell transplant. Leuk Lymphoma. 2013;54(11):2531–3. doi: 10.3109/10428194.2013.798868.
  63. Chen R, Gopal A, Smith SE, et al. Five-Year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2016;128(12):1562–6. doi: 10.1182/blood-2016-02-699850.
  64. Armand P, Engert A, Younes A, et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: Extended follow-up of the multicohort single-arm phase II checkmate 205 trial. J Clin Oncol. 2018;36(14):1428–39. doi: 10.1200/JCO.2017.76.0793.
  65. Lepik KV, Mikhailova NB, Moiseev IS, et al. Nivolumab for the treatment of relapsed and refractory classical Hodgkin lymphoma after ASCT and in ASCT-naive patients. Leuk Lymphoma. 2019;60(9):2316–9. doi: 10.1080/10428194.2019.1573368.
  66. Flores MBA, Corvinos MSa, Elez MM, et al. A new approach to the study of Hodgkin lymphoma by flow cytometry. Pathology. 2023;55(1):86–93. doi: 10.1016/j.pathol.2022.07.005.
  67. Cader FZ, Schackmann RCJ, Hu X, et al. Mass cytometry of Hodgkin lymphoma reveals a CD4+ regulatory T-cell-rich and exhausted T-effector microenvironment. Blood. 2018;132(8):825–36. doi: 10.1182/blood-2018-04-843714.
  68. Scott DW, Steidl C. The classical Hodgkin lymphoma tumor microenvironment: macrophages and gene expression-based modeling. Hematology Am Soc Hematol Educ Program. 2014;2014(1):144–50. doi: 10.1182/asheducation-2014.1.144.
  69. Carey CD, Gusenleitner D, Lipschitz M, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood. 2017;130(22):2420–30. doi: 10.1182/blood-2017-03-770719.
  70. Elaldi R, Hemon P, Petti L, et al. High Dimensional Imaging Mass Cytometry Panel to Visualize the Tumor Immune Microenvironment Contexture. Front Immunol. 2021;12:666233. doi: 10.3389/fimmu.2021.666233.
  71. Ptacek J, Locke D, Finck R, et al. Multiplexed ion beam imaging (MIBI) for characterization of the tumor microenvironment across tumor types. Lab Invest. 2020;100(8):1111–23. doi: 10.1038/s41374-020-0417-4.
  72. Aldinucci D, Celegato M, Casagrande N. Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance. Cancer Lett. 2016;380(1):243–52. doi: 10.1016/j.canlet.2015.10.007.
  73. Aldinucci D, Lorenzon D, Cattaruzza L, et al. Expression of CCR5 receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer. 2008;122(4):769–76. doi: 10.1002/ijc.23119.
  74. Van den Berg A, Visser L, Poppema S. High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltrate in Hodgkin’s lymphoma. Am J Pathol. 1999;154(6):1685–91. doi: 10.1016/S0002-9440(10)65424-7.
  75. Hnatkova M, Mocikova H, Trneny M, Zivny J. The biological environment of Hodgkin’s lymphoma and the role of the chemokine CCL17/TARC. Prague Med Rep. 2009;110(1):35–41.
  76. Niens M, Visser L, Nolte IM, et al. Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22. Br J Haematol. 2008;140(5):527–36. doi: 10.1111/j.1365-2141.2007.06964.x.
  77. Cattaruzza L, Gloghini A, Olivo K, et al. Functional coexpression of interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed-Sternberg cells: Involvement of IL-7 in tumor cell growth and microenvironmental interactions of Hodgkin’s lymphoma. Int J Cancer. 2009;125(5):1092–101. doi: 10.1002/ijc.24389.
  78. Vera-Lozada G, Minnicelli C, Segges P, et al. Interleukin 10 (IL-10) proximal promoter polymorphisms beyond clinical response in classical Hodgkin lymphoma: Exploring the basis for the genetic control of the tumor microenvironment. Oncoimmunology. 2018;7(5):e1389821. doi: 10.1080/2162402X.2017.1389821.
  79. Hsu SM, Lin J, Xie SS, et al. Abundant expression of transforming growth factor-beta 1 and -beta 2 by Hodgkin’s Reed-Sternberg cells and by reactive T lymphocytes in Hodgkin’s disease. Hum Pathol. 1993;24(3):249–55. doi: 10.1016/0046-8177(93)90034-e.
  80. Kadin ME, Agnarsson BA, Ellingsworth LR, Newcom SR. Immunohistochemical evidence of a role for transforming growth factor beta in the pathogenesis of nodular sclerosing Hodgkin’s disease. Am J Pathol. 1990;136(6):1209–14.
  81. Maggio E, van den Berg A, Diepstra A, et al. Chemokines, cytokines and their receptors in Hodgkin’s lymphoma cell lines and tissues. Ann Oncol. 2002;13(Suppl 1):52–6. doi: 10.1093/annonc/13.s1.52.
  82. Fischer M, Juremalm M, Olsson N, et al. Expression of CCL5/RANTES by Hodgkin and Reed-Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. Int J Cancer. 2003;107(2):197–201. doi: 10.1002/ijc.11370.
  83. Liu Y, Sattarzadeh A, Diepstra A, et al. The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin Cancer Biol. 2014;24:15–22. doi: 10.1016/j.semcancer.2013.07.002.
  84. Skinnider BF, Mak TW. The role of cytokines in classical Hodgkin lymphoma. Blood. 2002;99(12):4283–97. doi: 10.1182/blood-2002-01-0099.
  85. Machado L, Jarrett R, Morgan S, et al. Expression and function of T cell homing molecules in Hodgkin’s lymphoma. Cancer Immunol Immunother. 2009;58(1):85–94. doi: 10.1007/s00262-008-0528-z.
  86. Opinto G, Agostinelli C, Ciavarella S, et al. Hodgkin Lymphoma: A Special Microenvironment. J Clin Med. 2021;10(20):4665. doi: 10.3390/jcm10204665.
  87. Zijtregtop EAM, Tromp I, Dandis R, et al. The Prognostic Value of Eight Immunohistochemical Markers Expressed in the Tumor Microenvironment and on Hodgkin Reed-Sternberg Cells in Pediatric Patients With Classical Hodgkin Lymphoma. Pathol Oncol Res. 2022;28:1610482. doi: 10.3389/pore.2022.1610482.
  88. Baumforth KR, Birgersdotter A, Reynolds GM, et al. Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates Up-regulation of CCL20 and the migration of regulatory T cells. Am J Pathol. 2008;173(1):195–204. doi: 10.2353/ajpath.2008.070845.
  89. Nagpal P, Descalzi-Montoya DB, Lodhi N. The circuitry of the tumor microenvironment in adult and pediatric Hodgkin lymphoma: cellular composition, cytokine profile, EBV, and exosomes. Cancer Rep (Hoboken). 2021;4(2):e1311. doi: 10.1002/cnr2.1311.
  90. Massini G, Siemer D, Hohaus S. EBV in Hodgkin Lymphoma. Mediterr J Hematol Infect Dis. 2009;1(2):e2009013. doi: 10.4084/MJHID.2009.013.
  91. Baumforth KR, Birgersdotter A, Reynolds GM, et al. Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates up-regulation of CCL20 and the migration of regulatory T cells. Am J Pathol. 2008;173(1):195–204. doi: 10.2353/ajpath.2008.070845.
  92. Pavlovic A, Glavina Durdov M, Capkun V, et al. Classical Hodgkin Lymphoma with Positive Epstein-Barr Virus Status is Associated with More FOXP3 Regulatory T Cells. Med Sci Monit. 2016;22:2340–6. doi: 10.12659/msm.896629.
  93. Steidl C, Connors JM, Gascoyne RD. Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J Clin Oncol. 2011;29(14):1812–26. doi: 10.1200/JCO.2010.32.8401.
  94. Peh SC, Kim LH, Poppema S. TARC, a CC chemokine, is frequently expressed in classic Hodgkin’s lymphoma but not in NLP Hodgkin’s lymphoma, T-cell-rich B-cell lymphoma, and most cases of anaplastic large cell lymphoma. Am J Surg Pathol. 2001;25(7):925–9. doi: 10.1097/00000478-200107000-00011.
  95. Driessen J, Kersten MJ, Visser L, et al. Prognostic value of TARC and quantitative PET parameters in relapsed or refractory Hodgkin lymphoma patients treated with brentuximab vedotin and DHAP. Leukemia. 2022;36(12):2853–62. doi: 10.1038/s41375-022-01717-8.
  96. Kopinska A, Koclega A, Francuz T, et al. Serum thymus and activation-regulated chemokine (TARC) levels in newly diagnosed patients with Hodgkin lymphoma: a new promising and predictive tool? Preliminary report. J Hematopathol. 2021;14(4):277–81. doi: 10.1007/s12308-021-00470-8.
  97. Romano I, Puccini B, Signori L, et al. Serum TARC Concentration Kinetic in Classical Hodgkin Lymphoma during First-Line Treatment. Blood. 2021;138(Suppl 1):4500. doi: 10.1182/blood-2021-148137.
  98. Zijtregtop EAM, Tromp I, Dandis R, et al. The Prognostic Value of Eight Immunohistochemical Markers Expressed in the Tumor Microenvironment and on Hodgkin Reed-Sternberg Cells in Pediatric Patients With Classical Hodgkin Lymphoma. Pathol Oncol Res. 2022;28:1610482. doi: 10.3389/pore.2022.1610482.
  99. Vassilakopoulos TP, Nadali G, Angelopoulou MK, et al. Serum interleukin-10 levels are an independent prognostic factor for patients with Hodgkin’s lymphoma. Haematologica. 2001;86(3):274–81.
  100. Aldinucci D, Borghese C, Casagrande N. Formation of the Immunosuppressive Microenvironment of Classic Hodgkin Lymphoma and Therapeutic Approaches to Counter It. Int J Mol Sci. 2019;20(10):2416. doi: 10.3390/ijms20102416.
  101. Menendez V, Solorzano JL, Fernandez S, et al. The Hodgkin Lymphoma Immune Microenvironment: Turning Bad News into Good. Cancers (Basel). 2022;14(5):1360. doi: 10.3390/cancers14051360.
  102. Ferrarini I, Rigo A, Visco C, et al. The Evolving Knowledge on T and NK Cells in Classic Hodgkin Lymphoma: Insights into Novel Subsets Populating the Immune Microenvironment. Cancers (Basel). 2020;12(12):3757. doi: 10.3390/cancers12123757.
  103. Vardhana S, Younes A. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints. Haematologica. 2016;101(7):794–802. doi: 10.3324/haematol.2015.132761.
  104. Liu WR, Shipp MA. Signaling pathways and immune evasion mechanisms in classical Hodgkin lymphoma. Blood. 2017;130(21):2265–70. doi: 10.1182/blood-2017-06-781989.
  105. Joller N, Kuchroo VK. Tim-3, Lag-3, and TIGIT. Curr Top Microbiol Immunol. 2017;410:127–56. doi: 10.1007/82_2017_62.
  106. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004. doi: 10.1016/j.immuni.2016.05.001.
  107. Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–94. doi: 10.1084/jem.20100643.
  108. Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27(1):111–22. doi: 10.1016/j.immuni.2007.05.016.
  109. Patel SS, Weirather JL, Lipschitz M, et al. The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4-positive T cells that are PD-1-negative. Blood. 2019;134(23):2059–69. doi: 10.1182/blood.2019002206.
  110. Aoki T, Chong LC, Takata K, et al. Single-Cell transcriptome analysis reveals disease-defining T-cell subsets in the tumor microenvironment of classic Hodgkin lymphoma. Cancer Discov. 2019;10(3):406–21. doi: 10.1158/2159-8290.CD-19-0680.
  111. Gusak A, Fedorova L, Lepik K, et al. Immunosuppressive Microenvironment and Efficacy of PD-1 Inhibitors in Relapsed/Refractory Classic Hodgkin Lymphoma: Checkpoint Molecules Landscape and Macrophage Populations. Cancers. 2021;13(22):5676. doi: 10.3390/cancers13225676.
  112. Greaves P, Clear A, Owen A, et al. Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. Blood. 2013;122(16):2856–63. doi: 10.1182/blood-2013-06-508044.
  113. Taylor JG, Truelove E, Clear A, et al. PDL1 shapes the classical Hodgkin lymphoma microenvironment without inducing T-cell exhaustion. Haematologica. 2023;108(4):1068–82. doi: 10.3324/haematol.2022.280014.
  114. Diefenbach CS, Hong F, Ambinder RF, et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 2020;7(9):e660–e670. doi: 10.1016/S2352-3026(20)30221-0.
  115. Wein F, Kuppers R. The role of T cells in the microenvironment of Hodgkin lymphoma. J Leukoc Biol. 2016;99(1):45–50. doi: 10.1189/jlb.3MR0315-136R.
  116. Aldinucci D, Gloghini A, Pinto A, et al. The role of CD40/CD40L and interferon regulatory factor 4 in Hodgkin lymphoma microenvironment. Leuk Lymphoma. 2012;53(2):195–201. doi: 10.3109/10428194.2011.605190.
  117. Veldman J, Visser L, Huberts-Kregel M, et al. Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58. Blood. 2020;136(21):2437–41. doi: 10.1182/blood.2020005546.
  118. Abdul Razak FR, Diepstra A, Visser L, van den Berg A. CD58 mutations are common in Hodgkin lymphoma cell lines and loss of CD58 expression in tumor cells occurs in Hodgkin lymphoma patients who relapse. Genes Immun. 2016;17(6):363–6. doi: 10.1038/gene.2016.30.
  119. Schneider M, Schneider S, Zuhlke-Jenisch R, et al. Alterations of the CD58 gene in classical Hodgkin lymphoma. Genes Chromosomes Cancer. 2015;54(10):638–45. doi: 10.1002/gcc.22276.
  120. Mulder TA, Andersson ML, Pena-Perez L, et al. Immune Biomarkers in the Peripheral Blood and Tumor Microenvironment of Classical Hodgkin Lymphoma Patients in Relation to Tumor Burden and Response to Treatment. Hemasphere. 2022;6(11):e794. doi: 10.1097/HS9.0000000000000794.
  121. Koenecke C, Ukena SN, Ganser A, Franzke A. Regulatory T cells as therapeutic target in Hodgkin’s lymphoma. Expert Opin Ther Targets. 2008;12(6):769–82. doi: 10.1517/14728222.12.6.769.
  122. Tanijiri T, Shimizu T, Uehira K, et al. Hodgkin’s Reed-Sternberg cell line (KM-H2) promotes a bidirectional differentiation of CD4+CD25+Foxp3+ T cells and CD4+ cytotoxic T lymphocytes from CD4+ naive T cells. J Leukoc Biol. 2007;82(3):576–84. doi: 10.1189/jlb.0906565.
  123. Littringer K, Moresi C, Rakebrandt N, et al. Common Features of Regulatory T Cell Specialization During Th1 Responses. Front Immunol. 2018;9:1344. doi: 10.3389/fimmu.2018.01344.
  124. Marshall NA, Christie LE, Munro LR, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood. 2004;103(5):1755–62. doi: 10.1182/blood-2003-07-2594.
  125. Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol. 2020;11:583084. doi: 10.3389/fimmu.2020.583084.
  126. Steidl C, Farinha P, Gascoyne RD. Macrophages predict treatment outcome in Hodgkin’s lymphoma. Haematologica. 2011;96(2):186–9. doi: 10.3324/haematol.2010.033316.
  127. Karihtala K, Leivonen SK, Bruck O, et al. Prognostic Impact of Tumor-Associated Macrophages on Survival Is Checkpoint Dependent in Classical Hodgkin Lymphoma. Cancers (Basel). 2020;12(4):877. doi: 10.3390/cancers12040877.
  128. Yao Y, Xu XH, Jin L. Macrophage Polarization in Physiological and Pathological Pregnancy. Front Immunol. 2019;10:792. doi: 10.3389/fimmu.2019.00792.
  129. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40. doi: 10.1002/jcp.26429.
  130. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: Tumor-Associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55. doi: 10.1016/s1471-4906(02)02302-5.
  131. Barros MHM, Segges P, Vera-Lozada G, et al. Macrophage polarization reflects T cell composition of tumor microenvironment in pediatric classical Hodgkin lymphoma and has impact on survival. PLoS ONE 2015;10(5):e0124531. doi: 10.1371/journal.pone.0124531.
  132. Najafi M, Goradel NH, Farhood B, et al. Macrophage polarity in cancer: A review. J Cell Biochem. 2018;120(3):2756–65. doi: 10.1002/jcb.27646.
  133. Jiang Z, Sun H, Yu J, et al. Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 2021;14(1):180. doi: 10.1186/s13045-021-01197-w.
  134. Li Z, Li Y, Gao J, et al. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Life Sci. 2021;273:119150. doi: 10.1016/j.lfs.2021.119150.
  135. Oronsky B, Carter C, Reid T, et al. Just eat it: A review of CD47 and SIRP-α Semin Oncol. 2020;47(2–3):117–24. doi: 10.1053/j.seminoncol.2020.05.009.
  136. Gholiha AR, Hollander P, Lof L, et al. Checkpoint CD47 expression in classical Hodgkin lymphoma. Br J Haematol. 2022;197(5):580–9. doi: 10.1111/bjh.18137.
  137. Russ A, Hua AB, Montfort WR, et al. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018;32(6):480–9. doi: 10.1016/j.blre.2018.04.005.
  138. Hayat SMG, Bianconi V, Pirro M, et al. CD47: role in the immune system and application to cancer therapy. Cell Oncol (Dordr). 2020;43(1):19–30. doi: 10.1007/s13402-019-00469-5.
  139. Lu D, Ni Z, Liu X, et al. Beyond T Cells: Understanding the Role of PD-1/PD-L1 in Tumor-Associated Macrophages. J Immunol Res. 2019;2019:1919082. doi: 10.1155/2019/1919082.
  140. Vari F, Arpon D, Keane C, et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood. 2018;131(16):1809–19. doi: 10.1182/blood-2017-07-796342.
  141. Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9. doi: 10.1038/nature22396.
  142. Li W, Wu F, Zhao S, et al. Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy. Cytokine Growth Factor Rev. 2022;67:49–57. doi: 10.1016/j.cytogfr.2022.07.004.
  143. De la Cruz-Merino L, Lejeune M, Nogales Fernandez E, et al. Role of immune escape mechanisms in Hodgkin’s lymphoma development and progression: a whole new world with therapeutic implications. Clin Dev Immunol. 2012;2012:756353. doi: 10.1155/2012/756353.
  144. Calabretta E, d’Amore F, Carlo-Stella C. Immune and Inflammatory Cells of the Tumor Microenvironment Represent Novel Therapeutic Targets in Classical Hodgkin Lymphoma. Int J Mol Sci. 2019;20(21):5503. doi: 10.3390/ijms20215503.
  145. Yamamoto R, Nishikori M, Kitawaki T, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–4. doi: 10.1182/blood-2007-05-085159.
  146. Xiong H, Mittman S, Rodriguez R, et al. Anti-PD-L1 Treatment Results in Functional Remodeling of the Macrophage Compartment. Cancer Res. 2019;79(7):1493–506. doi: 10.1158/0008-5472.CAN-18-3208.
  147. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71. doi: 10.1038/nature13954.
  148. Willenbrock K, Roers A, Blohbaum B, et al. CD8(+) T cells in Hodgkin’s disease tumor tissue are a polyclonal population with limited clonal expansion but little evidence of selection by antigen. Am J Pathol. 2000;157(1):171–5. doi: 10.1016/S0002-9440(10)64528-2.
  149. Neefjes J, Jongsma MLM, Paul P, et al. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36. doi: 10.1038/nri3084.
  150. Nagasaki J, Togashi Y, Sugawara T, et al. The critical role of CD4+ T cells in PD-1 blockade against MHC-II-expressing tumors such as classic Hodgkin lymphoma. Blood Adv. 2020;4(17):4069–82. doi: 10.1182/bloodadvances.2020002098.
  151. Cader FZ, Hu X, Goh WL, et al. A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma. Nat Med. 2020;26(9):1468–79. doi: 10.1038/s41591-020-1006-1.
  152. Reinke S, Brockelmann PJ, Iaccarino I, et al. Tumor and microenvironment response but no cytotoxic T-cell activation in classic Hodgkin lymphoma treated with anti-PD1. Blood. 2020;136(25):2851–63. doi: 10.1182/blood.2020008553.
  153. Brockelmann PJ, Goergen H, Keller U, et al. Efficacy of Nivolumab and AVD in Early-Stage Unfavorable Classic Hodgkin Lymphoma: The Randomized Phase 2 German Hodgkin Study Group NIVAHL Trial. JAMA Oncol. 2020;6(6):872–80. doi: 10.1001/jamaoncol.2020.0750.
  154. Chen R, Zinzani PL, Lee HJ, et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood. 2019;134(14):1144–53. doi: 10.1182/blood.2019000324.
  155. Lepik KV, Fedorova LV, Kondakova EV, et al. A Phase 2 Study of Nivolumab Using a Fixed Dose of 40 mg (Nivo40) in Patients With Relapsed/Refractory Hodgkin Lymphoma. Hemasphere. 2020;4(5):e480. doi: 10.1097/HS9.0000000000000480.
  156. Herrera AF, Chen R, Palmer J, et al. PET-adapted nivolumab or nivolumab plus ICE as first salvage therapy in relapsed or refractory Hodgkin lymphoma. Blood. 2019;134(Suppl 1):239. doi: 10.1182/blood-2019-123162.
  157. Allen PB, Savas H, Evens AM, et al. Pembrolizumab followed by AVD in untreated early unfavorable and advanced-stage classical Hodgkin lymphoma. Blood. 2021;137(10):1318–26. doi: 10.1182/blood.2020007400.
  158. Herrera AF, Burton C, Radford J, et al. Avelumab in relapsed/refractory classical Hodgkin lymphoma: phase 1b results from the JAVELIN Hodgkins trial. Blood Adv. 2021;5(17):3387–96. doi: 10.1182/bloodadvances.2021004511.
  159. Timmerman J, Lavie D, Johnson NA, et al. Favezelimab (anti–LAG-3) plus pembrolizumab in patients with relapsed or refractory (R/R) classical Hodgkin lymphoma (cHL) after anti–PD-1 treatment: An open-label phase 1/2 study. J Clin Oncol. 2022;40(Suppl 16):7545. doi: 10.1200/JCO.2022.40.16_suppl.7545.
  160. Diefenbach CS, Hong F, Ambinder RF, et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 2020;7(9):e660–e670. doi: 10.1016/S2352-3026(20)30221-0.
  161. Fares CM, van Allen EM, Drake CG, et al. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? Am Soc Clin Oncol Educ Book. 2019;39:147–64. doi: 10.1200/EDBK_240837.
  162. Smaglo BG, Aldeghaither D, Weiner LM. The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol. 2014;11(11):637–48. doi: 10.1038/nrclinonc.2014.159.
  163. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9. doi: 10.1200/JCO.2011.38.0410.
  164. Hamadani M, Collins GP, Samaniego F, et al. Phase 1 study of ADCT-301 (Camidanlumab Tesirine), a novel pyrrolobenzodiazepine-based antibody drug conjugate, in relapsed/refractory classical Hodgkin Lymphoma. Blood. 2018;132(Suppl 1):928. doi: 10.1182/blood-2018-99-118198.
  165. Flynn MJ, Hartley JA. The emerging role of anti-CD25 directed therapies as both immune modulators and targeted agents in cancer. Br J Haematol. 2017;179(1):20–35. doi: 10.1111/bjh.14770.
  166. Zelenay S, Lopes-Carvalho T, Caramalho I, et al. Foxp3+ CD25- CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci USA. 2005;102(11):4091–6. doi: 10.1073/pnas.0408679102.
  167. Zinzani PL, Carlo-Stella C, Hamadani M, et al. Camidanlumab tesirine efficacy and safety in an open-label, multicenter, phase 2 study of patients (pts) with relapsed or refractory classical Hodgkin lymphoma (r/r cHL). Hematol Oncol. 2021;39(S2):125–7. doi: 10.1002/hon.75_2879.
  168. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12. doi: 10.1158/0008-5472.CAN-05-4005.
  169. Smith CC, Perl AE, Lasater E, et al. PLX3397 Is An Investigational Selective FLT3 Inhibitor That Retains Activity Against the Clinically-Relevant FLT3-ITD/F691L “Gatekeeper” Mutation in Vitro. Blood. 2011;118(21):764. doi: 10.1182/blood.V118.21.764.764.
  170. Moskowitz CH, Younes A, de Vos S, et al. CSF1R Inhibition by PLX3397 in Patients with Relapsed or Refractory Hodgkin Lymphoma: Results From a Phase 2 Single Agent Clinical Trial. Blood. 2012;120(21):1638. doi: 10.1182/blood.V120.21.1638.1638.
  171. Fujiwara T, Yakoub MA, Chandler A, et al. CSF1/CSF1R Signaling Inhibitor Pexidartinib (PLX3397) Reprograms Tumor-Associated Macrophages and Stimulates T-cell Infiltration in the Sarcoma Microenvironment. Mol Cancer Ther. 2021;20(8):1388–99. doi: 10.1158/1535-7163.MCT-20-0591.
  172. Dickinson MJ, Carlo-Stella C, Morschhauser F, et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2022;387(24):2220–31. doi: 10.1056/NEJMoa2206913.
  173. Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(26):4024–31. doi: 10.1182/blood-2014-12-614636.
  174. Kerbauy LN, Marin ND, Kaplan M, et al. Combining AFM13, a Bispecific CD30/CD16 Antibody, with Cytokine-Activated Blood and Cord Blood-Derived NK Cells Facilitates CAR-like Responses Against CD30+ Malignancies. Clin Cancer Res. 2021;27(13):3744–56. doi: 10.1158/1078-0432.CCR-21-0164.
  175. Rajendran S, Li Y, Ngoh E, et al. Development of a Bispecific Antibody Targeting CD30 and CD137 on Hodgkin and Reed-Sternberg Cells. Front Oncol. 2019;9:945. doi: 10.3389/fonc.2019.00945.
  176. Piccione EC, Juarez S, Liu J, et al. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs. 2015;7(5):946–56. doi: 10.1080/19420862.2015.1062192.
  177. Wang Y, Ni H, Zhou S, et al. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother. 2021;70(2):365–76. doi: 10.1007/s00262-020-02679-5.
  178. Kamdar M, Solomon SR, Arnason J, et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet. 2022;399(10343):2294–308. doi: 10.1016/S0140-6736(22)00662-6.
  179. Ramos CA, Grover CA, Beaven AW, et al. Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin lymphoma. J Clin Oncol. 2020;38(32):3794–804. doi: 10.1200/JCO.20.01342.
  180. Ruella M, Klichinsky M, Kenderian SS, et al. Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells. Cancer Discov. 2017;7(10):1154–67. doi: 10.1158/2159-8290.CD-16-0850.
  181. Shah SR, Tran TM. Lenalidomide in myelodysplastic syndrome and multiple myeloma. Drugs. 2007;67(13):1869–81. doi: 10.2165/00003495-200767130-00005.
  182. Wang M, Fowler N, Wagner-Bartak N, et al. Oral lenalidomide with rituximab in relapsed or refractory diffuse large cell, follicular and transformed lymphoma: a phase II clinical trial. Leukemia. 2013;27(9):1902–9. doi: 10.1038/leu.2013.95.
  183. Fehniger TA, Larson S, Trinkaus K, et al. A phase 2 multicenter study of lenalidomide in relapsed or refractory classical Hodgkin lymphoma. Blood. 2011;118(19):5119–25. doi: 10.1182/blood-2011-07-362475.
  184. Kuruvilla J, Taylor D, Wang L, et al. Phase II trial of lenalidomide in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2008;112(11):3052. doi: 10.1182/blood.V112.11.3052.3052.
  185. Alonso-Alvarez S, Vidriales MB, Caballero MD, et al. The number of tumor infiltrating T-cell subsets in lymph nodes from patients with Hodgkin lymphoma is associated with the outcome after first line ABVD therapy. Leuk Lymphoma. 2017;58(5):1144–52. doi: 10.1080/10428194.2016.1239263.
  186. Zawati I, Adouni O, Manai M, et al. FOXP3+/CD68+ ratio within the tumor microenvironment may serve as a potential prognostic factor in classical Hodgkin lymphoma. Hum Immunol. 2022;83(12):843–56. doi: 10.1016/j.humimm.2022.08.013.
  187. Oudejans JJ, Jiwa NM, Kummer JA, et al. Activated cytotoxic T cells as prognostic marker in Hodgkin’s disease. Blood. 1997;89(4):1376–82.
  188. Alvaro T, Lejeune M, Salvado MT, et al. Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res. 2005;11(4):1467–73. doi: 10.1158/1078-0432.CCR-04-1869.
  189. Kelley TW, Pohlman B, Elson P, Hsi ED. The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression. Am J Clin Pathol. 2007;128(6):958–65. doi: 10.1309/NB3947K383DJ0LQ2.
  190. Schreck S, Friebel D, Buettner M, et al. Prognostic impact of tumour-infiltrating Th2 and regulatory T cells in classical Hodgkin lymphoma. Hematol Oncol. 2009;27(1):31–9. doi: 10.1002/hon.878.
  191. Agostinelli C, Gallamini A, Stracqualursi L, et al. The combined role of biomarkers and interim PET scan in prediction of treatment outcome in classical Hodgkin’s lymphoma: a retrospective, European, multicentre cohort study. Lancet Haematol. 2016;3(10):e467–e479. doi: 10.1016/S2352-3026(16)30108-9.
  192. Muenst S, Hoeller S, Dirnhofer S, Tzankov A. Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol. 2009;40(12):1715–22. doi: 10.1016/j.humpath.2009.03.025.
  193. Nguyen TT, Frater JL, Klein J, et al. Expression of TIA1 and PAX5 in Classical Hodgkin Lymphoma at Initial Diagnosis May Predict Clinical Outcome. Appl Immunohistochem Mol Morphol. 2016;24(6):383–91. doi: 10.1097/PAI.0000000000000200.
  194. Chetaille B, Bertucci F, Finetti P, et al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood. 2009;113(12):2765–3775. doi: 10.1182/blood-2008-07-168096.
  195. Greaves P, Clear A, Coutinho R, et al. Expression of FOXP3, CD68, and CD20 at diagnosis in the microenvironment of classical Hodgkin lymphoma is predictive of outcome. J Clin Oncol. 2013;31(2):256–62. doi: 10.1200/JCO.2011.39.9881.
  196. Wang C, Xia B, Wang T, et al. PD-1, FOXP3, and CSF-1R expression in patients with Hodgkin lymphoma and their prognostic value. Int J Clin Exp Pathol. 2018;11(4):1923–34.
  197. Tzankov A, Meier C, Hirschmann P, et al. Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica. 2008;93(2):193–200. doi: 10.3324/haematol.11702.
  198. Lacet DFR, Oliveira CC. The role of immunohistochemistry in the assessment of classical Hodgkin lymphoma microenvironment. Int J Clin Exp Pathol. 2022;15(10):412–24.
  199. Moerdler S, Ewart M, Friedman DL, et al. LAG-3 is expressed on a majority of tumor infiltrating lymphocytes in pediatric Hodgkin lymphoma. Leuk Lymphoma. 2021;62(3):606–13. doi: 10.1080/10428194.2020.1839651.
  200. Annibali O, Bianchi A, Grifoni A, et al. A novel scoring system for TIGIT expression in classic Hodgkin lymphoma. Sci Rep. 2021;11(1):7059. doi: 10.1038/s41598-021-86655-8.
  201. Karihtala K, Leivonen SK, Karjalainen-Lindsberg ML, et al. Checkpoint protein expression in the tumor microenvironment defines the outcome of classical Hodgkin lymphoma patients. Blood Adv. 2022;6(6):1919–31. doi: 10.1182/bloodadvances.2021006189.
  202. Guo B, Cen H, Tan X, Ke Q. Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in adult classical Hodgkin lymphoma. BMC Med. 2016;14(1):159. doi: 10.1186/s12916-016-0711-6.
  203. Klein JL, Nguyen TT, Bien-Willner GA, et al. CD163 Immunohistochemistry is superior to CD68 in predicting outcome in classical Hodgkin lymphoma. Am J Clin Pathol. 2014;141(3):381–7. doi: 10.1309/AJCP61TLMXLSLJYS.
  204. Barros MHM, Hauck F, Dreyer JH, et al. Macrophage polarisation: An immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One. 2013;8(11):e80908. doi: 10.1371/journal.pone.0080908.
  205. Barros MH, Segges P, Vera-Lozada G, et al. Macrophage polarization reflects T cell composition of tumor microenvironment in pediatric classical Hodgkin lymphoma and has impact on survival. PLoS One. 2015;10(5):e0124531. doi: 10.1371/journal.pone.0124531.
  206. Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85. doi: 10.1056/NEJMoa0905680.
  207. Tudor CS, Distel LV, Eckhardt J, et al. B cells in classical Hodgkin lymphoma are important actors rather than bystanders in the local immune reaction. Hum Pathol. 2013;44(11):2475–86. doi: 10.1016/j.humpath.2013.06.006.
  208. Mizuno H, Nakayama T, Miyata Y, et al. Mast cells promote the growth of Hodgkin’s lymphoma cell tumor by modifying the tumor microenvironment that can be perturbed by bortezomib. Leukemia. 2012;26(10):2269–76. doi: 10.1038/leu.2012.81.
  209. Glimelius I, Edstrom A, Fischer M, et al. Angiogenesis and mast cells in Hodgkin lymphoma. Leukemia. 2005;19(12):2360–2. doi: 10.1038/sj.leu.2403992.
  210. Ribatti D, Tamma R, Annese T, et al. Inflammatory microenvironment in classical Hodgkin’s lymphoma with special stress on mast cells. Front Oncol. 2022;12:964573. doi: 10.3389/fonc.2022.964573.
  211. Komi DEA, Redegeld FA. Role of Mast Cells in Shaping the Tumor Microenvironment. Clin Rev Allergy Immunol. 2020;58(3):313–25. doi: 10.1007/s12016-019-08753-w.
  212. Nakayama S, Yokote T, Hiraoka N, et al. Role of mast cells in fibrosis of classical Hodgkin lymphoma. Int J Immunopathol Pharmacol. 2016;29(4):603–11. doi: 10.1177/0394632016644447.
  213. Molin D, Fischer M, Xiang Z, et al. Mast cells express functional CD30 ligand and are the predominant CD30L-positive cells in Hodgkin’s disease. Br J Haematol. 2001;114(3):616–23. doi: 10.1046/j.1365-2141.2001.02977.x.
  214. Molin D, Edstrom A, Glimelius I, et al. Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br J Haematol. 2002;119(1):122–4. doi: 10.1046/j.1365-2141.2002.03768.x.
  215. Keresztes K, Szollosi Z, Simon Z, et al. Retrospective analysis of the prognostic role of tissue eosinophil and mast cells in Hodgkin’s lymphoma. Pathol Oncol Res. 2007;13(3):237–42. doi: 10.1007/BF02893504.
  216. Andersen MD, Kamper P, Nielsen PS, et al. Tumour-associated mast cells in classical Hodgkin’s lymphoma: correlation with histological subtype, other tumour-infiltrating inflammatory cell subsets and outcome. Eur J Haematol. 2016;96(3):252–9. doi: 10.1111/ejh.12583.
  217. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017.
  218. Von Wasielewski S, Franklin J, Fischer R, et al. Nodular sclerosing Hodgkin disease: new grading predicts prognosis in intermediate and advanced stages. Blood. 2003;101(10):4063–9. doi: 10.1182/blood-2002-05-1548.
  219. Pinto A, Aldinucci D, Gloghini A, et al. The role of eosinophils in the pathobiology of Hodgkin’s disease. Ann Oncol. 1997;8(Suppl 2):89–96.
  220. Enblad G, Sundstrom C, Glimelius B. Infiltration of eosinophils in Hodgkin’s disease involved lymph nodes predicts prognosis. Hematol Oncol. 1993;11(4):187–93. doi: 10.1002/hon.2900110404.
  221. Von Wasielewski R, Seth S, Franklin J, et al. Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin’s disease, allowing for known prognostic factors. Blood. 2000;95(4):1207–13.
  222. Konjevic G, Jurisic V, Jovic V, et al. Investigation of NK cell function and their modulation in different malignancies. Immunol Res. 2012;52(1–2):139–56. doi: 10.1007/s12026-012-8285-7.
  223. Chiu J, Ernst DM, Keating A. Acquired Natural Killer Cell Dysfunction in the Tumor Microenvironment of Classic Hodgkin Lymphoma. Front Immunol. 2018;9:267. doi: 10.3389/fimmu.2018.00267.
  224. Reiners KS, Kessler J, Sauer M, et al. Rescue of impaired NK cell activity in Hodgkin lymphoma with bispecific antibodies in vitro and in patients. Mol Ther. 2013;21(4):895–903. doi: 10.1038/mt.2013.14.
  225. Tursz T, Dokhelar MC, Lipinski M, Amiel JL. Low natural killer cell activity in patients with malignant lymphoma. Cancer. 1982;50(11):2333–5. doi: 10.1002/1097-0142(19821201)50:11<2333::aid-cncr2820501119>3.0.co;2-w.
  226. Alvaro-Naranjo T, Lejeune M, Salvado-Usach MT, et al. Tumor-infiltrating cells as a prognostic factor in Hodgkin’s lymphoma: a quantitative tissue microarray study in a large retrospective cohort of 267 patients. Leuk Lymphoma. 2005;46(11):1581–91. doi: 10.1080/10428190500220654.
  227. Zanna MY, Yasmin AR, Omar AR, et al. Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species. Int J Mol Sci. 2021;22(15):8044. doi: 10.3390/ijms22158044.
  228. Galati D, Zanotta S, Corazzelli G, et al. Circulating dendritic cells deficiencies as a new biomarker in classical Hodgkin lymphoma. Br J Haematol. 2019;184(4):594–604. doi: 10.1111/bjh.15676.
  229. Tudor CS, Bruns H, Daniel C, et al. Macrophages and dendritic cells as actors in the immune reaction of classical Hodgkin lymphoma. PLoS One. 2014;9(12):e114345. doi: 10.1371/journal.pone.0114345.
  230. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21(8):485–98. doi: 10.1038/s41577-020-00490-y.
  231. Romano A, Parrinello NL, Vetro C, et al. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin Lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol. 2015;168(5):689–700. doi: 10.1111/bjh.13198.
  232. Novosad O, Gorbach O, Skachkova O, et al. Role of Circulating Myeloid-Derived Suppressor Cell (MDSC) in Hodgkin Lymphoma (HL) Progression: Updated Prospective Study. Blood. 2020;136(Suppl 1):31. doi: 10.1182/blood-2020-141259.
  233. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059.
  234. Korkolopoulou P, Thymara I, Kavantzas N, et al. Angiogenesis in Hodgkin’s lymphoma: a morphometric approach in 286 patients with prognostic implications. Leukemia. 2005;19(6):894–900. doi: 10.1038/sj.leu.2403690.
  235. Karihtala K, Leivonen SK, Karjalainen-Lindsberg ML, et al. T026: Characterization of cancer-associated fibroblasts in classical Hodgkin lymphoma. Hemasphere. 2022;6(Suppl):13. doi: 10.1097/01.HS9.0000890672.81592.33.
  236. Bankov K, Doring C, Ustaszewski A, et al. Fibroblasts in Nodular Sclerosing Classical Hodgkin Lymphoma Are Defined by a Specific Phenotype and Protect Tumor Cells from Brentuximab-Vedotin Induced Injury. Cancers (Basel). 2019;11(11):1687. doi: 10.3390/cancers11111687.
  237. Kamper P, Bendix K, Hamilton-Dutoit S, et al. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica. 2011;96(2):269–76. doi: 10.3324/haematol.2010.031542.
  238. Tan KL, Scott DW, Hong F, et al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood. 2012;120(16):3280–7. doi: 10.1182/blood-2012-04-421057.
  239. Azambuja D, Natkunam Y, Biasoli I, et al. Lack of association of tumor-associated macrophages with clinical outcome in patients with classical Hodgkin’s lymphoma. Ann Oncol. 2012;23(3):736–42. doi: 10.1093/annonc/mdr157.
  240. Werner L, Dreyer JH, Hartmann D, et al. Tumor-associated macrophages in classical Hodgkin lymphoma: hormetic relationship to outcome. Sci Rep. 2020;10(1):9410. doi: 10.1038/s41598-020-66010-z.
  241. Panico L, Ronconi F, Lepore M, et al. Prognostic role of tumor-associated macrophages and angiogenesis in classical Hodgkin lymphoma. Leuk Lymphoma. 2013;54(11):2418–25. doi: 10.3109/10428194.2013.778405.
  242. Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. J Exp Clin Cancer Res. 2022;41(1):362. doi: 10.1186/s13046-022-02579-9.
  243. Chen X, Cho DB, Yang PC. Double staining immunohistochemistry. N Am J Med Sci. 2010;2(5):241–5. doi: 10.4297/najms.2010.2241.
  244. Parra ER, Uraoka N, Jiang M, et al. Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci Rep. 2017;7(1):13380. doi: 10.1038/s41598-017-13942-8.
  245. Ijsselsteijn ME, van der Breggen R, Farina Sarasqueta A, et al. A 40-Marker Panel for High Dimensional Characterization of Cancer Immune Microenvironments by Imaging Mass Cytometry. Front Immunol. 2019;10:2534. doi: 10.3389/fimmu.2019.02534.
  246. Marx V. Method of the Year: spatially resolved transcriptomics. Nat Methods. 2021;18:9–14. doi: 10.1038/s41592-020-01033-y.
  247. Lee MKI, Rabindranath M, Faust K, et al. Compound computer vision workflow for efficient and automated immunohistochemical analysis of whole slide images. J Clin Pathol. 2022:jclinpath-2021-208020. doi: 10.1136/jclinpath-2021-208020.
  248. Wilson CM, Ospina OE, Townsend MK, et al. Challenges and Opportunities in the Statistical Analysis of Multiplex Immunofluorescence Data. Cancers (Basel). 2021;13(12):3031. doi: 10.3390/cancers13123031.
  249. M’kacher R, Frenzel M, Al Jawhari M, et al. Establishment and Characterization of a Reliable Xenograft Model of Hodgkin Lymphoma Suitable for the Study of Tumor Origin and the Design of New Therapies. Cancers (Basel). 2018;10(11):414. doi: 10.3390/cancers10110414.

Перспективы применения иммуномодулирующих препаратов и модуляторов цереблон Е3-лигазы в лечении множественной миеломы

С.В. Семочкин1,2

1 МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2-й Боткинский пр-д, д. 3, Москва, Российская Федерация, 125284

2 ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» Минздрава России, ул. Островитянова, д. 1, Москва, Российская Федерация, 117997

Для переписки: Сергей Вячеславович Семочкин, д-р мед. наук, профессор, 2-й Боткинский пр-д, д. 3, Москва, Российская Федерация, 125284; e-mail: semochkin_sv@rsmu.ru

Для цитирования: Семочкин С.В. Перспективы применения иммуномодулирующих препаратов и модуляторов цереблон Е3-лигазы в лечении множественной миеломы. Клиническая онкогематология. 2023;16(3):229–41.

DOI: 10.21320/2500-2139-2023-16-3-229-241


РЕФЕРАТ

За последние десятилетия прогресс в лечении множественной миеломы (ММ) связан с лучшим пониманием биологии этого заболевания и внедрением в практику новых классов лекарственных средств, таких как иммуномодулирующие препараты (IMiD), ингибиторы протеасом (ИП) и моноклональные антитела (МАТ). Современные IMiD (леналидомид, помалидомид) являются производными талидомида, которые, несмотря на сходство химической структуры, проявляют лишь относительную перекрестную резистентность. Леналидомид — иммуномодулятор 2-го поколения с высокой противоопухолевой активностью и благоприятным профилем безопасности. В 2006 г. применение леналидомида в комбинации с дексаметазоном (схема Rd) было одобрено FDA (США) для лечения рецидивов/рефрактерной MM, а через 9 лет, в 2015 г., — для впервые диагностированной ММ. В 2015–2019 гг. для лечения рецидивов MM были разработаны схемы, построенные на комбинации Rd с бортезомибом (VRd), карфилзомибом (KRd), иксазомибом (IRd), элотузумабом (ERd) и даратумумабом (DRd), — так называемые триплеты. Помалидомид — препарат 3-го поколения, используемый у пациентов с рефрактерностью к леналидомиду. Для лечения пациентов с рецидивами/рефрактерной ММ, которые получили не менее двух линий терапии, включавших леналидомид и бортезомиб, в практику внедрены схемы из трех препаратов на основе помалидомида и дексаметазона в комбинации с элотузумабом (EPd), изатуксимабом (Isa-Pd) и даратумумабом (DPd). В 2010 г. была открыта молекулярная мишень действия IMiD — белок цереблон (CRBN), входящий в ферментный комплекс CRBN E3-лигазы. Понимание данного механизма позволило создать новое семейство производных талидомида, получившее название модуляторов CRBN E3-лигазы (CELMoD). Два препарата этой группы (ибердомид, мезигдомид) в исследованиях I–II фазы продемонстрировали обнадеживающую активность при ММ с рефрактерностью к трем классам противоопухолевых препаратов (IMiD, ИП и анти-CD38 МАТ). Фокус представленного обзора направлен на проспективные исследования IMiD и CELMoD на разных этапах лечения ММ.

Ключевые слова: множественная миелома, иммуномодулирующие препараты, модуляторы цереблон Е3-лигазы, леналидомид, помалидомид, ибердомиб, мезигдомид.

Получено: 25 января 2023 г.

Принято в печать: 28 мая 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Менделеева Л.П., Вотякова О.М., Рехтина И.Г. и др. Множественная миелома. Современная онкология. 2020;22(4):6–28. doi: 10.26442/18151434.2020.4.200457.
    [Mendeleeva LP, Votjakova OM, Rehtina IG, et al. Multiple myeloma. Clinical recommendations. Journal of Modern Oncology. 2020;22(4):6–28. doi: 10.26442/18151434.2020.4.200457. (In Russ)]
  2. Usmani SZ, Hoering A, Cavo M, et al. Clinical predictors of long-term survival in newly diagnosed transplant eligible multiple myeloma—An IMWG Research Project. Blood Cancer J. 2018;8(12):123. doi: 10.1038/s41408-018-0155-7.
  3. Rajkumar SV. Multiple myeloma: Every year a new standard? Hematol Oncol. 2019;37(Suppl 1):62–5. doi: 10.1002/hon.2586.
  4. Семочкин С.В. Биологические основы применения иммуномодулирующих препаратов в лечении множественной миеломы. Онкогематология. 2010;(1):21–31. doi: 10.17650/1818-8346-2010-0-1-.
    [Semochkin SV. Biological basis of immunomodulatory preparations using in treatment of multiple myeloma. Oncohematology. 2010;(1):21–31. doi: 10.17650/1818-8346-2010-0-1-. (In Russ)]
  5. Lenz W, Knapp K. Thalidomide embryopathy. Dtsch Med Wochenschr. 1962;87(24):1232–42. doi: 10.1055/s-0028-1111892.
  6. Kelsey Thalidomide update: regulatory aspects. Teratology. 1988;38(3):221–6. doi: 10.1002/tera.1420380305.
  7. Barlogie B, Desikan R, Eddlemon P, et al. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: Identification of prognostic factors in a phase 2 study of 169 patients. Blood. 2001;98(2):492–4. doi: 10.1182/blood.v98.2.492.
  8. Torre CD, Zambello R, Cacciavillani M, et al. Lenalidomide long-term neurotoxicity: Clinical and neurophysiologic prospective study. Neurology. 2016;87(11):1161–6. doi: 10.1212/WNL.0000000000003093.
  9. Fotiou D, Gavriatopoulou M, Terpos E, Dimopoulos MA. Pomalidomide- and dexamethasone-based regimens in the treatment of refractory/relapsed multiple myeloma. Ther Adv Hematol. 2022;13:20406207221090089. doi: 10.1177/20406207221090089.
  10. Charlinski G, Vesole DH, Jurczyszyn A. Rapid Progress in the Use of Immunomodulatory Drugs and Cereblon E3 Ligase Modulators in the Treatment of Multiple Myeloma. Cancers (Basel). 2021;13(18):4666. doi: 10.3390/cancers13184666.
  11. Barankiewicz J, Salomon-Perzynski A, Misiewicz-Krzeminska I, Lech-Maranda E. CRL4CRBN E3 Ligase Complex as a Therapeutic Target in Multiple Myeloma. Cancers (Basel). 2022;14(18):4492. doi: 10.3390/cancers14184492.
  12. Mori T, Ito T, Liu S, et al. Structural basis of thalidomide enantiomer binding to cereblon. Sci Rep. 2018;8(1):1294. doi: 10.1038/s41598-018-19202-7.
  13. Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5. doi: 10.1126/science.1244851.
  14. Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305–9. doi: 10.1126/science.1244917.
  15. Read KA, Jones DM, Freud AG, Oestreich KJ. Established and emergent roles for Ikaros transcription factors in lymphoid cell development and function. Immunol Rev. 2021;300(1):82–99. doi: 10.1111/imr.12936.
  16. Bjorklund CC, Lu L, Kang J, et al. Rate of CRL4(CRBN) substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood Cancer J. 2015;5(10):e354. doi: 10.1038/bcj.2015.66.
  17. Harada T, Ozaki S, Oda A, et al. Association of Th1 and Th2 cytokines with transient inflammatory reaction during lenalidomide plus dexamethasone therapy in multiple myeloma. Int J Hematol. 2013;97(6):743–8. doi: 10.1007/s12185-013-1321-0.
  18. Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4 (CRBN). Br J Haematol. 2014;164(6):811–21. doi: 10.1111/bjh.12708.
  19. Lagrue K, Carisey A, Morgan DJ, et al. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds. Blood. 2015;126(1):50–60. doi: 10.1182/blood-2015-01-625004.
  20. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98(1):210–6. doi: 10.1182/blood.V98.1.210.
  21. Fabro S, Schumacher H, Smith RL, et al. The metabolism of thalidomide: some biological effects of thalidomide and its metabolites. Br J Pharmacol Chemother. 1965;25(2):352–62. doi: 10.1111/j.1476-5381.1965.tb02055.x.
  22. Yamamoto J, Ito T, Yamaguchi Y, Handa H. Discovery of CRBN as a target of thalidomide: a breakthrough for progress in the development of protein degraders. Chem Soc Rev. 2022;51(15):6234–50. doi: 10.1039/d2cs00116k.
  23. Connarn JN, Hwang R, Gao Y, et al. Population Pharmacokinetics of Lenalidomide in Healthy Volunteers and Patients With Hematologic Malignancies. Clin Pharmacol Drug Dev. 2018;7(5):465–73. doi: 10.1002/cpdd.372.
  24. Kronke J, Fink EC, Hollenbach PW, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature. 2015;523(7559):183–8. doi: 10.1038/nature14610.
  25. Li Y, Wang X, O’Mara E, et al. Population pharmacokinetics of pomalidomide in patients with relapsed or refractory multiple myeloma with various degrees of impaired renal function. Clin Pharmacol. 2017;9:133–45. doi: 10.2147/CPAA.S144606.
  26. Shimizu N, Asatsuma-Okumura T, Yamamoto J, et al. PLZF and its fusion proteins are pomalidomide-dependent CRBN neosubstrates. Commun Biol. 2021;4(1):1277. doi: 10.1038/s42003-021-02801-y.
  27. Kasserra C, Assaf M, Hoffmann M, et al. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug-drug interaction potential in vitro and in healthy subjects. J Clin Pharmacol. 2015;55(2):168–78. doi: 10.1002/jcph.384.
  28. Matyskiela ME, Zhang W, Man HW, et al. A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J Med Chem. 2018;61(2):535–42. doi: 10.1021/acs.jmedchem.6b01921.
  29. Gooding S, Ansari-Pour N, Towfic F, et al. Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood. 2021;137(2):232–7. doi: 10.1182/blood.2020007081.
  30. Durie BGM, Hoering A, Sexton R, et al. Longer term follow-up of the randomized phase III trial SWOG S0777: bortezomib, lenalidomide and dexamethasone vs. lenalidomide and dexamethasone in patients (Pts) with previously untreated multiple myeloma without an intent for immediate autologous stem cell transplant (ASCT). Blood Cancer J. 2020;10(5):53. doi: 10.1038/s41408-020-0311-8.
  31. Perrot A, Lauwers-Cances V, Cazaubiel T, et al. Early versus late autologous stem cell transplant in newly diagnosed multiple myeloma: long-term follow-up analysis of the IFM 2009 trial. Blood. 2020;136(Suppl 1):39. doi: 10.1182/blood-2020-134538.
  32. Richardson PG, Jacobus SJ, Weller EA, et al. Lenalidomide, bortezomib, and dexamethasone (RVd) ± autologous stem cell transplantation (ASCT) and R maintenance to progression for newly diagnosed multiple myeloma (NDMM): The phase 3 DETERMINATION trial. J Clin Oncol. 2022;40(17_suppl):LBA4. doi: 10.1200/jco.2022.40.17_suppl.lba4.
  33. Kumar SK, Jacobus SJ, Cohen AD, et al. Carfilzomib or bortezomib in combination with lenalidomide and dexamethasone for patients with newly diagnosed multiple myeloma without intention for immediate autologous stem-cell transplantation (ENDURANCE): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2020;21(10):1317–30. doi: 10.1016/S1470-2045(20)30452-6.
  34. Tan C, Nemirovsky D, Derkach A, et al. Carfilzomib, Lenalidomide and Dexamethasone (KRd) Vs Bortezomib, Lenalidomide, and Dexamethasone (VRd) As Induction Therapy in Newly Diagnosed High-Risk Multiple Myeloma. Blood. 2022;140(Suppl 1):1817–9. doi: 10.1182/blood-2022-169161.
  35. Gay F, Musto P, Rota-Scalabrini D, et al. Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (FORTE): a randomised, open-label, phase 2 trial. Lancet Oncol. 2021;22(12):1705–20. doi: 10.1016/S1470-2045(21)00535-0.
  36. Семочкин С.В. Новые ингибиторы протеасомы в терапии множественной миеломы. Онкогематология. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40.
    [Semochkin SV. New proteasome inhibitors in the management of multiple myeloma. Oncohematology. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40. (In Russ)]
  37. Goldschmidt H, Mai EK, Bertschet U, et al. Elotuzumab in Combination with Lenalidomide, Bortezomib, Dexamethasone and Autologous Transplantation for Newly-Diagnosed Multiple Myeloma: Results from the Randomized Phase III GMMG-HD6 Trial. Blood. 2021;138(Suppl 1):486. doi: 10.1182/blood-2021-147323.
  38. Usmani SZ, Hoering A, Ailawadhi S, et al. Bortezomib, lenalidomide, and dexamethasone with or without elotuzumab in patients with untreated, high-risk multiple myeloma (SWOG-1211): primary analysis of a randomised, phase 2 trial. Lancet Haematol. 2021;8(1):e45–e54. doi: 10.1016/S2352-3026(20)30354-9.
  39. Laubach JP, Kaufman JL, Sborov DW, et al. Daratumumab (DARA) plus lenalidomide, bortezomib, and dexamethasone (RVd) in patients (Pts) with transplant-eligible newly diagnosed multiple myeloma (NDMM): updated analysis of Griffin after 24 months of maintenance. Blood. 2021;138 (Suppl 1):79. doi: 10.1182/blood-2021-149024.
  40. Goldschmidt H, Mai EK, Bertsch U, et al. Addition of isatuximab to lenalidomide, bortezomib, and dexamethasone as induction therapy for newly diagnosed, transplantation-eligible patients with multiple myeloma (GMMG-HD7): part 1 of an open-label, multicentre, randomised, active-controlled, phase 3 trial. Lancet Haematol. 2022;9(11):e810–e821. doi: 10.1016/S2352-3026(22)00263-0.
  41. McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide Maintenance After Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: A Meta-Analysis. J Clin Oncol. 2017;35(29):3279–89. doi: 10.1200/JCO.2017.72.6679.
  42. Jackson GH, Davies FE, Pawlyn C, et al. Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2019;20(1):57–73. doi: 10.1016/S1470-2045(18)30687-9.
  43. Pawlyn C, Menzies T, Davies FE, et al. Defining the Optimal Duration of Lenalidomide Maintenance after Autologous Stem Cell Transplant – Data from the Myeloma XI Trial. Blood. 2022;140(Suppl 1):1371–2. doi: 10.1182/blood-2022-165376.
  44. Facon T, Dimopoulos MA, Dispenzieri A, et al. Final analysis of survival outcomes in the phase 3 FIRST trial of up-front treatment for multiple myeloma. Blood. 2018;131(3):301–10. doi: 10.1182/blood-2017-07-795047.
  45. Facon T, Venner CP, Bahlis NJ, et al. Oral ixazomib, lenalidomide, and dexamethasone for transplant-ineligible patients with newly diagnosed multiple myeloma. Blood. 2021;137(26):3616–28. doi: 10.1182/blood.2020008787.
  46. Kumar SK, Moreau P, Bahlis NJ, et al. Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) Alone in Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma (NDMM): Updated Analysis of the Phase 3 Maia Study. Blood. 2022;140(Suppl 1):10150–3. doi: 10.1182/blood-2022-163335.
  47. Moreau P, Kumar SK, Miguel JS, et al. Treatment of relapsed and refractory multiple myeloma: recommendations from the International Myeloma Working Group. Lancet Oncol. 2021;22(3):e105–e118. doi: 10.1016/S1470-2045(20)30756-7.
  48. Moreau P, Masszi T, Grzasko N, et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;374(17):1621–34. doi: 10.1056/NEJMoa1516282.
  49. Richardson PG, Kumar SK, Masszi T, et al. Final Overall Survival Analysis of the TOURMALINE-MM1 Phase III Trial of Ixazomib, Lenalidomide, and Dexamethasone in Patients With Relapsed or Refractory Multiple Myeloma. J Clin Oncol. 2021;39(22):2430–42. doi: 10.1200/JCO.21.00972.
  50. Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373(7):621–31. doi: 10.1056/NEJMoa1505654.
  51. Dimopoulos MA, Lonial S, White D, et al. Elotuzumab, lenalidomide, and dexamethasone in RRMM: final overall survival results from the phase 3 randomized ELOQUENT-2 study. Blood Cancer J. 2020;10(9):91. doi: 10.1038/s41408-020-00357-4.
  52. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi: 10.1056/NEJMoa1411321.
  53. Siegel DS, Dimopoulos MA, Ludwig H, et al. Improvement in Overall Survival With Carfilzomib, Lenalidomide, and Dexamethasone in Patients With Relapsed or Refractory Multiple Myeloma. J Clin Oncol 2018;36(8):728–34. doi: 10.1200/JCO.2017.76.5032.
  54. Bahlis NJ, Dimopoulos MA, White DJ, et al. Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended follow-up of POLLUX, a randomized, open-label, phase 3 study. 2020;34(7):1875–84. doi: 10.1038/s41375-020-0711-6.
  55. Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with previously treated multiple myeloma: overall survival results from phase 3 POLLUX trial. Hemasphere. 2022;6(Suppl):13. doi: 10.1097/01.HS9.0000829592.26407.09.
  56. Manda S, Yimer HA, Noga SJ, et al. Feasibility of Long-term Proteasome Inhibition in Multiple Myeloma by in-class Transition From Bortezomib to Ixazomib. Сlin Lymphoma Myeloma Leuk. 2020;20(11):e910–e925. doi: 10.1016/j.clml.2020.06.024.
  57. Бессмельцев С.С. Режимы на основе помалидомида и дексаметазона при лечении рефрактерной/рецидивирующей множественной миеломы. Вестник гематологии. 2022;18(4):4–20.
    [Bessmeltsev SS. Pomalidomide- and dexamethasone-based regimens in the treatment of refractory/relapsed multiple myeloma. Vestnik gematologii. 2022;18(4):4–20. (In Russ)]
  58. Richardson PG, Oriol A, Beksac M, et al. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(6):781–94. doi: 10.1016/S1470-2045(19)30152-4.
  59. Dimopoulos MA, Terpos E, Boccadoro M, et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(6):801–12. doi: 10.1016/S1470-2045(21)00128-5.
  60. Dimopoulos MA, Terpos E, Boccadoro M, et al. Subcutaneous daratumumab plus pomalidomide and dexamethasone (D-Pd) versus pomalidomide and dexamethasone (Pd) alone in patients with relapsed or refractory multiple myeloma (RRMM): overall survival results from the phase 3 APOLLO study. Blood. 2022;140(Suppl 1):7272–4. doi 10.1182/blood-2022–163483.
  61. Attal M, Richardson PG, Rajkumar SV, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394(10214):2096–107. doi: 10.1016/S0140-6736(19)32556-5.
  62. Richardson PG, Perrot A, San-Miguel J, et al. Isatuximab Plus Pomalidomide/Low-Dose Dexamethasone Versus Pomalidomide/Low-Dose Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma (ICARIA-MM): Characterization of Subsequent Antimyeloma Therapies. Blood. 2022;140(Suppl 1):608–10. doi: 10.1182/blood-2022-159710.
  63. Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N Engl J Med. 2018;379(19):1811–22. doi: 10.1056/NEJMoa1805762.
  64. Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab Plus Pomalidomide and Dexamethasone for Relapsed/Refractory Multiple Myeloma: Final Overall Survival Analysis From the Randomized Phase II ELOQUENT-3 Trial. J Clin Oncol. 2023;41(3):568–78. doi: 10.1200/JCO.21.02815.
  65. Pasvolsky O, Yeshurun M, Fraser R, et al. Maintenance therapy after second autologous hematopoietic cell transplantation for multiple myeloma. A CIBMTR analysis. Bone Marrow Transplant. 2022;57(1):31–7. doi: 10.1038/s41409-021-01455-y.
  66. Garderet L, Kuhnowski F, Berge В, et al. Phase II Study of the Combination of Pomalidomide with Dexamethasone As Maintenance Therapy after First Relapse Treatment with PCD Followed or Not By Autologous Stem Cell Transplant in Multiple Myeloma Patients. Blood. 2021;138(Suppl 1):2753. doi: 10.1182/blood-2021-152136.
  67. Thakurta A, Pierceall WE, Amatangelo MD, et al. Developing next generation immunomodulatory drugs and their combinations in multiple myeloma. Oncotarget. 2021;12(15):1555–63. doi: 10.18632/oncotarget.27973.
  68. Ye Y, Gaudy A, Schafer P, et al. First-in-Human, Single- and Multiple-Ascending-Dose Studies in Healthy Subjects to Assess Pharmacokinetics, Pharmacodynamics, and Safety/Tolerability of Iberdomide, a Novel Cereblon E3 Ligase Modulator. Clin Pharmacol Drug Dev. 2021;10(5):471–85. doi: 10.1002/cpdd.869.
  69. You W, Pang J. Pharmacokinetics, bioavailability and metabolism of CC-92480 in rat by liquid chromatography combined with electrospray ionization tandem mass spectrometry. Biomed Chromatogr. 2021;35(9):e5139. doi: 10.1002/bmc.5139.
  70. Van de Donk NWC, Popat R, Hulin C, et al. Results from CC-220-MM-001 Dose-expansion Phase of Iberdomide plus Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma. Hemasphere. 2022;6:14–5. doi: 10.1097/01.HS9.0000829600.37424.88.
  71. Lonial S, Abdallah A, Anwer F, et al. Iberdomide (IBER) in Combination with Dexamethasone (DEX) in Relapsed/Refractory Multiple Myeloma (RRMM): Results from the Anti-B-Cell Maturation Antigen (BCMA)-Exposed Cohort of the CC-220-MM-001 Trial. Blood. 2022;140(Suppl 1):4398–400. doi: 10.1182/blood-2022-158180.
  72. Richardson PG, Trudel S, Quach H, et al. Mezigdomide (CC-92480), a Potent, Novel Cereblon E3 Ligase Modulator (CELMoD), Combined with Dexamethasone (DEX) in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Preliminary Results from the Dose-Expansion Phase of the CC-92480-MM-001 Trial. Blood. 2022;140(Suppl 1):1366–8. doi: 10.1182/blood-2022-157945.
  73. Семочкин С.В. Механизмы действия противоопухолевых иммуномодуляторов — от тератогенности к терапии множественной миеломы. Гематология и трансфузиология. 2022;67(2):240–60. doi: 10.35754/0234-5730-2022-67-2-240-260.
    [Semochkin SV. Mechanisms of action of immunomodulatory drugs — from teratogenicity to treatment of multiple myeloma. Russian journal of hematology and transfusiology. 2022;67(2):240–60. doi: 10.35754/0234-5730-2022-67-2-240-260. (In Russ)]

KIR-генетические факторы и ответ на терапию ингибиторами тирозинкиназ при хроническом миелоидном лейкозе

Е.В. Кузьмич1, И.Е. Павлова1, Л.Н. Бубнова1,2, С.С. Бессмельцев1

1 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

2 ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Елена Витальевна Кузьмич, канд. биол. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(921)912-52-07; e-mail: yelenakuzmich@gmail.com

Для цитирования: Кузьмич Е.В., Павлова И.Е., Бубнова Л.Н., Бессмельцев С.С. KIR-генетические факторы и ответ на терапию ингибиторами тирозинкиназ при хроническом миелоидном лейкозе. Клиническая онкогематология. 2023;16(2):119–27.

DOI: 10.21320/2500-2139-2023-16-2-119-127


РЕФЕРАТ

Разработка и внедрение в клиническую практику ингибиторов тирозинкиназ (ИТК) значительно улучшили прогноз у пациентов с хроническим миелоидным лейкозом (ХМЛ). Примерно 50 % пациентов, достигающих глубокого молекулярного ответа, могут быть кандидатами на безопасное прекращение приема ИТК. Несмотря на достигнутые результаты, до настоящего времени не существует надежных биомаркеров для прогнозирования ответа и сохранения ремиссии без лечения после прекращения приема ИТК. Поскольку ИТК не уничтожают лейкозные стволовые клетки, остающиеся потенциальным источником рецидива, важную роль при ХМЛ играют естественные киллеры (NK-клетки), обладающие противоопухолевой активностью. Функциональная активность NK-клеток определяется уровнем экспрессии и репертуаром иммуноглобулиноподобных рецепторов киллерных клеток (KIR). Современные исследования свидетельствуют о том, что KIR-генотип пациента оказывает влияние на возможность достижения раннего и глубокого молекулярных ответов на ИТК первого и второго поколений, выживаемость без прогрессирования и общую выживаемость больных, а также сохранение ремиссии без лечения. На этом основании KIR-генетические факторы могут рассматриваться в качестве перспективных предикторов ответа на терапию ИТК у пациентов с ХМЛ. Ранние клинические исследования моноклональных антител, блокирующих ингибирующие KIR с целью повысить активность NK-клеток, показали приемлемые профиль безопасности и эффективность при некоторых гематологических заболеваниях (таких, как острый миелоидный лейкоз, множественная миелома, Т-клеточная лимфома) при использовании в комбинации с цитостатическими препаратами или противоопухолевыми моноклональными антителами. Определение KIR-генотипа при ХМЛ может способствовать разработке эффективных средств иммунотерапии этой злокачественной опухоли системы крови.

Ключевые слова: гены иммуноглобулиноподобных рецепторов киллерных клеток, ингибиторы тирозинкиназ, ремиссия без лечения, хронический миелоидный лейкоз.

Получено: 8 ноября 2022 г.

Принято в печать: 1 марта 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Афанасьев Б.В., Абдуллаев А.О., Аль-Ради Л.С. и др. Хронический миелолейкоз. Клинические рекомендации, возрастная группа взрослые. М.: Ассоциация онкологов России, 2020. 87 с.
    [Afanasyev BV, Abdullaev AO, Al-Radi LS, et al. Khronicheskii mieloleikoz. Klinicheskie rekomendatsii, vozrastnaya gruppa vzroslye. (Chronic myeloid leukemia. Clinical guidelines for adult patients.) Moscow: Assotsiatsiya onkologov Rossii Publ.; 2020. 87 p. (In Russ)]
  2. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703–19. doi: 10.1038/s41375-022-01613-1.
  3. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am J Hematol. 2022;97(9):1236–56. doi: 10.1002/ajh.26642.
  4. Абдулкадыров К.М., Бессмельцев С.С., Рукавицын О.А. Лечение хронического миелолейкоза. СПб.: ЛЕКА, 1999. 152 с.
    [Abdulkadyrov KM, Bessmeltsev SS, Rukavitsyn OA. Lechenie khronicheskogo mieloleikoza. (Treatment of chronic myeloid ) Saint Petersburg: LEKA Publ.; 1999. 152 p. (In Russ)]
  5. Chopade P, Akard LP. Improving Outcomes in Chronic Myeloid Leukemia Over Time in the Era of Tyrosine Kinase Inhibitors. Clin Lymphoma Myeloma Leuk. 2018;18(11):710–23. doi: 1016/j.clml.2018.06.029.
  6. Морозова Е.В., Власова Ю.Ю., БарабанщиковаМ.В. и др. Хронический миелоидный лейкоз: роль трансплантации аллогенных гемопоэтических стволовых клеток в эру ингибиторов тирозинкиназ. Клиническая онкогематология. 2020;13(2):193–8. doi: 10.21320/2500-2139-2020-13-2-193-198.
    [Morozova EV, Vlasova YuYu, Barabanshchikova MV, et al. Chronic Myeloid Leukemia: Role of Allogeneic Hematopoietic Stem Cell Transplantation in the Era of Tyrosine Kinase Inhibitors. Clinical oncohematology. 2020;13(2):193–8. doi: 10.21320/2500-2139-2020-13-2-193-198. (In Russ)]
  7. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. doi: 10.1016/S1470-2045(10)70233-3.
  8. Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19(6):747–57. doi: 10.1016/S1470-2045(18)30192-X.
  9. Closa L, Xicoy B, Zamora L, et al. Natural killer cell receptors and ligand variants modulate response to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. HLA. 2022;99(2):93–104. doi: 10.1111/tan.14515.
  10. Абакушина Е.В., Кузьмина Е.Г., Коваленко Е.И. Основные свойства и функции NK-клеток человека. Иммунология. 2012;33(4):220–5.
    [Abakushina EV, Kuzmina EG, Kovalenko EI. The main characteristics and functions of human NK-cells. Immunologiya. 2012;33(4):220–5. (In Russ)]
  11. Falco M, Moretta L, Moretta A, Bottino C. KIR and KIR ligand polymorphism: a new area for clinical applications? Tissue Antigens. 2013;82(6):363–73. doi: 10.1111/tan.12262.
  12. Chiorean EG, Dylla SJ, Olsen K, et al. BCR/ABL alters the function of NK cells and the acquisition of killer immunoglobulin-like receptors (KIRs). Blood. 2003;101(9):3527–33. doi: 10.1182/blood-2002-04-1172.
  13. Соколова Ю.В., Бубнова Л.Н., Бессмельцев С.С. Строение и функции иммуноглобулиноподобных рецепторов киллерных клеток в норме и патологии. 2010;11:635–57.
    [Sokolova YuV, Bubnova LN, Bessmeltsev SS. Structure and functions of killer cell immunoglobulin-like receptors in normality and pathology. Medline. 2010;11:635–57. (In Russ)]
  14. Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes. Immunity. 2001;15(3):363–74. doi: 10.1016/s1074-7613(01)00197-2.
  15. Marsh SGE, Parham P, Dupont B, et al. Killer-cell immunoglobulin-like receptors (KIR) nomenclature report, 2002. Immunogenetics. 2003;55(4):220–6. doi: 10.1007/s00251-003-0571-z.
  16. IPD-KIR Database. (Internet) Available from: https://www.ebi.ac.uk/ipd/kir/about/ (accessed 22.12.2022).
  17. Lanier LL. NK cell receptors. Annu Rev Immunol. 1998;16(1):359–93. doi: 10.1146/annurev.immunol.16.1.359.
  18. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol. 2002;20:217–51. doi: 10.1146/annurev.immunol.20.092501.134942.
  19. Stern M, Ruggeri L, Capanni M, et al. Human leukocyte antigens A23, A24, and A32 but not A25 are ligands for KIR3DL1. Blood. 2008;112(3):708–10. doi: 10.1182/blood-2008-02-137521.
  20. Rajagopalan S, Long EO. KIR2DL4 (CD158d): an activation receptor for HLA-G. Front Immunol. 2012;3:258. doi: 10.3389/fimmu.2012.00258.
  21. Garcia-Beltran WF, Holzemer A, Martrus G, et al. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol. 2016;17(9):1067–74. doi: 10.1038/ni.3513.
  22. Pierson BA, Miller JS. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood. 1996;88(6):2279–87.
  23. Nakajima H, Zhao R, Lund TC, et al. The BCR/ABL transgene causes abnormal NK cell differentiation and can be found in circulating NK cells of advanced phase chronic myelogenous leukemia patients. J Immunol. 2002;168(2):643–50. doi: 10.4049/jimmunol.168.2.643.
  24. Mizoguchi I, Yoshimoto T, Katagiri S, et al. Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib. Cancer Sci. 2013;104(9):1146–53. doi: 10.1111/cas.12216.
  25. Imagawa J, Tanaka H, Okada M, et al. DADI Trial Group. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): A multicentre phase 2 Lancet Haematol. 2015;2(12):528–35. doi: 10.1016/S2352-3026(15)00196-9.
  26. Marin D, Gabriel IH, Ahmad S, et al. KIR2DS1 genotype predicts for complete cytogenetic response and survival in newly diagnosed chronic myeloid leukemia patients treated with imatinib. Leukemia. 2012;26(2):296–302. doi: 10.1038/leu.2011.180.
  27. Kreutzman A, Juvonen V, Kairisto V, et al. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood. 2010;116(5):772–82. doi: 10.1182/blood-2009-12-256800.
  28. Ali S, Sergeant R, O’Brien SG, et al. Dasatinib may overcome the negative prognostic impact of KIR2DS1 in newly diagnosed patients with chronic myeloid leukemia. Blood. 2012;120(3):697–8. doi: 10.1182/blood-2012-04-421016.
  29. Kreutzman A, Jaatinen T, Greco D, et al. Killer-cell immunoglobulin-like receptor gene profile predicts good molecular response to dasatinib therapy in chronic myeloid leukemia. Exp Hematol. 2012;40(11):906–13. doi: 10.1016/j.exphem.2012.07.007.
  30. Ghio M, Contini P, Negrini S, et al. Soluble HLA-I-mediated secretion of TGF-beta1 by human NK cells and consequent down-regulation of anti-tumor cytolytic activity. Eur J Immunol. 2009;39(12):3459–68. doi: 10.1002/eji.200939728.
  31. Yeung DT, Tang C, Vidovic L, et al. KIR2DL5B genotype predicts outcomes in CML patients treated with response‐directed sequential imatinib/nilotinib strategy. Blood. 2015;126(25):2720–23. doi: 10.1182/blood-2015-07-655589.
  32. Dumas PY, Berard E, Breal K, et al. Killer immunoglobulin‐like receptor genotypes and chronic myeloid leukemia outcomes after imatinib cessation for treatment‐free remission. Cancer Med. 2019;8(11):4976–85. doi: 10.1002/cam4.2371.
  33. La Nasa G, Caocci G, Littera R, et al. Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp Hematol. 2013;41(5):424– doi: 10.1016/j.exphem.2013.01.008.
  34. Caocci G, Martino B, Greco M, et al. Killer immunoglobulin-like receptors can predict TKI treatment-free remission in chronic myeloid leukemia patients. Exp Hematol. 2015;43(12):1015–8. doi: 10.1016/j.exphem.2015.08.004.
  35. Ureshino H, Shindo T, Kojima H, et al. Allelic Polymorphisms of KIRs and HLAs Predict Favorable Responses to Tyrosine Kinase Inhibitors in CML. Cancer Immunol Res. 2018;6(6):745– doi: 10.1158/2326-6066.CIR-17-0462.
  36. Verheyden S, Bernier M, Demanet C. Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia. 2004;18(12):2002–7. doi: 10.1038/sj.leu.2403525.
  37. Middleton D, Diler AS, Meenagh A, et al. Killer immunoglobulin-like receptors (KIR2DL2 and/or KIR2DS2) in presence of their ligand (HLA-C1 group) protect against chronic myeloid leukemia. Tissue Antigens. 2009;73(6):553–60. doi: 10.1111/j.1399-0039.2009.01235x.
  38. Naugler C, Liwski R. Human leukocyte antigen class I alleles and the risk of chronic myelogenous leukemia: a meta-analysis. Leuk Lymphoma. 2010;51(7):1288–92. doi: 10.3109/10428191003802340.
  39. Michor F, Hughes TP, Iwasa Y, et al. Dynamics of chronic myeloid leukaemia. Nature. 2005;435(7046):1267–70. doi: 10.1038/nature03669.
  40. Zhang B, Li M, McDonald T, et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-Cadherin and Wnt-b-catenin signaling. Blood. 2013;121(10):1824– doi: 10.1182/blood-2012-02-412890.
  41. Li Y, Sun R. Tumor immunotherapy: New aspects of natural killer cells. Chin J Cancer Res. 2018;30(2):173–96. doi: 10.21147/j.issn.1000-9604.2018.02.02.
  42. Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol. 2020;11: doi: 10.3389/fimmu.2020.00167.
  43. Campiotti L, Suter MB, Guasti L, et al. Imatinib discontinuation in chronic myeloid leukaemia patients with undetectable BCR-ABL transcript level: a systematic review and a meta-analysis. Eur J Cancer. 2017;77:48– doi: 10.1016/j.ejca.2017.02.028.

 

 

Морфо-иммуногистохимические особенности различных стадий грибовидного микоза: обзор литературы

А.А. Шерстнев, А.М. Ковригина

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Андрей Алексеевич Шерстнев, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: sherstnevandrejj@mail.ru

Для цитирования: Шерстнев А.А., Ковригина А.М. Морфо-иммуногистохимические особенности различных стадий грибовидного микоза: обзор литературы. Клиническая онкогематология. 2023;16(2):109–18.

DOI: 10.21320/2500-2139-2023-16-2-109-118


РЕФЕРАТ

Грибовидный микоз (ГМ) — наиболее распространенный вариант Т-клеточной лимфомы кожи. Патогенез ГМ до настоящего времени полностью не изучен. Дифференциальная диагностика заболевания, в особенности на ранних стадиях, сложна и представляет серьезную задачу. В настоящем обзоре литературы освещаются современные представления о патогенезе ГМ и методах диагностики данного заболевания.

Ключевые слова: грибовидный микоз, наивные Т-клетки, Т-хелперы, реактивное микроокружение.

Получено: 21 сентября 2022 г.

Принято в печать: 3 марта 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Кохан М.М. Т-клеточные злокачественные лимфомы кожи: клинические и иммунологические аспекты диагностики, стадийного течения и терапии: Автореф. … д-ра мед. наук. М., 2002.
    [Kokhan MM. T-kletochnye zlokachestvennye limfomy kozhi: klinicheskie i immunologicheskie aspekty diagnostiki, stadiinogo techeniya i terapii. (Cutaneous T-cell malignant lymphomas: clinical and immunological aspects of diagnosis, stage course, and therapy.) [dissertation] Moscow; 2002. (In Russ)]
  2. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85. doi: 10.1182/blood-2004-09-3502.
  3. Korgavkar K, Xiong M, Weinstock М. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol. 2013;149(11):1295–9. doi: 10.1001/jamadermatol.2013.5526.
  4. Imam MH, Shenoy PJ, Flowers CR, et al. Incidence and survival patterns of cutaneous T-cell lymphomas in the United States. Leuk Lymphoma. 2013;54(4):752–9. doi: 10.3109/10428194.2012.729831.
  5. Tan RH, Butterworth CM, McLaughlin H, et al. Mycosis fungoides—a disease of antigen persistence. Br J Dermatol. 1974;91(6):607–16. doi: 1111/j.1365-2133.1974.tb12449.x.
  6. Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–71. doi: 10.1182/blood-2009-11-251926.
  7. Berger CL, Hanlon D, Kanada D, et al. The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. 2002;99(8):2929–39. doi: 10.1182/blood.V99.8.2929.
  8. Wang L, Ni X, Covington K, et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet. 2015;47(12):1426–34. doi: 10.1038/ng.3444.
  9. Krejsgaard T, Willerslev-Olsen A, Lindahl LM, et al. Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood. 2014;124(5):761–70. doi: 10.1182/blood-2014-01-551184.
  10. Gelfand JM, Shin DB, Neimann AL, et al. The risk of lymphoma in patients with psoriasis. J Invest Dermatol. 2006;126(10):2194–201. doi: 10.1038/sj.jid.5700410.
  11. Legendre L, Barnetche T, Mazereeuw-Hautier J, et al. Risk of lymphoma in patients with atopic dermatitis and the role of topical treatment: a systematic review and meta-analysis. J Am Acad Dermatol. 2015;72(6):992–1002. doi: 10.1016/j.jaad.2015.02.1116.
  12. Mirvish JJ, Pomerantz RG, Falo Jr LD, et al. Role of infectious agents in cutaneous T-cell lymphoma: facts and controversies. Clin Dermatol. 2013;31(4):423–31. doi: 10.1016/j.clindermatol.2013.01.009.
  13. Mirvish ED, Pomerantz RG, Geskin LJ. Infectious agents in cutaneous T-cell lymphoma. J Am Acad Dermatol. 2011;64(2):423–31. doi: 10.1016/j.jaad.2009.11.692.
  14. Белоусова И.Э., Самцов А.В. Федеральные клинические рекомендации по ведению больных лимфомами кожи. М., 2015. С. 13–25.
    [Belousova IE, Samtsov AV. Federalnye klinicheskie rekomendatsii po vedeniyu bolnykh limfomami kozhi. (Federal clinical guidelines for management of patients with cutaneous lymphomas.) Moscow; 2015. pp. 13–25. (In Russ)]
  15. Larocca C, Kupper T. Mycosis fungoides and sezary syndrome: an update. Hematol Oncol Clin. 2019;33(1):103–20. doi: 10.1016/j.hoc.2018.09.001.
  16. Agar NS, Wedgeworth E, Crichton S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol. 2010;28(31):4730–9. doi: 10.1200/jco.2009.27.7665.
  17. Sun G, Berthelot C, Li Y, Glass DA. Poor prognosis in non-Caucasian patients with early-onset mycosis fungoides. J Am Acad Dermatol. 2009;60(2):231–5. doi: 10.1016/j.jaad.2008.09.063.
  18. Talpur R, Singh L, Daulat S, et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sezary syndrome from 1982 to 2009. Clin Cancer Res. 2012;18(18):5051–60. doi: 10.1158/1078-0432.ccr-12-0604.
  19. Молочков А.В., Ковригина А.М., Кильдюшевский А.В., Караулов А.В. Лимфома кожи. М.: БИНОМ, 2012. 183 с.
    [Molochkov AV, Kovrigina AM, Kildyushevskii AV, Karaulov AV. Limfoma kozhi. (Cutaneous lymphoma.) Moscow: BINOM Publ.; 2012. 183 p. (In Russ)]
  20. Братцева Е.В., Ротанов С.В. Современные подходы к диагностике грибовидного микоза. Вестник дерматологии и венерологии. 2010;6:16–22.
    [Brattseva EV, Rotanov SV. Current approaches to the diagnosis of mycosis fungoides. Vestnik dermatologii i venerologii. 2010;6:16–22. (In Russ)]
  21. Guitart J, Kennedy J, Ronan S, et al. Histologic criteria for the diagnosis of mycosis fungoides: proposal for a grading system to standardize pathology reporting. J Cutan Pathol. 2001;28(4):174–83. doi: 10.1034/j.1600-0560.2001.028004174.x.
  22. Goteri G, Filosa A, Mannello B, et al. Density of neoplastic lymphoid infiltrate, CD8+ T cells, and CD1a+ dendritic cells in mycosis fungoides. J Clin Pathol. 2003;56(6):453–8. doi: 10.1136/jcp.56.6.453.
  23. Willemze R, Cerroni L, Kempf W, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019:133(16):1703–14. doi: 10.1182/blood.2019002852.
  24. Белоусова И.Э., Казаков Д.В., Криволапов Ю.А. Современные подходы к диагностике и лечению первичных лимфом кожи на основе новой ВОЗ-EORTC классификации. Т-клеточные лимфомы кожи. Архив патологии. 2007;69(5):11–7.
    [Belousova IE, Kazakov DV, Krivolapov YuA. Current approaches to the diagnosis and treatment of primary cutaneous lymphomas based on the new WHO-EORTC classification. Cutaneous T-cell lymphomas. Arkhiv patologii. 2007;69(5):11–7. (In Russ)]
  25. Поддубная И.В., Птушкин В.В., Белоусова И.Э. и др. Новые возможности системной терапии CD30+ первичных кожных Т-клеточных лимфом: резолюция. Современная онкология. 2020;22(2):79–81.
    [Poddubnaya IV, Ptushkin VV, Belousova IE, et al. New prospects for systemic treatment of primary cutaneous CD30+ T-cell lymphomas: resolution. Sovremennaya onkologiya. 2020;22(2):79–81. (In Russ)]
  26. Clark RA, Chong B, Mirchandani N, et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 2006;176(7):4431–9. doi: 10.4049/jimmunol.176.7.4431.
  27. Clark RA. Skin-resident T cells: the ups and downs of on site immunity. J Invest Dermatol. 2010;130(2):362–70. doi: 10.1038/jid.2009.247.
  28. Clark RA. Resident memory T cells in human health and disease. Sci Transl Med. 2015;7(269):269rv1. doi: 10.1126/scitranslmed.3010641.
  29. Watanabe R, Gehad A, Yang C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med. 2015;7(279):279ra39. doi: 10.1126/scitranslmed.3010302.
  30. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers. 2016;8(3):36. doi: 10.3390/cancers8030036.
  31. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63. doi: 10.1146/annurev.immunol.22.012703.104702.
  32. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science. 1996;272(5258):60–7. doi: 10.1126/science.272.5260.
  33. Wherry EJ, Teichgraber V, Becker TC, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol. 2003;4(3):225–34. doi: 10.1038/ni889.
  34. Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med. 2012;209(7):1241–53. doi: 10.1084/jem.20120994.
  35. Deenick EK, Cindy SM, Brink R, et al. Regulation of T follicular helper cell formation and function by antigen presenting cells. Curr Opin Immunol. 2011;23(1):111–8. doi: 10.1016/j.coi.2010.10.007.
  36. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2009;28:445–89. doi: 10.1146/annurev-immunol-030409-101212.
  37. Finotto S, Neurath MF, Glickman JN, et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science. 2002;295(5553):336–8. doi: 10.1126/science.1065544.
  38. Bettelli E, Sullivan B, Szabo SJ, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med. 2004;200(1):79–87. doi: 10.1084/jem.20031819.
  39. Vowels BR, Lessin SR, Cassin M, et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J Invest Dermatol. 1994;103(5):669–73. doi: 10.1111/1523-1747.ep12398454.
  40. Miyagaki T, Sugaya M. Immunological milieu in mycosis fungoides and Sezary syndrome. J Dermatol. 2014;41(1):11–8. doi: 10.1111/1346-8138.12305.
  41. Hsi AC, Lee SJ, Rosman IS, et al. Expression of helper T cell master regulators in inflammatory dermatoses and primary cutaneous T-cell lymphomas: diagnostic implications. J Am Acad Dermatol. 2015;72(1):159–67. doi: 10.1016/j.jaad.2014.09.022.
  42. Sugaya M, Tokura Y, Hamada T, et al. Phase II study of iv interferon‐gamma in Japanese patients with mycosis fungoides. J Dermatol. 2014;41(1):50–6. doi: 10.1111/1346-8138.12341.
  43. Gu X, Wang Y, Zhang G, Li W, Tu P. Aberrant expression of BCL11B in mycosis fungoides and its potential role in interferon‐induced apoptosis. J Dermatol. 2013;40(8):596–605. doi: 10.1111/1346-8138.12160.
  44. Kataoka Y. Thymus and activation‐regulated chemokine as a clinical biomarker in atopic dermatitis. J Dermatol. 2014;41(3):221–9. doi: 10.1111/1346-8138.12440.
  45. Sugaya M, Morimura S, Suga H, Kawaguchi M. CCR 4 is expressed on infiltrating cells in lesional skin of early mycosis fungoides and atopic dermatitis. J Dermatol. 2015;42(6):613–5. doi: 10.1111/1346-8138.12852.
  46. Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545–52. doi: 10.1084/jem.192.11.1545.
  47. Hardtke S, Ohl L, Forster R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood. 2005;106(6):1924–31. doi: 10.1182/blood-2004-11-4494.
  48. Krejsgaard T, Odum N, Geisler C, et al. Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia. 2012;26(3):424–32. doi: 10.1038/leu.2011.237.
  49. Vonderheid EC, Pavlov I, Delgado JC, et al. Prognostic factors and risk stratification in early mycosis fungoides. Leuk Lymphoma. 2014;55(1):44–50. doi: 10.3109/10428194.2013.790541.
  50. Ungewickell A, Bhaduri A, Rios E, et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet. 2015;47(9):1056–60. doi: 10.1038/ng.3370.
  51. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4. doi: 10.1126/scitranslmed.aad7118.
  52. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61. doi: 10.1016/j.ccell.2015.03.001.
  53. Cetinozman F, Jansen PM, Vermeer MH, Willemze R. Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol. 2012;148(12):1379–85. doi: 10.1001/archdermatol.2012.2089.
  54. Kantekure K, Yang Y, Raghunath P, et al. Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma (CTCL)/mycosis fungoides (MF). Am J Dermatopathol. 2012;34(1):126. doi: 10.1097/dad.0b013e31821c35cb.
  55. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16(6):356–71. doi: 10.1038/s41571-019-0175-7.
  56. Clark RA. Regulation gone wrong: a subset of Sezary patients have malignant regulatory T cells. J Invest Dermatol. 2009;129(12):2747–50. doi: 10.1038/jid.2009.290.
  57. Gholami MD, Kardar GA, Saeedi Y, et al. Exhaustion of T lymphocytes in the tumor microenvironment: significance and effective mechanisms. Cell Immunol. 2017;322:1–14. doi: 10.1016/j.cellimm.2017.10.002.
  58. Murray D, McMurray JL, Eldershaw S, et al. Progression of mycosis fungoides occurs through divergence of tumor immunophenotype by differential expression of HLA-DR. Blood Adv. 2019:3(4):519–30. doi: 10.1182/bloodadvances.2018025114.
  59. Vermeer MH, van Doorn R, Dukers D, et al. CD8+ T cells in cutaneous T-cell lymphoma: expression of cytotoxic proteins, Fas ligand, and killing inhibitory receptors and their relationship with clinical behavior. J Clin Oncol. 2001;19(23):4322–9. doi: 10.1200/jco.2001.19.23.4322.
  60. Goteri G, Filosa A, Mannello B, et al. Density of neoplastic lymphoid infiltrate, CD8+ T cells, and CD1a+ dendritic cells in mycosis fungoides. J Clin Pathol. 2003;56(6):453–8. doi: 10.1136/jcp.56.6.453.
  61. Hoppe RT, Medeiros LJ, Warnke RA, Wood GS. CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol. 1995;32(3):448–53. doi: 10.1016/0190-9622(95)90067-5.
  62. Gjerdrum LM, Woetmann A, Odum N, et al. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia. 2007;21(12):2512–8. doi: 10.1038/sj.leu.2404913.
  63. Berger CL, Hanlon D, Kanada D, et al. The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. Blood. 2002;99(8):2929–39. doi: 10.1182/blood.v99.8.2929.
  64. Wong HK, Wilson AJ, Gibson HM, et al. Increased expression of CTLA-4 in malignant T cells from patients with mycosis fungoides–cutaneous T-cell lymphoma. J Invest Dermatol. 2006;126(1):212–9. doi: 10.1038/sj.jid.5700029.
  65. Querfeld C, Curran SA, Leung S, et al. T cells in CTCL have an exhausted phenotype while cutaneous dendritic cells display a normally activated mature phenotype. Blood. 2014;124(21):1695. doi: 10.1182/blood.v124.21.1695.1695.
  66. Sugaya M, Miyagaki T, Ohmatsu H, et al. Association of the numbers of CD163+ cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. J Dermatol Sci. 2012;68(1):45–51. doi: 10.1016/j.jdermsci.2012.07.007.
  67. Wu X, Schulte BC, Zhou Y, et al. Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo. J Invest Dermatol. 2014;134(11):2814–22. doi: 10.1038/jid.2014.206.
  68. Jullie ML, Carlotti M, Vivot A Jr, et al. CD20 antigen may be expressed by reactive or lymphomatous cells of transformed mycosis fungoides: diagnostic and prognostic impact Am J Surg Pathol. 2013;37(12):1845–54. doi: 10.1097/pas.0000000000000091.
  69. Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185(9):4977–82. doi: 10.4049/jimmunol.1001323.
  70. Theurich S, Schlaak M, Steguweit H, et al. Targeting tumor-infiltrating B cells in cutaneous T-cell lymphoma. J Clin Oncol. 2016;34(12):e110–e116. doi: 10.1200/jco.2013.50.9471.
  71. Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011–9. doi: 10.1038/ng.3356.
  72. Park J, Yang J, Wenzel AT, et al. Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p. Q575E). Blood. 2017;130(12):1430–40. doi: 10.1182/blood-2017-02-768234.
  73. Gonzalez BR, Zain J, Rosen ST, Querfeld C. Tumor microenvironment in mycosis fungoides and Sezary syndrome. Curr Opin Oncol. 2016;28(1):88–96. doi: 10.1097/CCO.0000000000000243
  74. Axelrod PI, Lorber B, Vonderheid EC. Infections complicating mycosis fungoides and Sezary syndrome. 1992;267(10):1354–8. doi: 10.1001/jama.267.10.1354.
  75. Netchiporouk E, Litvinov IV, Moreau L, et al. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle. 2014;13(21):3331–5. doi: 10.4161/15384101.2014.965061.
  76. Kirsch IR, Watanabe R, O’Malley JT, et al. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Science Transl Med. 2015;7(308):308ra158. doi: 10.1126/scitranslmed.aaa9122.
  77. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016. С. 85–91.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2016. 85–91. (In Russ)]
  78. Сидорова Ю.В. Т-клеточная клональность в диагностике лимфопролиферативных заболеваний: Дис.… канд. мед. наук. М., 2004.
    [Sidorova YuV. T-kletochnaya klonalnost v diagnostike limfoproliferativnykh zabolevanii. (T-cell clonality in the diagnosis of lymphoproliferative) [dissertation] Moscow; 2004. (In Russ)]
  79. Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–22. doi: 10.1182/blood-2008-02-142653.
  80. Scarisbrick JJ, Prince HM, Vermeer MH, et al. Cutaneous Lymphoma International Consortium study of outcome in advanced stages of mycosis fungoides and Sezary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol. 2015;33(32):3766. doi: 10.1200/JCO.2015.61.7142.
  81. de Masson A, O’Malley JT, Elco CP, et al. High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides. Sci Transl Med. 2018;10(440):eaar5894. doi: 10.1126/scitranslmed.aar5894.
  82. Trautinger F, Eder J, Assaf C, et al. European Organisation for Research and Treatment of Cancer consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome–Update 2017. Eur J Cancer. 2017;77:57–74. doi: 10.1016/j.ejca.2017.02.027.
  83. Олисова О.Ю., Сыдиков А.А., Чупров И.Н. и др. Эритродермическая форма грибовидного микоза: алгоритм диагностики и лечения. Клиническая онкогематология. 2018;11(4):295–302. doi: 10.21320/2500-2139-2018-11-4-295-302.
    [Olisova OYu, Sydikov AA, Chuprov IN, et al. Erythrodermic Mycosis Fungoides: The Algorithm of Diagnosis and Treatment. Clinical oncohematology. 2018;11(4):295–302. doi: 10.21320/2500-2139-2018-11-4-295-302. (In Russ)]
  84. Zinzani PL, Venturini F, Stefoni V, et al. Gemcitabine as single agent in pretreated T-cell lymphoma patients: evaluation of the long-term outcome. Ann Oncol. 2010;21(4):860–3. doi: 10.1093/annonc/mdp508.
  85. Hanel W, Briski R, Ross CW, et al. A retrospective comparative outcome analysis following systemic therapy in mycosis fungoides and Sezary syndrome. Am J Hematol. 2016;91(12):E491–E495. doi: 10.1002/ajh.24564.
  86. Damsky WE, Choi J. Genetics of cutaneous T cell lymphoma: from bench to bedside. Curr Treat Options Oncol. 2016;17(7):1–14. doi: 10.1007/s11864-016-0410-8.
  87. Weng WK, Armstrong R, Arai S, et al. Non-myeloablative allogeneic transplantation resulting in clinical and molecular remission with low Non-Relapse Mortality (NRM) in patients with advanced stage Mycosis Fungoides (MF) and Sezary Syndrome (SS). Blood. 2014;124(21):2544. doi: 10.1182/blood.v124.21.2544.2544.

 

Хронический гепатит С и онкогематологические заболевания

Т.В. Антонова1, М.С. Ножкин1, Д.А. Лиознов1,2

1 ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

2 ФГБУ «НИИ гриппа им. А.А. Смородинцева» Минздрава России, ул. Профессора Попова, д. 15/17, Санкт-Петербург, Российская Федерация, 197376

Для переписки: Тамара Васильевна Антонова, д-р мед. наук, профессор, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: antonovatv28@yandex.ru

Для цитирования: Антонова Т.В., Ножкин М.С., Лиознов Д.А. Хронический гепатит С и онкогематологические заболевания. Клиническая онкогематология. 2023;16(1):46–53.

DOI: 10.21320/2500-2139-2023-16-1-46-53


РЕФЕРАТ

В обзоре обсуждается HCV-инфекция у онкогематологических больных. Высокий риск инфицирования вирусом гепатита С (HCV) при онкогематологических заболеваниях доказан значимо большей частотой HCV-инфекции (в 2–2,5 раза) у пациентов с неходжкинскими лимфомами в сравнении с популяционными данными. Кроме того, установлено значение HCV в развитии и прогрессировании В-клеточных неходжкинских лимфом, что подтверждает его онкогенный потенциал. Рассмотрен вариант серонегативного (оккультного) гепатита С, при котором РНК HCV определяется в ткани печени и в мононуклеарах периферической крови высокочувствительным методом ПЦР с обратной транскрипцией при отсутствии антител к HCV и РНК HCV в сыворотке. При этом пациенты могут быть источниками инфекции. Серонегативный гепатит С выявляется у доноров крови в 2,2–3,4 % случаев. Этот вариант инфекции встречается у 20–85 % онкогематологических пациентов, что требует дальнейшего изучения. Сопутствующая HCV-инфекция является потенциальным фактором, влияющим на прогноз онкогематологических заболеваний. У онкогематологических пациентов с сопутствующим хроническим гепатитом С (ХГС) доказана значимо худшая выживаемость в сравнении с больными без него. Установлена связь HCV-инфекции с увеличением частоты осложнений как противоопухолевой терапии, так и трансплантации гемопоэтических стволовых клеток (ТГСК). Иммунохимиотерапия, в свою очередь, влияет на обострение и прогрессирование ХГС. Высокая эффективность и удовлетворительная переносимость препаратов прямого противовирусного действия (ППД) для лечения ХГС открыли перспективы для широкого их использования при наличии сопутствующих заболеваний. Остается сложным вопрос о лечении инфекции у пациентов после ТГСК. Рекомендации по лечению ХГС преимущественно ориентированы на проведение противовирусного лечения до ТГСК. В реальной клинической практике это не всегда возможно. Имеются примеры эффективного применения препаратов ППД до или после ТГСК, описано клиническое наблюдение противовирусного лечения одновременно с ТГСК.

Ключевые слова: вирус гепатита С, HCV-инфекция, онкогематология, трансплантация гемопоэтических стволовых клеток, иммунохимиотерапия, препараты прямого противовирусного действия.

Получено: 17 июня 2022 г.

Принято в печать: 10 декабря 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Choo QL, Kuo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244(4902):359–62. doi: 10.1126/science.2523562.
  2. Houghton M. Discovery of the hepatitis C virus. Liver Int. 2009;29(Suppl 1):82–8. doi: 10.1111/j.1478-3231.2008.01925.x.
  3. Жебрун А.Б., Калинина О.В. Вирусный гепатит С: эволюция эпидемиологического процесса, эволюция вируса. Журнал микробиологии, эпидемиологии и иммунобиологии. 2016;1:102–12. doi: 10.36233/0372-9311-2016-1-102-112.
    [Zhebrun AB, Kalinina OV. Viral hepatitis C: evolution of the epidemiologic process, evolution of the virus. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii. 2016;1:102–12. doi: 10.36233/0372-9311-2016-1-102-112. (In Russ)]
  4. Simmonds P, Bukh J, Combet C, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. 2005;42(4):962–73. doi: 10.1002/hep.20819.
  5. Smith DB, Bukh J, Kuiken C, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. 2014;59(1):318–27. doi: 10.1002/hep.26744.
  6. Petruzziello A, Marigliano S, Loquercio G, et al. Global epidemiology of hepatitis C virus infection: updated information on the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol. 2016;22(34):7824–40. doi: 10.3748/wjg.v22.i34.7824.
  7. Чуланов В.П., Исаков В.А., Жданов К.В. и др. Промежуточные результаты международного многоцентрового проспективного наблюдательного исследования «MOSAIC» по оценке эпидемиологии, субъективных и экономических исходов лечения хронического вирусного гепатита С. Инфекционные болезни. 2018;16(1):5–14. doi: 20953/1729-9225-2018-1-5-14.
    [Chulanov VP, Isakov VA, Zhdanov KV, et al. Interim results of the international multicenter prospective observational study to evaluate the epidemiology, humanistic and economic outcomes of treatment for chronic hepatitis C virus (HCV) (MOSAIC). Infektsionnye bolezni. 2018;16(1):5–14. doi: 10.20953/1729-9225-2018-1-5-14. (In Russ)]
  8. Чуланов В.П., Пименов Н.Н., Мамонова Н.А. и др. Хронический гепатит С как проблема здравоохранения России сегодня и завтра. Терапевтический архив. 2015;87(11):5–10. doi: 10.17116/terarkh201587115-10.
    [Chulanov VP, Pimenov NN, Mamonova NA, et al. Chronic hepatitis C In Russia: current challenges and prospects. Terapevticheskii arkhiv. 2015;87(11):5–10. doi: 10.17116/terarkh201587115-10. (In Russ)]
  9. Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2019 г.: Государственный доклад. М.: 2020. 299 с.
    [Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2019: State report. Moscow; 2020. 299 p. (In Russ)]
  10. Дземова А.А., Ганченко Р.А., Трифонова Г.Ф. и др. Хронический гепатит С в Российской Федерации после начала программы элиминации HCV-инфекции. Гепатология и гастроэнтерология. 2020;4(2):165–70. doi: 25298/2616-5546-2020-4-2-165-170.
    [Dzemova AA, Ganchenko RA, Trifonova GF, et al. Chronic hepatitis C in the Russian Federation after starting the HCV elimination program. Gepatologiya i gastroenterologiya. 2020;4(2):165–70. doi: 10.25298/2616-5546-2020-4-2-165-170. (In Russ)]
  11. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 252 с.
    [Kaprin AD, Starinskii VV, Shakhzadova AO, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2020 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms In Russia in 2019 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 2021. 252 p. (In Russ)]
  12. Kawamura Y, Ikeda K, Arase Y, et al. Viral elimination reduces incidence of malignant lymphoma in patients with hepatitis. J Am Med Assoc. 2007;120(12):1034–41. doi: 10.1016/j.amjmed.2007.06.022.
  13. Su TH, Liu CJ, Tseng TC, et al. Hepatitis C viral infection increases the risk of lymphoid-neoplasms: A population-based cohort study. Hepatology. 2016;63(3):721–30. doi: 10.1002/hep.28387.
  14. Pozzato G, Mazzaro C, Maso L, et al. Hepatitis C virus and non-Hodgkin’s lymphomas: meta-analysis of epidemiology data and therapy options. World J Hepatol. 2016;8(2):107–16. doi: 10.4254/wjh.v8.i2.107.
  15. Милованова С.Ю., Лысенко Л.В., Милованова Л.Ю. и др. HCV-ассоциированная смешанная криоглобулинемия и В-клеточная неходжкинская лимфома — патогенетически связанные проблемы. Терапевтический архив. 2018;90(6):112–20. doi: 10.26442/terarkh2018906112-120.
    [Milovanova SYu, Lysenko LV, Milovanova LYu, et al. HCV-associated mixed cryoglobulinemia and B-cell non-Hodgkin’s lymphoma are pathogenetically related problems. Terapevticheskii arkhiv. 2018;90(6):112–20. doi: 10.26442/terarkh2018906112-120. (In Russ)]
  16. Minafo YA, Del Padre M, Cristofoletti C, et al. A stereotyped light chain may shape virus-specific B-cell receptors in HCV-dependent lymphoproliferative disorders. Genes Immun. 2020;21(2):131–5. doi: 10.1038/s41435-020-0093-9.
  17. Lotfi AA, Mohamed AE, Shalaby NA, et al. Occult hepatitis C virus infection in patients with malignant lymphoproliferative disorders. Int J Immunopathol Pharmacol. 2020;34:2058738420961202. doi: 10.1177/2058738420961202.
  18. Hirose S, Yamaji Y, Tsuruya K, et al. Rapid regression of B-cell non-Hodgkin’s lymphoma after eradication of hepatitis C virus by direct antiviral agents. Case Rep Gastroenterol. 2019;13(2):336–41. doi: 10.1159/000501546.
  19. Defrancesco I, Zerbi C, Rattotti S, et al. HCV infection and non-Hodgkin lymphomas: an evolving story. Clin Exp Med. 2020;20(3):321–8. doi: 10.1007/s10238-020-00615-6.
  20. Pozzato G, Mazzaro C, Gattei V. Hepatitis C virus-associated non-Hodgkin lymphomas: the endless history. Minerva Medica. 2021;112(2):215–27. doi: 10.23736/S0026-4806.20.07184-0.
  21. Сaсoub P, Comarmond C, Vieira M, et al. HCV-related lymphoproliferative disorders in the direct-acting antiviral era: From mixed cryoglobulinaemia to B-cell lymphoma. J Hepatol. 2021;76(1):174–85. doi: 10.1016/j.jhep.2021.09.023.
  22. Zhang M, Gao F, Peng L, et al. Distinct clinical features and prognostic factors in Hepatitis C virus-associated Non-Hodgkin’s lymphoma: a systematic review and meta-analysis. Cancer Cell Int. 2021;21(1):524. doi: 10.1186/s12935-021-02230-1.
  23. Ножкин М.С. Клинико-лабораторная характеристика течения хронического гепатита С у онкогематологических больных: Автореф. дис.… канд. мед. наук. СПб., 2021. 17 с.
    [Nozhkin MS. Kliniko-laboratornaya kharakteristika techeniya khronicheskogo gepatita C u onkogematologicheskikh bolnykh. (Clinical and laboratory characteristics of the course of chronic hepatitis C in oncohematological ) [dissertation] Saint Petersburg; 2021. 17 р. (In Russ)]
  24. Arico M, Maggiore G, Silini E, et al. Hepatitis C virus infection in children treated for acute lymphoblastic leukemia. Blood. 1994;84(9):2919–22.
  25. Meir H, Balawi I, Nayel H, et al. Hepatitis dysfunction in children with acute lymphoblastic leukemia remission: relation to hepatitis infection. Med Pediatr Oncol. 2001;36(4):469–73. doi: 10.1002/mpo.1111.
  26. Шардаков В.И., Назарова Е.Л., Сухорукова Э.Е. и др. Характеристика иммунного ответа у онкогематологических больных, имеющих хронический гепатит С. Вятский медицинский вестник. 2020;65(1):62–7.
    [Shardakov VI, Nazarova EL, Sukhorukova EE, et al. Characterization of the immune response in oncohematological patients with chronic hepatitis C. Vyatskii meditsinskii vestnik. 2020;65(1):62–7. (In Russ)]
  27. Torres HA, Davila M. Reactivation of hepatitis B virus and hepatitis C virus in patients with cancer. Nat Rev Clin Oncol. 2012;9(3):156–66. doi: 10.1038/nrclinonc.2012.1.
  28. Шаницына С.Е., Бурневич Э.З., Никулкина Е.Н. и др. Факторы риска неблагоприятного прогноза хронического гепатита С. Терапевтический архив. 2019;91(2):59–66. doi: 10.26442/00403660.2019.02.000082.
    [Shchanitcyna SE, Burnevich EZ, Nikulkina EN, et al. Risk factors of unfavorable prognosis of chronic hepatitis C. Terapevticheskii arkhiv. 2019;91(2):59–66. doi: 10.26442/00403660.2019.02.000082. (In Russ)]
  29. Mahale P, Kontoyiannis DP, Chemaly RF, et al. Acute exacerbation and reactivation of chronic hepatitis C virus infection in cancer patients. J Hepatol. 2021;57(6):1177–85. doi: 10.1016/j.jhep.2012.07.031.
  30. Nosotti L, D’Andrea M, Pitidis A, et al. Hepatitis C virus infection prevalence and liver dysfunction in a cohort of B-cell non-Hodgkin’s lymphoma patients treated with immunochemotherapy. Scand J Infect Dis. 2012;44(1):70–3. doi: 10.3109/00365548.2011.611819.
  31. Новик А.А. Возможности трансплантации костного мозга и стволовых кроветворных клеток в терапии гематологических и онкологических заболеваний. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2006;1(1):58–63.
    [Novik AA. Possibilities for bone marrow and hematopoietic stem cell transplantation in the treatment of hematological and oncological diseases. Vestnik Natsionalnogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova. 2006;1(1):58–63. (In Russ)]
  32. Mahmoud HK, Fathy GM, Elhaddad A, et al. Hematopoietic Stem Cell Transplantation in Egypt: Challenges and Opportunities. Mediterr J Hematol Infect Dis. 2020;12(1):e2020023. doi: 10.4084/MJHID.2020.023.
  33. Levitsky D, Sorrell MF. Hepatic complications of hematopoietic cell transplantation. Curr Gastroenterol Rep. 2007;9(1):60–5. doi: 10.1007/s11894-008-0022-y.
  34. Abdelbary H, Magdy R, Moussa M, et al. Liver disease during and after hematopoietic stem cell transplantation in adults: a single-center Egyptian experience. J Egypt Natl Canc Inst. 2020;32(1):11. doi: 10.1186/s43046-020-0020-1.
  35. Kaito S, Doki N, Hishima T, et al. Progressive hepatic cirrhosis early after allogeneic hematopoietic stem cell transplantation in a patient with chronic hepatitis C infection. Turk J Hematol. 2019;36(2):130–3. doi: 10.4274/tjh.galenos.2019.2018.0224.
  36. Castillo I, Rodriguez-Inigo E, Bartolome J, et al. Hepatitis C virus replicates in peripheral blood mononuclear cells of patients with occult hepatitis C virus infection. 2005;54(5):682–5. doi: 10.1136/gut.2004.057281.
  37. Castillo I, Bartolome J, Quiroga JA, et al. Long-term virological follow up of patients with occult hepatitis C virus infection. Liver Int. 2011;31(10):1519–24. doi: 10.1111/j.1478-3231.2011.02613.x.
  38. Вишневская Т.В., Масалова О.В., Альховский С.В. и др. Выявление маркеров репликации вируса гепатита С в мононуклеарных клетках периферической крови больных хроническим гепатитом С. Медицинская иммунология. 2008;10(4–5):397–404. doi: 10.15789/1563-0625-2008-4-5-397-404.
    [Vishnevskaya TV, Massalova OV, Alkhovsky SV, et al. Detection of hepatitis C virus-specific replication markers in peripheral blood mononuclears from the patients with chronic hepatitis C. Medical immunology. 2008;10(4–5):397–404. doi: 10.15789/1563-0625-2008-4-5-397-404. (In Russ)]
  39. Quiroga JA, Castillo I, Llorente S, et al. Identification of serologically silent latent hepatitis C viral infection by detecting an immunoglobulin G antibody to the dominant epitope of the HCV core peptide. J Hepatol. 2009;50(2):256–63. doi: 10.1016/j.jhep.2008.08.021.
  40. Carreno V, Bartolome J, Castillo I, et al. New perspectives in occult hepatitis C virus infection. World J Gastroenterol. 2012;18(23):2887–94. doi: 10.3748/wjg.v18.i23.2887.
  41. De Marco L, Gillio-Tos A, Fiano V, et al. Occult HCV infection: an unexpected finding in a population unselected for hepatic disease. PLoS One. 2009;4(12):e8128. doi: 10.1371/journal.pone.0008128.
  42. Lin H, Chen X, Zhu S, et al. Prevalence of Occult Hepatitis C Virus Infection among Blood Donors in Jiangsu, China. Intervirology. 2016;59(4):204–10. doi: 10.1159/000455854.
  43. Martinez-Rodriguez ML, Uribe-Noguez LA, Arroyo-Anduiza CI, et al. Prevalence and risk factors of Occult Hepatitis C infections in blood donors from Mexico City. PLoS One. 2018;13(10):e0205659. doi: 10.1371/journal.pone.0205659.
  44. Austria A, Wu GY. Occult Hepatitis C Virus Infection: A Review. J Clin Transl Hepatol. 2018;6(2):155–60. doi: 10.14218/JCTH.2017.00053.
  45. Helaly GF, Elsheredy AG, El Basset Mousa AA, et al. Seronegative and occult hepatitis C virus infections in patients with hematological disorders. Arch Virol. 2017;162(1):63–6. doi: 10.1007/s00705-016-3049-7.
  46. Mahrous S, Baraka A, Fathy М, Fayez М. Seronegative and latent hepatitis C viral infections in patients with acute and chronic myeloid leukemia. Egypt J Hosp Med. 2022;86(1):470–6. doi: 10.21608/ejhm.2022.213795.
  47. Yousif MM, Elsadek Fakhr A, Morad EA, et al. Prevalence of occult hepatitis C virus infection in patients who achieved sustained virologic response to direct-acting antiviral agents. Infez Med. 2018;26(3):237–43.
  48. Mazzaro C, Quartuccio L, Adinolfi LE. Review of extrahepatic manifestations of chronic hepatitis C viral infection and the effects of direct-acting antiviral therapy. Viruses. 2021;13(11):2249. doi: 10.3390/v13112249.
  49. Sarakko DM, Marzano A, Rizzetto M. Therapy of chronic viral hepatitis: light at the end of the tunnel? 2022;10(3):534. doi: 10.3390/biomedicines10030534.
  50. Нурмухаметова Е.А., Блохина Н.П., Тихонова Н.Ю. Противовирусная терапия хронического гепатита С: многолетний опыт реальной клинической практики. Инфекционные болезни. 2021;19(3):43–57. doi: 10.20953/1729-9225-2021-3-43-57.
    [Nurmukhametova EA, Blokhina NP, Tikhonova NYu. Antiviral therapy for chronic hepatitis C: many years of real clinical experience. Infektsionnye bolezni. 2021;19(3):43–57. doi: 10.20953/1729-9225-2021-3-43-57. (In Russ)]
  51. Rabaan AA, Al-Ahmed SH, Bazzi AM, et al. Overview of hepatitis C infection, molecular biology and new treatment. J Infect Public Health. 2020;13(5):773–83. doi: 10.1016/j.jiph.2019.11.015.
  52. Fontana RJ, Brown RS, Moreno-Zamora A, et al. Daclatasvir in combination with sofosbuvir or simeprevir in liver transplant recipients with severe recurrent hepatitis C infection. Liver Transpl. 2016;22(4):446–58. doi: 10.1002/lt.24416.
  53. Michot JM, Canioni D, Driss H, et al. Antiviral therapy is associated with a better survival in patients with hepatitis C virus and B-cell non-Hodgkin lymphomas, ANRS HC-13 lympho-C study. Am J Hematol. 2015;90(3):197–203. doi: 10.1002/ajh.23889.
  54. Frigeni M, Besson C, Visco C, et al. Interferon-free compared to interferon-based antiviral regimens as first-line therapy B-cell lymphoproliferative disorders associated with hepatitis C virus infection. Leukemia. 2020;34(5):1462–6. doi: 10.1038/s41375-019-0687-2.
  55. Pinana JL, Serra MА, Hernandez-Boluda JC, et al. Successful treatment of hepatitis C virus infection with sofosbuvir and simeprevir in the early phase of an allogeneic stem cell transplant. Transpl Infect Dis. 2016;18(1):89–92. doi: 10.1111/tid.12474.
  56. Rauwolf K, Herbruggen H, Zollner S, et al. Durable control of hepatitis C through interferon-free antiviral combination therapy immediately prior to allogeneic haematopoietic stem cell transplantation. J Viral. 2019;26(4):454–8. doi: 10.1111/jvh.13046.
  57. Onodera K, Onishi Y, Inoue J, et al. Second direct-acting antiviral therapy for hepatitis C virus infection after umbilical cord blood transplantation: A case report. J Infect Chemother. 2021;27(8):1230–3. doi: 10.1016/j.jiac.2021.02.002.
  58. Iftikhar R, Ahmad P, de Latour R, et al. Special issues related to the diagnosis and management of acquired aplastic anemia in countries with restricted resources, a report on behalf of the Eastern Mediterranean blood and marrow transplantation (EMBMT) group and severe aplastic anemia working party of the European Society for blood and marrow transplantation (SAAWP of EBMT). Bone Marrow Transplant. 2021;56(10):2518–32. doi: 10.1038/s41409-021-01332-8.
  59. Cunningham HE, Shea TC, Grgic T, Lachiewicz AM. Successful treatment of hepatitis C virus infection with direct-acting antivirals during hematopoietic cell transplant. Transpl Infect Dis. 2019;21(3):е13091. doi: 10.1111/tid.13091.
  60. Кичатова В.С., Кюрегян К.К. Современный взгляд на резистентность к препаратам прямого противовирусного действия при лечении вирусного гепатита С. Инфекционные болезни: новости, мнения, обучение. 2019;8(2):64–71. doi: 10.24411/2305-3496-2019-12009.
    [Kichatova VS, Kuregyan KK. Modern view on resistance to direct antiviral drugs in the treatment of viral hepatitis C: analytical review. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2019;8(2):64–71. doi: 10.24411/2305-3496-2019-12009. (In Russ)]
  61. Глобальная стратегия сектора здравоохранения по вирусному гепатиту 2016–2021 гг. На пути к ликвидации вирусного гепатита. Женева: ВОЗ, 2016. 52 с.
    [Global health sector strategy on viral hepatitis 2016–2021. Towards ending viral hepatitis. Geneva: WHO Publ.; 52 p. (In Russ)]
  62. Михайлов М.И., Ющук Н.Д., Малинникова Е.Ю. и др. Проект программы по контролю и ликвидации вирусных гепатитов как проблемы общественного здоровья в Российской Федерации. Инфекционные болезни: новости, мнения, обучение. 2018;7(2):52–8. doi:24411/2305-3496-2018-12005.
    [Mikhaylov MI, Yushchuk ND, Malinnikova EYu, et al. The design of the program for control and elimination of viral hepatitis as public health problem in the Russian Federation. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2018;7(2):52–8. doi: 10.24411/2305-3496-2018-12005. (In Russ)]

Комбинация ибрутиниба и венетоклакса в терапии хронического лимфолейкоза: обзор последних данных клинических исследований

А.А. Петренко1,2, М.И. Кислова1, Е.А. Дмитриева1, Е.А. Никитин1,2, В.В. Птушкин1,2,3

1 ГБУЗ «Городская клиническая больница им. С.П. Боткина ДЗМ», 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

2 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, ул. Баррикадная, д. 2/1, Москва, Российская Федерация, 125993

3 ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» Минздрава России, ул. Островитянова, д. 1, Москва, Российская Федерация, 117997

Для переписки: Мария Игоревна Кислова, 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284; e-mail: xkislovamariax@gmail.com

Для цитирования: Петренко А.А., Кислова М.И., Дмитриева Е.А. и др. Комбинация ибрутиниба и венетоклакса в терапии хронического лимфолейкоза: обзор последних данных клинических исследований. Клиническая онкогематология. 2023;16(1):37–45.

DOI: 10.21320/2500-2139-2023-16-1-37-45


РЕФЕРАТ

Появление ингибиторов тирозинкиназы Брутона (BTK) изменило лечение пациентов с хроническим лимфолейкозом (ХЛЛ). Ибрутиниб, первый в своем классе ингибитор BTK, продемонстрировал высокую эффективность в многочисленных клинических исследованиях. Однако использование ингибиторов BTK в качестве монотерапии требует непрерывного лечения. Резистентность к ингибиторам BTK и тяжелые побочные эффекты неизбежно возникают при монотерапии ибрутинибом, что часто приводит к неэффективности лечения. Комбинация ингибитора BCL-2 венетоклакса с ингибитором BTK может улучшить эффективность терапии за счет синергизма действия препаратов на разные субпопуляции клеток ХЛЛ. Комбинированная терапия может привести к более глубоким ответам, обеспечивая потенциально фиксированную продолжительность лечения. В настоящем обзоре, сосредоточив внимание на комбинации ибрутиниба и венетоклакса, мы обобщаем последние данные клинических исследований, а также отвечаем на вопрос, касающийся обоснованности комбинированной терапии с точки зрения ее эффективности и профиля безопасности.

Ключевые слова: ибрутиниб, ингибиторы BTK, венетоклакс, ингибиторы BCL-2, таргетные препараты, хронический лимфолейкоз.

Получено: 17 октября 2022 г.

Принято в печать: 10 ноября 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Brown JR, Hallek MJ, Pagel JM. Chemoimmunotherapy Versus Targeted Treatment in Chronic Lymphocytic Leukemia: When, How Long, How Much, and in Which Combination? Am Soc Clin Oncol Educ Book. 2016;35:e387–е398. doi: 10.1200/EDBK_159018.
  2. Eichhorst B, Fink AM, Bahlo J, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42. doi: 10.1016/S1470-2045(16)30051-1.
  3. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10. doi: 10.1056/NEJMoa1313984.
  4. Hallek M, Shanafelt TD, Eichhorst B. Chronic lymphocytic leukaemia. 2018;391(10129):1524–37. doi: 10.1016/S0140-6736(18)30422-7.
  5. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/NEJMoa1215637.
  6. de Rooij MF, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. 2012;119(11):2590–4. doi: 10.1182/blood-2011-11-390989.
  7. Herman SE, Mustafa RZ, Jones J, et al. Treatment with Ibrutinib Inhibits BTK- and VLA-4-Dependent Adhesion of Chronic Lymphocytic Leukemia Cells In Vivo. Clin Cancer Res. 2015;21(20):4642–51. doi: 10.1158/1078-0432.CCR-15-0781.
  8. Barr PM, Owen C, Robak T, et al. Up to 8-year follow-up from RESONATE-2: first-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022;6(11):3440–50. doi: 10.1182/bloodadvances.2021006434.
  9. Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia. N Engl J Med. 2019;381(5):432–43. doi: 10.1056/NEJMoa1817073.
  10. Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N Engl J Med. 2018;379(26):2517–28. doi: 10.1056/NEJMoa1812836.
  11. Moreno C, Greil R, Demirkan F, et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(1):43–56. doi: 10.1016/S1470-2045(18)30788-5.
  12. Munir T, Brown JR, O’Brien S, et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94(12):1353–63. doi: 10.1002/ajh.25638.
  13. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. doi: 10.1056/NEJMoa1400376.
  14. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015;373(25):2425–37. doi: 10.1056/NEJMoa1509388.
  15. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.
  16. Davids MS, Brander DM, Kim HT, et al. Ibrutinib plus fludarabine, cyclophosphamide, and rituximab as initial treatment for younger patients with chronic lymphocytic leukaemia: a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2019;6(8):e419–e428. doi: 10.1016/S2352-3026(19)30104-8.
  17. Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8. doi: 10.1038/nm.3048.
  18. Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. N Engl J Med. 2019;380(23):2225–36. doi: 10.1056/NEJMoa1815281.
  19. Kater AP, Wu JQ, Kipps T, et al. Venetoclax Plus Rituximab in Relapsed Chronic Lymphocytic Leukemia: 4-Year Results and Evaluation of Impact of Genomic Complexity and Gene Mutations From the MURANO Phase III Study. J Clin Oncol. 2020;38(34):4042–54. doi: 10.1200/JCO.20.00948.
  20. Al-Sawaf O, Zhang C, Lu T, et al. Minimal Residual Disease Dynamics after Venetoclax-Obinutuzumab Treatment: Extended Off-Treatment Follow-up From the Randomized CLL14 Study. J Clin Oncol. 2021;39(36):4049–60. doi: 10.1200/JCO.21.01181.
  21. Kittai AS, Woyach JA. uMRD: “the” endpoint or “an” endpoint for CLL? Blood. 2022;140(8):797–8. doi: 10.1182/blood.2022016927.
  22. Chen SS, Chang BY, Chang S, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30(4):833–43. doi: 10.1038/leu.2015.316.
  23. Cervantes-Gomez F, Lamothe B, Woyach JA, et al. Pharmacological and Protein Profiling Suggests Venetoclax (ABT-199) as Optimal Partner with Ibrutinib in Chronic Lymphocytic Leukemia. Clin Cancer Res. 2015;21(16):3705–15. doi: 10.1158/1078-0432.CCR-14-2809.
  24. Kater AP, Slinger E, Cretenet G, et al. Combined ibrutinib and venetoclax treatment vs single agents in the TCL1 mouse model of chronic lymphocytic leukemia. Blood Adv. 2021;5(23):5410–4. doi: 10.1182/bloodadvances.2021004861.
  25. Slinger E, Thijssen R, Kater AP, Eldering E. Targeting antigen-independent proliferation in chronic lymphocytic leukemia through differential kinase inhibition. Leukemia. 2017;31(12):2601–7. doi: 10.1038/leu.2017.129.
  26. Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol. 2020;10:592205. doi: 10.3389/fonc.2020.592205.
  27. Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol. 2020;10:591577. doi: 10.3389/fonc.2020.591577.
  28. Haselager MV, Kielbassa K, Ter Burg J, et al. Changes in Bcl-2 members after ibrutinib or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL. Blood. 2020;136(25):2918–26. doi: 10.1182/blood.2019004326.
  29. Deng J, Isik E, Fernandes SM, et al. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia. 2017;31(10):2075–84. doi: 10.1038/leu.2017.32.
  30. Gutierrez C, Wu CJ. Clonal dynamics in chronic lymphocytic leukemia. Blood Adv. 2019;3(22):3759–69. doi: 10.1182/bloodadvances.2019000367.
  31. Lu P, Wang S, Franzen CA, et al. Ibrutinib and venetoclax target distinct subpopulations of CLL cells: implication for residual disease eradication. Blood Cancer J. 2021;11(2):39. doi: 10.1038/s41408-021-00429-z.
  32. Zhang J, Lu X, Li J, Miao Y. Combining BTK inhibitors with BCL2 inhibitors for treating chronic lymphocytic leukemia and mantle cell lymphoma. Biomark Res. 2022;10(1):17. doi: 10.1186/s40364-022-00357-5.
  33. Wierda WG, Allan JN, Siddiqi T, et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results From the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J Clin Oncol. 2021;39(34):3853–65. doi: 10.1200/JCO.21.00807.
  34. Wierda WG, Tam CS, Allan JN, et al. Ibrutinib (Ibr) Plus Venetoclax (Ven) for First-Line Treatment of Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL): 1-Year Disease-Free Survival (DFS) Results From the MRD Cohort of the Phase 2 CAPTIVATE Study. Blood. 2020;136(Suppl 1):16–7. doi: 10.1182/blood-2020-134446.
  35. Ghia P, Allan JN, Siddiqi T, et al. First-Line Treatment with Ibrutinib (Ibr) Plus Venetoclax (Ven) for Chronic Lymphocytic Leukemia (CLL): 2-Year Post-Randomization Disease-Free Survival (DFS) Results from the Minimal Residual Disease (MRD) Cohort of the Phase 2 Captivate Study. Blood. 2021;138(Suppl 1):68. doi: 10.1182/blood-2021-144544.
  36. Tam CS, Allan JN, Siddiqi T, et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: primary analysis of the CAPTIVATE FD cohort. Blood. 2022;139(22):3278–89. doi: 10.1182/blood.2021014488.
  37. Allan JN, Wierda WG, Siddiqi T, et al. Primary analysis of the fixed-duration cohort from the phase 2 CAPTIVATE study of first-line ibrutinib+venetoclax for chronic lymphocytic leukemia/small lymphocytic lymphoma. EHA Library. 2021;324555:S147.
  38. Jain N, Keating M, Thompson P, et al. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N Engl J Med. 2019;380(22):2095–103. doi: 10.1056/NEJMoa1900574.
  39. Jain N, Keating MJ, Thompson PA, et al. Combined Ibrutinib and Venetoclax for First-Line Treatment of Patients with Chronic Lymphocytic Leukemia (CLL): Focus on Long-Term MRD Results. Blood. 2021;138(Suppl 1):3720. doi: 10.1182/blood-2021-154454.
  40. Jain N, Keating M, Thompson P, et al. Ibrutinib Plus Venetoclax for First-line Treatment of Chronic Lymphocytic Leukemia: A Nonrandomized Phase 2 Trial. JAMA Oncol. 2021;7(8):1213–9. doi: 10.1001/jamaoncol.2021.1649.
  41. Kater A, Owen C, Moreno C, et al. Fixed-duration ibrutinib and venetoclax (I+V) versus chlorambucil plus obinutuzumab (CLB+O) for first-line (1L) chronic lymphocytic leukemia (CLL): primary analysis of the phase 3 GLOW study. EHA Library. 2021;330172:LB1902.
  42. Munir T, Moreno C, Owen C, et al. First prospective data on minimal residual disease (MRD) outcomes after fixed-duration ibrutinib plus venetoclax (Ibr+Ven) versus chlorambucil plus obinutuzumab (Clb+O) for first-line treatment of CLL in elderly or unfit patients: the Glow study. Blood. 2021;138(Suppl 1):70. doi: 10.1182/blood-2021-148666.
  43. Kater AP, Owen C, Moreno C, et al. Fixed-Duration Ibrutinib-Venetoclax in Patients with Chronic Lymphocytic Leukemia and Comorbidities. NEJM Evid. 2022;1(7). doi: 10.1056/EVIDoa2200006.
  44. Hillmen P, Rawstron AC, Brock K, et al. Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study. J Clin Oncol. 2019;37(30):2722–9. doi: 10.1200/JCO.19.00894.
  45. Niemann CU, Levin M-D, Dubois J, et al. Venetoclax and ibrutinib for patients with relapsed/refractory chronic lymphocytic leukemia. Blood. 2021;137(8):1117–20. doi: 1182/blood.2020008608.
  46. Jain N, Keating MJ, Thompson PA, et al. Combined Ibrutinib and Venetoclax in Patients with Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL). Blood. 2019;134(Suppl_1):359. doi: 10.1182/blood-2019-131732.
  47. Scarfo L, Heltai S, Albi E, et al. Minimal residual disease-driven treatment intensification by sequential addition of ibrutinib to venetoclax in relapsed/refractory chronic lymphocytic leukemia: results of the monotherapy and combination phases of the IMPROVE study. Blood. 2020;136(Suppl 1):21–2.
  48. Thompson PA, Wang Y, Keating MJ, et al. Venetoclax Consolidation in Patients with High-Risk CLL Who Have Been on Ibrutinib More Than a Year Achieves a High Rate of Undetectable Minimal Residual Disease. Blood. 2021;138(Suppl 1):3723. doi: 1182/blood-2021-149919.
  49. Petrenko A, Kislova M, Dmitrieva E, et al. P654: Ibrutinib Plus Venetoclax in Patients With Complex Karyotype and Chronic Lymphocytic Leukemia. HemaSphere. 2022;6:552–3. doi: 10.1097/01.HS9.0000845500.06883.11.

Прогностические модели в медицине

А.С. Лучинин

ФГБУН «Кировский НИИ гематологии и переливания крови ФМБА», ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027

Для переписки: Александр Сергеевич Лучинин, канд. мед. наук, ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027; тел.: +7(919)506-87-86; e-mail: glivec@mail.ru

Для цитирования: Лучинин А.С. Прогностические модели в медицине. Клиническая онкогематология. 2023;16(1):27–36.

DOI: 10.21320/2500-2139-2023-16-1-27-36


РЕФЕРАТ

Медицинские прогностические (предиктивные) модели (МПМ) имеют важное значение в современном здравоохранении. Они определяют риски для здоровья и возникновения заболеваний. Целью их создания является улучшение результатов диагностики и лечения. Все МПМ можно разделить на две категории. Диагностические медицинские модели (ДММ) помогают рассчитать индивидуальный риск присутствия заболевания, в то время как прогностические медицинские модели (ПММ) — риск возникновения болезни или его осложнения в будущем. В обзоре обсуждаются характеристики ДММ и ПММ, условия их разработки, критерии применения в медицине, в частности в гематологии, а также проблемы, возникающие на этапе их создания и проверки качества.

Ключевые слова: прогностическая модель, искусственный интеллект.

Получено: 13 сентября 2022 г.

Принято в печать: 7 декабря 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. Br Med J. 2020;369:m1328. doi: 10.1136/bmj.m1328.
  2. Van Smeden M, Reitsma JB, Riley RD, et al. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol. 2021;132:142–5. doi: 10.1016/j.jclinepi.2021.01.009.
  3. Schalling M, Gleiss A, Gisslinger B, et al. Essential thrombocythemia vs. pre-fibrotic/early primary myelofibrosis: discrimination by laboratory and clinical data. Blood Cancer J. 2017;7(12):643. doi: 10.1038/s41408-017-0006-y.
  4. Guncar G, Kukar M, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):411. doi: 10.1038/s41598-017-18564-8.
  5. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.
  6. Van de Schans SАM, Steyerberg EW, Nijziel MR, et al. Validation, revision and extension of the Follicular Lymphoma International Prognostic Index (FLIPI) in a population-based setting. Ann Oncol. 2009;20(10):1697–702. doi: 10.1093/annonc/mdp053.
  7. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267.
  8. Лучинин А.С. Искусственный интеллект в гематологии. Клиническая онкогематология. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27.
    [Luchinin AS. Artificial Intelligence in Hematology. Clinical oncohematology. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27. (In Russ)]
  9. Zhou L, Meng X, Huang Y, et al. An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors. Nat Mach Intell. 2022;4(5):494–503. doi: 10.1038/s42256-022-00483-7.
  10. Szumilas M. Explaining Odds Ratios. J Can Acad Child Adolesc Psychiatry. 2010;19(3):227–29.
  11. Barraclough H, Simms L, Govindan R. Biostatistics Primer: What a Clinician Ought to Know: Hazard Ratios. J Thorac Oncol. 2011;6(6):978–82. doi: 10.1097/JTO.0b013e31821b10ab.
  12. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31. doi: 10.1093/eurheartj/ehu207.
  13. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):230. doi: 10.1186/s12916-019-1466-7.
  14. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8. doi: 10.7326/M18-1376.
  15. Moons KGM, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. Br Med J. 2009;338:b606. doi: 10.1136/bmj.b606.
  16. Altman DG, Bland JM. Missing data. Br Med J. 2007;334(7590):424. doi: 10.1136/bmj.38977.682025.2C.
  17. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. Br Med J. 2020;368:m441. doi: 10.1136/bmj.m441.
  18. Jenkins DG, Quintana-Ascencio PF. A solution to minimum sample size for regressions. PloS One. 2020;15(2):e0229345. doi: 10.1371/journal.pone.0229345.
  19. Van Voorhis WCR, Morgan BL. Understanding Power and Rules of Thumb for Determining Sample Sizes. Tutor Quant Meth Psychol. 2007;3(2):43–50. doi: 10.20982/tqmp.03.2.p043.
  20. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9. doi: 10.1016/s0895-4356(96)00236-3.
  21. Bujang MA, Sa’at N, Sidik TMITAB, Joo LC. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays J Med Sci. 2018;25(4):122–30. doi: 10.21315/mjms2018.25.4.12.
  22. Zhou P-Y, Wong AKC. Explanation and prediction of clinical data with imbalanced class distribution based on pattern discovery and disentanglement. BMC Med Inform Decis Mak. 2021;21(1):16. doi: 10.1186/s12911-020-01356-y.
  23. Pauker SG, Kassirer JP. The Threshold Approach to Clinical Decision Making. N Engl J Med. 1980;302(20):1109–17. doi: 10.1056/NEJM198005153022003.
  24. Lee DK. Data transformation: a focus on the interpretation. Korean J Anesthesiol. 2020;73(6):503–8. doi: 10.4097/kja.20137.
  25. Zhang Z. Variable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4(7):136. doi: 10.21037/atm.2016.03.35.
  26. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385395. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.
  27. de Hond AAH, Leeuwenberg AM, Hooft L, et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. NPJ Digit Med. 2022;5(1):1–13. doi: 10.1038/s41746-021-00549-7.
  28. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med. 2013;4(2):627–35.
  29. Agarwal A, Sharma P, Alshehri M, et al. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Comput Sci. 2021;7:e437. doi: 10.7717/peerj-cs.437.
  30. Hendriksen JMT, Geersing GJ, Moons KGM, de Groot JАH. Diagnostic and prognostic prediction models. J Thromb Haemost. 2013;11(Suppl 1):129–41. doi: 10.1111/jth.12262.
  31. Huang Y, Li W, Macheret F, et al. A tutorial on calibration measurements and calibration models for clinical prediction models. J Am Med Inform Assoc. 2020;27(4):621–33. doi: 10.1093/jamia/ocz228.
  32. Snell KIE, Archer L, Ensor J, et al. External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb. J Clin Epidemiol. 2021;135:79–89. doi: 10.1016/j.jclinepi.2021.02.011.
  33. Ramspek CL, Teece L, Snell KIE, et al. Lessons learnt when accounting for competing events in the external validation of time-to-event prognostic models. Int J Epidemiol. 2022;51(2):615–25. doi: 10.1093/ije/dyab256.
  34. Van Geloven N, Giardiello D, Bonneville EF, et al. Validation of prediction models in the presence of competing risks: a guide through modern methods. Br Med J. 2022;377:e069249. doi: 10.1136/bmj-2021-069249.
  35. Altman DG, Bland JM. Absence of evidence is not evidence of absence. Br Med J. 1995;311(7003):485. doi: 10.1136/bmj.311.7003.485.
  36. Smith GD, Ebrahim S. Data dredging, bias, or confounding. Br Med J. 2002;325(7378):1437–8. doi: 10.1136/bmj.325.7378.1437.
  37. Lakens D, Adolfi FG, Albers CJ, et al. Justify your alpha. Nat Hum Behav. 2018;2(3):168–71. doi: 10.1038/s41562-018-0311-x.
  38. Benjamin DJ, Berger JO, Johannesson M, et al. Redefine statistical significance. Nat Hum Behav. 2018;2(1):6–10. doi: 10.1038/s41562-017-0189-z.
  39. Van Smeden M, Lash TL, Groenwold RHH. Reflection on modern methods: five myths about measurement error in epidemiological research. Int J Epidemiol. 2020;49(1):338–47. doi: 10.1093/ije/dyz251.
  40. Altman DG, Royston P. The cost of dichotomising continuous variables. Br Med J. 2006;332(7549):1080. doi: 10.1136/bmj.332.7549.1080.
  41. Wynants L, van Smeden M, McLernon DJ, et al. Three myths about risk thresholds for prediction models. BMC Med. 2019;17(1):192. doi: 10.1186/s12916-019-1425-3.
  42. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41. doi: 10.1002/sim.2331.
  43. Vargha A, Rudas T, Delaney HD, Maxwell SE. Dichotomization, Partial Correlation, and Conditional Independence. J Educ Behav Stat. 1996;21(3):264–82. doi: 10.3102/10769986021003264.
  44. Basagana X, Pedersen M, Barrera-Gomez J, et al. Analysis of multicentre epidemiological studies: contrasting fixed or random effects modelling and meta-analysis. Int J Epidemiol. 2018;47(4):1343–54. doi: 10.1093/ije/dyy
  45. Лучинин А.С. Лечение пациентов с впервые диагностированной диффузной В-крупноклеточной лимфомой: обзор литературы и метаанализ. Клиническая онкогематология. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139.
    [Luchinin AS. Treatment of Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: A Literature Review and Meta-Analysis. Clinical oncohematology. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139. (In Russ)]
  46. Riley RD, Collins GS, Ensor J, et al. Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome. Stat Med. 2022;41(7):1280–95. doi: 10.1002/sim.9275.
  47. Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part I – continuous outcomes. Stat Med. 2019;38(7):1262–75. doi: 10.1002/sim.7993.
  48. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part II – binary and time-to-event outcomes. Stat Med. 2019;38(7):1276–96. doi: 10.1002/sim.7992.
  49. Riley RD, Debray TPA, Collins GS, et al. Minimum sample size for external validation of a clinical prediction model with a binary outcome. Stat Med. 2021;40(19):4230–51. doi: 10.1002/sim.9025.
  50. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Br Med J. 2009;338:b2393. doi: 10.1136/bmj.b2393.
  51. Petrazzini BO, Naya H, Lopez-Bello F, et al. Evaluation of different approaches for missing data imputation on features associated to genomic data. BioData Min. 2021;14(1):44. doi: 10.1186/s13040-021-00274-7.
  52. Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol. 1996;49(8):907–16. doi: 10.1016/0895-4356(96)00025-x.
  53. Heinze G, Dunkler D. Five myths about variable selection. Transpl Int. 2017;30(1):6–10. doi: 10.1111/tri.12895.
  54. Chen R-C, Dewi C, Huang S-W, Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):52. doi: 10.1186/s40537-020-00327-4.
  55. Moons KGM, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012;98(9):691–8. doi: 10.1136/heartjnl-2011-301247.
  56. Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-73. doi: 10.7326/M14-0698.
  57. Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med. 2022;28(5):924–33. doi: 10.1038/s41591-022-01772-9.

Острые миелоидные лейкозы после лечения классической лимфомы Ходжкина: обзор литературы

А.А. Даниленко, С.В. Шахтарина, Н.А. Фалалеева

Медицинский радиологический научный центр им. А.Ф. Цыба — филиал ФГБУ «НМИЦ радиологии» Минздрава России, ул. Королева, д. 4, Обнинск, Калужская область, Российская Федерация, 249036

Для переписки: Анатолий Александрович Даниленко, д-р мед. наук, ул. Королева, д. 4, Обнинск, Калужская область, Российская Федерация, 249036; тел.: +7(909)250-18-10; e-mail: danilenkoanatol@mail.ru

Для цитирования: Даниленко А.А., Шахтарина С.В., Фалалеева Н.А. Острые миелоидные лейкозы после лечения классической лимфомы Ходжкина: обзор литературы. Клиническая онкогематология. 2022;15(4):414–23.

DOI: 10.21320/2500-2139-2022-15-4-414-423


РЕФЕРАТ

Вторые злокачественные опухоли, развивающиеся у больных классической лимфомой Ходжкина (кЛХ) после лечения, представлены преимущественно солидными новообразованиями и в значительно меньшей степени острыми миелоидными лейкозами (ОМЛ). Вместе с тем относительный риск развития вторичного ОМЛ существенно превышает риск развития вторых (солидных) опухолей, а эффективность лечения больных вторичным ОМЛ значительно уступает результатам лечения первичного ОМЛ, что делает проблему значимой и актуальной. Настоящий обзор литературы посвящен эпидемиологии развития вторичных ОМЛ у больных, получавших лечение по поводу кЛХ. Кроме того, уделяется внимание современным лекарственным препаратам и технологиям, эффективным в отношении вторичных ОМЛ.

Ключевые слова: классическая лимфома Ходжкина, вторичные острые миелоидные лейкозы.

Получено: 15 апреля 2022 г.

Принято в печать: 28 августа 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Kanzler H, Kuppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;184(4):1495–505. doi: 10.1084/jem.184.4.1495.
  2. Devita VT, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med. 1970;73(6):881–95. doi: 10.7326/0003-4819-73-6-881.
  3. Donaldson SS, Hancock SL, Hoppe RT. The Janeway lecture. Hodgkin’s disease—finding the balance between cure and late effects. Cancer J Sci Am. 1999;5:325–33.
  4. Borchmann P, Eichenauer DA, Engert A. State of the art in the treatment of Hodgkin lymphoma. Nat Rev Clin Oncol. 2012;9(8):450–9. doi: 10.1038/nrclinonc.2012.91.
  5. Federico M, Luminari S, Iannitto E, et al. ABVD compared with BEACOPP compared with CEC for the initial treatment of patients with advanced Hodgkin’s lymphoma: results from the HD2000 Gruppo Italiano per lo Studio dei Linfomi Trial. J Clin Oncol. 2009;27(5):805–11. doi: 10.1200/JCO.2008.17.0910.
  6. Sasse S, Brockelmann PJ, Georgen H, et al. Long-term follow-up of contemporary treatment in early-stage Hodgkin lymphoma: Updated analyses of the German Hodgkin Study Group HD7, HD8, HD10 and HD11 trials. J Clin Oncol. 2017;35(18):1999–2007. doi: 10.1200/JCO.2016.70.9410.
  7. Henry-Amar M, Joly F. Late complications after Hodgkin’s disease. Ann Oncol. 1996;7(Suppl 4):115–26. doi: 10.1093/annonc/7.suppl_4.s115.
  8. Hoppe RT. Hodgkin’s disease: complications of therapy and excess mortality. Ann Oncol. 1997;8(Suppl 1):115–8. doi: 10.1093/annonc/8.suppl_1.s115.
  9. Merli F, Luminari S, Gobbi PG, et al. Long-term results of the HD2000 Trial comparing ABVD versus BEACOPP versus COPP-EBV-CAD in untreated patients with advanced Hodgkin lymphoma: a study by Fondazione Italiana Linfomi. J Clin Oncol. 2016;34(11):1175–81. doi: 10.1200/jco.2015.62.4817.
  10. Hancock SL, Hoppe RT. Long-term complications of treatment and causes of mortality after Hodgkin’s disease. Semin Radiat 1996;6(3):225–42. doi: 10.1053/SRAO00600225.
  11. Dorr FA, Coltman CA Jr. Second cancers following antineoplastic therapy. Curr Probl Cancer. 1985;9(2):1–43. doi: 10.1016/s0147-0272(85)80033-7.
  12. Arseneau JC, Sponzo RW, Levin DL, et al. Nonlymphomatous malignant tumors complicating Hodgkin’s disease: possible association with intensive therapy. N Engl J Med. 1972;287(22):1119–22. doi: 10.1056/NEJM197211302872204.
  13. Brunning RD, Matutes E, Harris NL, et al. Acute myeloid leukemia. World Health Organization of Tumors Pathology and Genetics, Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001. рр. 75–108. doi: 10.1182/blood-2002-04-1199.
  14. Shulman LN. The biology of alkylating-agent cellular injury. Hematol Oncol Clin North Am. 1993;7(2):325–35. doi: 10.1016/s0889-8588(18)30243-0.
  15. Tucker MA, Coleman CN, Cox RS, et al. Risk of second cancers after treatment for Hodgkin’s disease. N Engl J Med. 1988;318(2):76–81. doi: 10.1056/nejm198801143180203.
  16. van Leeuwen FE, Chorus AM, van den Belt-Dusebout AW, et al. Leukemia risk following Hodgkin’s disease: relation to cumulative dose of alkylating agents, treatment with teniposide combinations, number of episodes of chemotherapy, and bone marrow damage. J Clin Oncol. 1994;12(5):1063–73. doi: 10.1200/jco.1994.12.5.1063.
  17. Cosset JM, Henry-Amar M, Meerwaldt JH. Long-term toxicity of early stages of Hodgkin’s disease therapy: the EORTC experience. EORTC Lymphoma Cooperative Group. Ann Oncol. 1991;2(Suppl 2):77–82. doi: 10.1007/978-1-4899-7305-4_13.
  18. Park DJ, Koeffler HP. Therapy-related myelodysplastic syndromes. Semin Hematol. 1996;33(3):256–73.
  19. Abrahamsen JF, Andersen A, Hannisdal E, et al. Second malignancies after treatment of Hodgkin’s disease: the influence of treatment, follow-up time, and age. J Clin Oncol. 1993;11(2):255–61. doi: 10.1200/jco.1993.11.2.255.
  20. Glicksman AS, Pajak TF, Gottlieb A, et al. Second malignant neoplasms in patients successfully treated for Hodgkin’s disease: a Cancer and Leukemia Group B study. Cancer Treat Rep. 1982;66(4):1035–44.
  21. Delwail V, Jais JP, Colonna P, Andrieu JM. Fifteen-year secondary leukaemia risk observed in 761 patients with Hodgkin’s disease prospectively treated by MOPP or ABVD chemotherapy plus high-dose irradiation. Br J Haematol. 2002;118(1):189–94. doi: 10.1046/j.1365-2141.2002.03564.x.
  22. Coltman C, Dixon D. Second malignancies complicating Hodgkin’s disease: a Southwest Oncology Group 10-year follow-up. Cancer Treat Rep. 1982;66(4):1023–33.
  23. Aisenberg AC. Acute nonlymphocytic leukemia after treatment for Hodgkin’s disease. Am J Med. 1983;75(3):449–54. doi: 10.1016/0002-9343(83)90348-0.
  24. Coleman CN, Williams CJ, Flint AS, et al. Hematologic neoplasia in patients treated for Hodgkin’s disease. N Engl J Med. 1977;97(23):1249–52. doi: 10.1056/NEJM197712082972303.
  25. Holtzman AL, Stahl JM, Zhu S, et al. Does the Incidence of Treatment-Related Toxicity Plateau After Radiatio Therapy: The Long-Term Impact of Integral Dose in Hodgkin’s Lymphoma Survivors. Adv Radiat Oncol. 2019;4(4):699–705. doi: 10.1016/j.adro.2019.07.010.
  26. Henry-Amar M. Second cancer after the treatment of Hodgkin’s disease: a report from the International Database on Hodgkin’s disease. Ann Oncol. 1992;3(Suppl 4):117–28. doi: 10.1093/annonc/3.suppl_4.s117.
  27. Kaldor JM, Day NE, Clarke EA, et al. Leukemia following Hodgkin’s disease. N Engl J Med. 1990;322(1):7–13. doi: 10.1056/NEJM199001043220102.
  28. Brusamolino E, Anselmo AP, Klersy C, et al. The risk of acute leukemia in patients treated for Hodgkin’s disease is significantly higher after combined modality programs than after chemotherapy alone and is correlated with the extent of radiotherapy and type and duration of chemotherapy: a case-control study. Haematologica. 1998;83(9):812–23.
  29. Swerdlow AJ, Douglas AJ, Vaughan-Hudson G, et al. Risk of second primary cancers after Hodgkin’s disease by type of treatment: analysis of 2846 patients in the British National Lymphoma Investigation. Br J Med. 1992;304(6835):1137–43. doi: 10.1136/bmj.304.6835.1137.
  30. Schonfeld SJ, Gilbert ES, Dores GM, et al. Acute myeloid leukemia following Hodgkin lymphoma: a population-based study of 35,511 patients. J Natl Cancer Inst. 2006;98(3):215–8. doi: 10.1093/jnci/djj017.
  31. Pedersen-Bjergaard J, Specht L, Larsen SO, et al. Risk of therapy-related leukemia and preleukemia after Hodgkin’s disease. Lancet. 1987;2(8550):83–8. doi: 10.1016/s0140-6736(87)92744-9.
  32. Leone G, Voso MT, Sica S, et al. Therapy related leukemias: susceptibility, prevention and treatment. Leuk Lymphoma. 2001;41(3–4):255–76. doi: 10.3109/10428190109057981.
  33. Koontz MZ, Horning SJ, Balise R, et al. Risk of therapy-related secondary leukemia in Hodgkin lymphoma: the Stanford University experience over three generations of clinical trials. J Clin Oncol. 2013;31(5):592–8. doi: 10.1200/JCO.2012.44.5791.
  34. Andre MPE, Carde P, Viviani S, et al. Long-term overall survival and toxicities of ABVD vs BEACOPP in advanced Hodgkin lymphoma: A pooled analysis of four randomized trials. Cancer Med. 2020;9(18):6565–75. doi: 10.1002/cam4.3298.
  35. Skoetz N, Will A, Monsef I, et al. Comparison of first-line chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for people with early unfavourable or advanced stage Hodgkin lymphoma. Cohrane Database Syst Rev. 2017;5(5):CD007941. doi: 10.1002/14651858.CD007941.pub3.
  36. Schaapveld M, Aleman BMP, van Eggermond AM, et al. Second Cancer Risk Up to 40 Years after Treatment for Hodgkin’s Lymphoma. N Engl J Med. 2015;373(26):2499–511. doi: 10.1056/NEJMoa1505949.
  37. Eichenauer DA, Thielen I, Haverkamp H, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with Hodgkin lymphoma: a report from the German Hodgkin Study Group. Blood. 2014;123(11):1658–64. doi: 10.1182/blood-2013-07-512657.
  38. Eichenauer DA, Becker I, Monsef I, et al. Secondary malignant neoplasms, progression-free survival and overall survival in patients treated for Hodgkin lymphoma: a systematic review and meta-analysis of randomized clinical trials. Haematologica. 2017;102(10):1748–57. doi: 10.3324/haematol.2017.167478.
  39. Franklin J, Eichenauer DA, Becker I, et al. Optimisation of chemotherapy and radiotherapy for untreated Hodgkin lymphoma patients with respect to second malignant neoplasms, overall and progression-free survival: individual participant data analysis. Cohrane Database Syst Rev. 2017;9(9):CD008814. doi: 10.1002/14651858.CD008814.pub2.
  40. Scholz M, Engert A, Franklin J, et al. Impact of first- and second-line treatment for Hodgkin’s lymphoma on the incidence of AML/MDS and NHL – experience of the German Hodgkin’s Lymphoma Study Group analyzed by a parametric model of carcinogenesis. Ann Oncol. 2011;22(3):681–8. doi: 10.1093/annonc/mdq408.
  41. Leone G, Fianchi L, Voso MT. Therapy-related myeloid neoplasms. Curr Opin Oncol. 2011;23(6):672–80. doi: 10.1097/CCO.0b013e32834bcc2a.
  42. Kumar V, Garg M, Chandra AB, et al. Trends in the Risks of Secondary Cancers in Patients With Hodgkin Lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18(9):576–89. doi: 10.1016/j.clml.2018.05.021.
  43. Baker KS, DeFor TE, Burns LJ, et al. New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol. 2003;21(7):1352–8. doi: 10.1200/jco.2003.05.108.
  44. Bilmon IA, Ashton LJ, Le Marsney RE, et al. Second cancer risk in adults receiving autologous haematopoietic SCT for cancer: a population-based cohort study. Bone Marrow Transplant. 2014;49(5):691–8. doi: 10.1038/bmt.2014.13.
  45. Hodgson DC. Long-term toxicity of chemotherapy and radiotherapy in lymphoma survivors: optimizing treatment for individual patients. Clin Adv Hematol Oncol. 2015;13(2):103–12.
  46. Howe R, Micallef IN, Inwards DJ, et al. Secondary myelodysplastic syndrome and acute myelogenous leukemia are significant complications following autologous stem cell transplantation for lymphoma. Bone Marrow Transplant. 2003;32(3):317–24. doi: 10.1038/sj.bmt.1704124.
  47. Stone RM, Neuberg D, Soiffer R, et al. Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin’s lymphoma. J Clin Oncol. 1994;12(12):2535–42. doi: 10.1200/jco.1994.12.12.2535.
  48. Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013;40(6):666–75. doi: 10.1053/j.seminoncol.2013.09.013.
  49. Morton LM, Dores GM, Tucker MA, et al. Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the United States, 1975–2008. Blood. 2013;121(15):2996–3004. doi: 10.1182/blood-2012-08-448068.
  50. Krishnan A, Bhatia S, Slovak ML, et al. Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors. Blood. 2000;95(5):1588–93. doi: 10.1182/blood.v95.5.1588.005k38_1588_1593.
  51. Pedersen-Bjergaard J, Andersen MK, Christiansen DH. Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood. 2000;95(11):3273–9. doi: 10.1182/blood.v95.11.3273.011k15_3273_3279.
  52. Andre M, Henry-Amar M, Blaise D, et al. Treatment-related deaths and second cancer risk after autologous stem cell transplantation for Hodgkin’s disease. Blood. 1998;92(6):1933–40. doi: 10.1182/blood.V92.6.1933.
  53. Hosing C, Munsell M, Yazji S, et al. Risk of therapy-related myelodysplastic syndrome/acute leukemia following high-dose therapy and autologous bone marrow transplantation for non-Hodgkin’s lymphoma. Ann Oncol. 2002;13(3):450–9. doi: 10.1093/annonc/mdf109.
  54. Kalaycio M, Rybicki L, Pohlman B, et al. Risk factors before autologous stem-cell transplantation for lymphoma predict for secondary myelodysplasia and acute myelogenous leukemia. J Clin Oncol. 2006;24(22):3604–10. doi: 10.1200/jco.2006.06.0673.
  55. Metayer C, Curtis RE, Vose J, et al. Myelodysplastic syndrome and acute myeloid leukemia after autotransplantation for lymphoma: a multicenter case–control study. Blood. 2003;101(5):2015–23. doi: 10.1182/blood-2002-04-1261.
  56. Miller JS, Arthur DC, Litz CE, et al. Myelodysplastic syndrome after autologous bone marrow transplantation: an additional late complication of curative cancer therapy. Blood. 1994;83(12):3780–6. doi: 10.1182/blood.v83.12.3780.3780.
  57. Yamasaki S, Suzuki R, Hatano K, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndrome after hematopoietic cell transplantation for lymphoma. Bone Marrow Transplant. 2017;52(7):969–76. doi: 10.1038/bmt.2017.52.
  58. Ge I, Saliba RM, Maadani F. Age and number of apheresis days may predict for development of Secondary Myelodysplastic Syndrome and Acute Myelogenous Leukemia after transplantation for lymphomas. Transfusion. 2017;57(4):1052–7. doi: 10.1111/trf.14016.
  59. Josting A, Wiedenmann S, Franklin J, et al. Secondary myeloid leukemia and myelodysplastic syndromes in patients treated for Hodgkin’s disease: a report from the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2003;21(18):3440–6. doi: 10.1200/JCO.2003.07.160.
  60. Hake CR, Graubert TA, Fenske TS. Does autologous transplantation directly increase the risk of secondary leukemia in lymphoma patients? Bone Marrow Transplant. 2007;39(2):59–70. doi: 10.1038/sj.bmt.1705547.
  61. Wong TN, Miller CA, Jotte MRM, et al. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun. 2018;9(1):455. doi: 10.1038/s41467-018-02858-0.
  62. Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest. 2004;113(2):160–8. doi: 10.1172/JCI200420761.
  63. Forrest DL, Hogge DE, Nevill TJ, et al. High-dose therapy and autologous hematopoietic stem-cell transplantation does not increase the risk of second neoplasms for patients with Hodgkin’s lymphoma: a comparison of conventional therapy alone versus conventional therapy followed by autologous hematopoietic stem-cell transplantation. J Clin Oncol. 2005;23(31):7994–8002. doi: 10.1200/JCO.2005.01.9083.
  64. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  65. Leone G, Fianchi L, Pagano L, Voso MT. Incidence and susceptibility to therapy-related myeloid neoplasms. Chem Biol Interact. 2010;184(1–2):39–45. doi: 10.1016/j.cbi.2009.12.013.
  66. Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22(2):240–8. doi: 10.1038/sj.leu.2405078.
  67. Cowell IG, Austin CA. Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. Int J Environ Res Public Health. 2012;9(6):2075–91. doi: 10.3390/ijerph9062075.
  68. Kayser S, Dohner K, Krauter J, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117(7):2137–45. doi: 10.1182/blood-2010-08-301713.
  69. Shea LK, Uy GL. Choosing induction chemotherapy in therapy-related acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32(1):89–97. doi: 10.1016/j.beha.2019.02.013.
  70. Ostgard BC, Medeiros H, Sengelov LS, et al Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol. 2015;33(31):3641–9. doi: 10.1200/jco.2014.60.0890.
  71. Boddu P, Kantarjian HM, Garcia-Manero G, et al. Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Adv. 2017;1(17):1312–23. doi: 10.1182/bloodadvances.2017008227.
  72. Lowenberg B, Pabst T, Vellenga E, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364(11):1027–36. doi: 10.1056/NEJMoa1010222.
  73. Lee J-H, Joo Y-D, Kim H, et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood. 2011;118(14):3832–41. doi: 10.1182/blood-2011-06-361410.
  74. Lancet JE, Uy GL, Cortes JE. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J Clin Oncol. 2018;36(26):2684–92. doi: 10.1200/JCO.2017.77.6112.
  75. Walter RB, Othus M, Orlowski KF, et al. Unsatisfactory efficacy in randomized study of reduced-dose CPX-351 for medically less fit adults with newly diagnosed acute myeloid leukemia or other high-grade myeloid neoplasm. Haematologica. 2018;103(3):e106–e109. doi: 10.3324/haematol.2017.182642.
  76. Willemze R, Suciu S, Meloni G, et al. High-dose cytarabine in induction treatment improves the outcome of adult patients younger than age 46 years with acute myeloid leukemia: results of the EORTC-GIMEMA AML-12 trial. J Clin Oncol. 2014;32(3):219–28. doi: 10.1200/JCO.2013.51.8571.
  77. Theyab A, Algahtani M, Alsharif KF, et al. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. J Hematol. 2021;26(1):628–36. doi: 10.1080/16078454.2021.1965725.
  78. Leith CP, Kopecky KJ, Chen JM, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood. 1999;94(3):1086–99.
  79. Becker PS, Medeiros BC, Stein AS, et al. G-CSF priming, clofarabine, and high dose cytarabine (GCLAC) for upfront treatment of acute myeloid leukemia, advanced myelodysplastic syndrome or advanced myeloproliferative neoplasm. Am J Hematol. 2015;90(4):295–300. doi: 10.1002/ajh.23927.
  80. Vulaj V, Perissinotti AJ, Uebel JR, et al. The FOSSIL Study: FLAG or standard 7+3 induction therapy in secondary acute myeloid leukemia. Leuk Res. 2018;70:91–6. doi: 10.1016/j.leukres.2018.05.011.
  81. Richardson DR, Green SD, Foster MC, Zeidner JF. Secondary AML Emerging After Therapy with Hypomethylating Agents: Outcomes, Prognostic Factors, and Treatment Options. Curr Hematol Malig Rep. 2021;16(1):97–111. doi: 10.1007/s11899-021-00608-6.
  82. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. doi: 10.1182/blood-2018-08-868752.
  83. Cortes JE, Heidel FH, Heuser M, et al. A Phase 2 Randomized Study of Low Dose Ara-C with or without Glasdegib (PF-04449913) in Untreated Patients with Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome. Blood. 2016;128(22):99. doi: 10.1182/blood.V128.22.99.99.
  84. Sengsayadeth S, Labopin M, Boumendil A. Transplant Outcomes for Secondary Acute Myeloid Leukemia: Acute Leukemia Working Party of the European Society for Blood and Bone Marrow Transplantation Study. Biol Blood Marrow Transplant. 2018l;24(7):1406–14. doi: 10.1016/j.bbmt.2018.04.008.
  85. Tang F-F, Huang X-J, Zhang X-H, et al. Allogeneic hematopoietic cell transplantation for adult patients with treatment-related acute myeloid leukemia during first remission: Comparable to de novo acute myeloid leukemia. Leuk Res. 2016;47:8–15. doi: 10.1016/j.leukres.2016.05.005.
  86. Michelis FV, Atenafu EG, Gupta V, et al. Comparable outcomes post allogeneic hematopoietic cell transplant for patients with de novo or secondary acute myeloid leukemia in first remission. Bone Marrow Transplant. 2015;50(7):907–13. doi: 10.1038/bmt.2015.59.
  87. Nilsson C, Hulegardh E, Garelius H, et al. Secondary Acute Myeloid Leukemia and the Role of Allogeneic Stem Cell Transplantation in a Population-Based Setting. Biol Blood Marrow Transplant. 2019;25(9):1770–8. doi: 10.1016/j.bbmt.2019.05.038.
  88. Oliai С, Schiller G. How to address second and therapy-related acute myelogenous leukaemia. Br J Haematol. 2020;188(1):116–28. doi: 10.1111/bjh.16354.