An Optimal Multi-Locus HLA-Typing in Potential Donors of Allogeneic Hematopoietic Stem Cells

EG Khamaganova, SP Khizhinskii, EP Kuzminova, AR Abdrakhimova, EA Leonov, TV Gaponova, EN Parovichnikova

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Ekaterina Georgievna Khamaganova, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)613-24-76; e-mail:

For citation: Khamaganova EG, Khizhinskii SP, Kuzminova EP, et al. An Optimal Multi-Locus HLA-Typing in Potential Donors of Allogeneic Hematopoietic Stem Cells. Clinical oncohematology. 2023;16(4):399–406. (In Russ).

DOI: 10.21320/2500-2139-2023-16-4-399-406


Background. HLA-typing and matched donor selection as well as the detection of donor-specific anti-HLA antibodies are essential for allogeneic hematopoietic cell transplantation (allo-HSCT). In accordance with the guidelines of the Center for International Blood and Marrow Transplant Research (CIBMTR) optimal HLA-typing is performed on 11 HLA genes (-A, B, C, DRB1, DRB3/4/5, DQA1, DQB1, DPA1, and ‐DPB1) with an adequate coverage aiming to obtain the values at the two-field level.

Aim. To assess the results of multi-locus HLA-typing in bone marrow/hematopoietic cell donors from the database at the National Research Center for Hematology in terms of their conformance with the CIBMTR guidelines for allo-HSCT and to analyze the frequency and distribution of HLA alleles and multi-locus HLA haplotypes.

Materials & Methods. The study enrolled 3485 donors who were HLA-typed by next-generation sequencing.

Results. In all donors, the alleles of HLA class I genes were identified at the fourth-field level (nucleotide sequence). When the results were reduced to the second-field level (amino acid sequence), 61 HLA-A, 92 HLA-B, and 49 HLA-C alleles were detected. The alleles of class II genes were discovered either at the two-field or high-resolution levels. Among the HLA-DRB locus genes, 57 DRB1, 11 DRB3, 6 DRB4, and 5 DRB5 alleles were identified. Also, 23 HLA-DQA1, 30 HLA-DQB1, 14 HLA-DPA1, and 33 HLA-DPB1 alleles were detected. There were reported 3289 different HLA haplotypes of A-B-C-DRB1-DQA1-DQB1-DPA1-DPB1 genes.

Conclusion. The database created at the National Research Center for Hematology includes potential bone marrow/hematopoietic stem cell donors typed for 11 classical polymorphic genes HLA-A, B, C, DRB1, DRB3/4/5, DQA1, DQB1, DPA1, and -DPB1, which is in line with the guidelines of CIBMTR. The frequency and distribution of HLA alleles and multi-locus HLA haplotypes in our donors correspond to those in populations of European origin. HLA-typing and donor selection with regard to 11 HLA genes will contribute to improving the outcomes of both unrelated and haploidentical HSCTs.

Keywords: allo-HSCT, HLA-typing, HLA alleles, HLA haplotypes, bone marrow/hematopoietic stem cell donors.

Received: June 14, 2023

Accepted: September 18, 2023

Read in PDF

Статистика Plumx английский


  1. Протоколы трансплантации аллогенных гемопоэтических стволовых клеток. Под ред. В.Г. Савченко. М.: Практика, 2020. 320 с.
    [Savchenko VG, ed. Protokoly transplantatsii allogennykh gemopoeticheskikh stvolovykh kletok. (Allogeneic hematopoietic stem cell transplantation protocols.) Moscow: Praktika Publ.; 2020. 320 p. (In Russ)]
  2. Standards for Histocompatibility and Immunogenetics Testing. Version 8.0. [Internet] Available from: (accessed06.2023).
  3. Приказ Министерства здравоохранения Российской Федерации № 519-н от 29.07.2022 г. «Об утверждении Порядка проведения медицинского обследования донора, давшего письменное информированное добровольное согласие на изъятие своих органов и (или) тканей для трансплантации». М., 2022.
    [Decree No. 519-n of the Ministry of Health of the Russian Federation dated July 29, 2022, On the approval of the Procedure of conducting a medical examination of a donor who has given written informed voluntary consent to the removal of his organs and/or tissues for transplantation. Moscow; 2022. (In Russ)]
  4. Организация работы «типирующей лаборатории» в Федеральном регистре доноров костного мозга и гемопоэтических стволовых клеток, донорского костного мозга и гемопоэтических стволовых клеток, реципиентов костного мозга и гемопоэтических стволовых клеток: методические рекомендации ФМБА России. М., 2022. 6 с.
    [“Typing laboratory” management in the Federal Registry of Bone Marrow and Hematopoietic Stem Cell Donors, Donor Bone Marrow and Hematopoietic Stem Cells, Bone Marrow and Hematopoietic Stem Cell Recipients: methodological guidelines of the FMBA of Russia. Moscow; 2022. 6 p. (In Russ)]
  5. Yu N, Askar M, Wadsworth K, et al. Current donor selection strategies for allogeneic hematopoietic cell transplantation. Hum Immunol. 2022;83(10):665–73. doi: 10.1016/j.humimm.2022.04.008.
  6. Timofeeva OA, Philogene MC, Zhang QJ. Current donor selection strategies for allogeneic hematopoietic cell transplantation. Hum Immunol. 2022;83(10):674–86. doi: 10.1016/j.humimm.2022.08.007.
  7. Хамаганова Е.Г., Дроков М.Ю., Хижинский С.П. и др. Антитела к антигенам лейкоцитов (HLA) у больных с запланированной трансплантацией аллогенных гемопоэтических стволовых клеток. Трансфузиология. 2022;23(2):156–69.
    [Khamaganova EG, Drokov MYu, Khizhinskii SP, et al. Antibodies to human leukocyte antigens (HLA) in patients with planned transplantation of allogeneic hematopoietic stem cells. 2022;23(2):156–69. (In Russ)]
  8. Fleischhauer K, Shaw BE, Gooley T, et al. International Histocompatibility Working Group in Hematopoietic Cell Transplantation. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13(4):366–74. doi: 10.1016/S1470-2045(12)70004-9.
  9. Pidala J, Lee SJ, Ahn KW, et al. Nonpermissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation. Blood. 2014;124(16):2596–606. doi: 10.1182/blood-2014-05-576041.
  10. Fleischhauer K, Shaw BE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities. Blood. 2017;130(9):1089–96. doi: 10.1182/blood-2017-03-742346.
  11. Fuchs EJ, McCurdy SR, Solomon SR, et al. HLA informs risk predictions after haploidentical stem cell transplantation with posttransplantation cyclophosphamide. Blood. 2022;139(10):1452–68. doi: 10.1182/blood.2021013443.
  12. Nunes E, Heslop H, Fernandez-Vina M, et al. Definitions of histocompatibility typing terms: Harmonization of Histocompatibility Typing Terms Working Group. Hum Immunol. 2011;72(12):1014–16. doi: 10.1016/j.humimm.2011.06.002.
  13. Nomenclature for Factors of the HLA System. [Internet] Available from: (accessed 08.06.2023).
  14. QIAamp DNA Mini and Blood Mini Handbook. 5th edition. [Internet] Available from: (accessed 08.06.2023).
  15. Excoffier L, Lischer H. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564–7. doi: 10.1111/j.1755-0998.2010.02847.x.
  16. Null and Alternatively Expressed Alleles. [Internet] Available from: (accessed 08.06.2023).
  17. Hurley CK, Kempenich J, Wadsworth K, et al. Common, intermediate and well-documented HLA alleles in world populations: CIWD version 3.0.0. HLA. 2020;95(6):1–16. doi: 10.1111/tan.13811.
  18. IMGT/HLA. Release Documentation. [Internet] Available from: (accessed 08.06.2023).
  19. Dawkins RL, Lloyd SS. MHC Genomics and Disease: Looking Back to Go Forward. Cells. 2019;8(9):1–10. doi: 10.3390/cells8090944.
  20. Kauppi L, Stumpf MP, Jeffreys AJ. Localized breakdown in linkage disequilibrium does not always predict sperm crossover hot spots in the human MHC class II region. Genomics. 2005;86(1):13–24. doi: 10.1016/j.ygeno.2005.03.011.
  21. Fernandez-Vina MA, Klein JP, Haagenson M, et al. Multiple mismatches at the low expression HLA loci DP, DQ, and DRB3/4/5 associate with adverse outcomes in hematopoietic stem cell transplantation. Blood. 2013;121(22):4603–10. doi: 10.1182/blood-2013-02-481945.
  22. Yamamoto H, Uchida N, Naofumi MN, et al. Anti-HLA Antibodies Other than Against HLA-A, -B, -DRB1 Adversely Affect Engraftment and Nonrelapse Mortality in HLA-Mismatched Single Cord Blood Transplantation: Possible Implications of Unrecognized Donor-specific Antibodies. Biol Blood Marrow Transplant. 2014;20(10):1634–40. doi: 10.1016/j.bbmt.2014.06.024.
  23. Tsamadou C, Engelhardt D, Platzbecker U, et al. HLA-DRB3/4/5 Matching Improves Outcome of Unrelated Hematopoietic Stem Cell Transplantation. Front Immunol. 2021;12:771449. doi: 10.3389/fimmu.2021.771449.
  24. Ducreux S, Dubois V, Amokrane K, et al. HLA-DRB3/4/5 mismatches are associated with increased risk of acute GVHD in 10/10 matched unrelated donor hematopoietic cell Am J Hematol. 2018;93(8):994–1001. doi: 10.1002/ajh.25133.
  25. Хамаганова Е.Г., Леонов Е.А., Абдрахимова А.Р. и др. HLA-генетическое разнообразие русской популяции, выявленное методом секвенирования следующего поколения. Медицинская иммунология. 2021;23(3):509–22. doi: 10.15789/1563-0625-HDI-2182.
    [Khamaganova EG, Leonov EA, Abdrakhimova AR, et al. HLA diversity in the Russian population assessed by next generation sequencing. Medical Immunology. 2021;23(3):509–22. doi: 10.15789/1563-0625-HDI-2182. (In Russ)]
  26. Smirnova D, Loginova M, Druzhinina S, et al. Distributions of HLA-A, -B, -C, -DRB1 and -DQB1 alleles typed by next generation sequencing in Russian volunteer donors. HLA. 2023;101(6):623‐ doi: 10.1111/tan.15007.
  27. Creary LE, Gangavarapu S, Mallempati KC, et al. Next-generation sequencing reveals new information about HLA allele and haplotype diversity in a large European American population. Hum Immunol. 2019;80(10):807–22. doi: 10.1016/j.humimm.2019.07.27.
  28. Begovich AB, Moonsamy PV, Mack SJ, et al. Genetic variability and linkage disequilibrium within the HLA-DP region: analysis of 15 different populations. Tissue Antigens. 2001;57(5):424–39. doi: 10.1034/j.1399-0039.2001.057005424.x.
  29. Hollenbach JA, Madbouly A, Gragert L, et al. A combined DPA1~DPB1 amino acid epitope is the primary unit of selection on the HLA-DP heterodimer. Immunogenetics. 2012;64(8):559–69. doi: 10.1007/s00251-012-0615-3.
  30. Grundschober C, Sanchez-Mazas A, Excoffier L, et al. HLA-DPB1 DNA polymorphism in the Swiss population: linkage disequilibrium with other HLA loci and population genetic affinities. Eur J Immunogenet. 1994;21(3):143–57. doi: 10.1111/j.1744-313x.1994.tb00186.x.
  31. Scibola СF, Akers NK, Conde L, et al. Multi-locus HLA class I and II allele and haplotype associations with follicular lymphoma. Tissue Antigens. 2012;79(4):279–86. doi: 10.1111/j.1399-0039.2012.01845.
  32. Linjama T, Rather C, Ritari J, et al. Extended HLA Haplotypes and Their Impact on DPB1 Matching of Unrelated Hematologic Stem Cell Transplant Donors. Biol Blood Marrow Transplant. 2019;25(10):1956–64. doi: 10.1016/j.bbmt.2019.07.008.
  33. Allele Frequency Net Database. [Internet] Available from: (accessed 08.06.2023).
  34. Gragert L, Eapen M, Williams E, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371(4):339–48. doi: 10.1056/NEJMsa1311707.
  35. Dehn J, Setterholm M, Buck K, et al. HapLogic: A Predictive Human Leukocyte Antigen-Matching Algorithm to Enhance Rapid Identification of the Optimal Unrelated Hematopoietic Stem Cell Sources for Transplantation. Biol Blood Marrow Transplant. 2016;22(11):2038–46. doi: 10.1016/j.bbmt.2016.07.022.