Supportive Therapy in Multiple Myeloma: Practical Recommendations

MV Solovev, MV Soloveva, LP Mendeleeva

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Maksim Valerevich Solovev, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail:

For citation: Solovev MV, Soloveva MV, Mendeleeva LP. Supportive Therapy in Multiple Myeloma: Practical Recommendations. Clinical oncohematology. 2023;16(4):426–48. (In Russ).

DOI: 10.21320/2500-2139-2023-16-4-426-448


Supportive therapy is becoming increasingly important for the state-of-the-art algorithm of multiple myeloma (MM) treatment. The introduction of innovative drugs and transplantation methods into clinical practice considerably improved the disease-free and overall survival rates. However, in the vast majority of cases, MM still remains an incurable malignant plasma cell tumor. It is often treated on a continuous basis with a succession of targeted drugs and integration of glucocorticosteroids and conventional cytostatic agents into the program therapy. All of these together with immunodeficiency, bone lesions, and myeloma nephropathy lead to a high risk of adverse events and cumulative toxicity of treatment. At the same time, one of the main goals at all MM therapy stages is to maintain quality of life. The characteristics of clinical symptoms, the nuances of targeted therapy and chemotherapy-associated adverse events justify the need for further development of supportive MM therapy algorithms which remain to be a matter of current concern. They should be mainly aimed at preventing the therapy complications, reducing the rate of adverse events and clinical manifestations of side effects as well as developing a treatment strategy for cumulative toxicity. In the state-of-the-art algorithm of program MM treatment, supportive therapy-related knowledge is of no less value than the information on antitumor drugs and their efficacy. This paper reports the personal experience and provides recommendations mostly based on the results of clinical studies or views of expert panels. It also offers practical recommendations for supportive therapy in symptomatic MM which include prevention of skeletal complications, thromboses, and infections, nausea and vomiting management, vaccination, pre-medication and the algorithm of monoclonal antibody administration, anesthesia, peripheral polyneuropathy treatment, correction of secondary immunodeficiency, nutritional support, fatigue assessment and countermeasures.

Keywords: multiple myeloma, supportive therapy.

Received: June 22, 2023

Accepted: September 8, 2023

Read in PDF

Статистика Plumx английский


  1. Костина И.Э., Гитис М.К., Менделеева Л.П. и др. Рентгеновская компьютерная томография в диагностике и мониторинге поражения костей при множественной миеломе с использованием низкодозового и стандартного протоколов сканирования. Гематология и трансфузиология. 2018;63(2):113–23. doi: 10.25837/HAT.2018.13..2..002.
    [Kostina IE, Gitis MK, Mendeleeva LP, et al. Computed tomography in the diagnosis and monitoring of bone lesions in multiple myeloma using low-dose and standard scanning protocols. Russian journal of hematology and transfusiology. 2018;63(2):113–23. doi: 10.25837/HAT.2018.13..2..002. (In Russ)]
  2. Terpos E, Zamagni E, Lentzsch S, et al. Treatment of multiple myeloma-related bone disease: recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 2021;22(3):e119–e130. doi: 10.1016/S1470-2045(20)30559-3.
  3. Raje N, Terpos E, Willenbacher W, et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018;19(3):370–81. doi: 10.1016/S1470-2045(18)30072-X.
  4. Burkiewicz JS, Scarpace SL, Bruce SP. Denosumab in Osteoporosis and Oncology New Drug Developments. Ann Pharmacother I. 2009;43(9):1445–55. doi: 10.1345/aph.1M102.
  5. Lacy MQ, Dispenzieri A, Gertz MA, et al. Mayo Clinic consensus statement for the use of bisphosphonates in multiple myeloma. Mayo Clin Proc. 2006;81(8):1047–53. doi: 10.4065/81.8.1047.
  6. Terpos E, Sezer O, Croucher PI, et al. The use of bisphosphonates in multiple myeloma: Recommendations of an expert panel on behalf of the European Myeloma Network. Ann Oncol. 2009;20(8):1303–17. doi: 10.1093/annonc/mdn796.
  7. Anderson K, Ismaila N, Flynn PJ, et al. Role of bone-modifying agents in multiple myeloma: American society of clinical oncology clinical practice guideline update. J Clin Oncol. 2018;36(8):812–8. doi: 10.1200/JCO.2017.76.6402.
  8. Terpos E, Morgan G, Dimopoulos MA, et al. International myeloma working group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol. 2013;31(18):2347–57. doi: 10.1200/JCO.2012.47.7901.
  9. Бессмельцев С.С. Лечение костной болезни при множественной миеломе. Вестник гематологии. 2016;12(1):4–22.
    [Bessmeltsev The treatment of bone disease in multiple myeloma. Vestnik gematologii. 2016;12(1):4–22. (In Russ)]
  10. Crockett JC, Mellis DJ, Scott DI, Helfrich MH. New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: Focus on the RANK/RANKL axis. Osteoporos Int. 2011;22(1):1–20. doi: 10.1007/s00198-010-1272-8.
  11. Mikami S, Oya M, Mizuno R, et al. Invasion and metastasis of renal cell carcinoma. Med Mol Morphol. 2014;47(2):63–7. doi: 10.1007/s00795-013-0064-6.
  12. Morgan GJ, Davies FE, Gregory WM, et al. Effects of induction and maintenance plus long-term bisphosphonates on bone disease in patients with multiple myeloma: The Medical Research Council Myeloma IX Trial. Blood. 2012;119(23):5374–83. doi: 10.1182/blood-2011-11-392522.
  13. Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of Pamidronate in Reducing Skeletal Events in Patients with Advanced Multiple Myeloma. N Engl J Med. 1996;334(8):488–93. doi: 10.1056/nejm199602223340802.
  14. Morgan GJ, Davies FE, Gregory WM, et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): A randomised controlled trial. Lancet. 2010;376(9757):1989–99. doi: 10.1016/S0140-6736(10)62051-X.
  15. Rosen LS, Gordon D, Kaminski M, et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: A randomized, double-blind, multicenter, comparative trial. Cancer. 2003;98(8):1735–44. doi: 10.1002/cncr.11701.
  16. Anastasilakis AD, Toulis KA, Polyzos SA, Terpos E. RANKL inhibition for the management of patients with benign metabolic bone disorders. Expert Opin Investig Drugs. 2009;18(8):1085–102. doi: 10.1517/13543780903048929.
  17. Santini D, Perrone G, Roato I, et al. Expression pattern of receptor activator of NFκB (RANK) in a series of primary solid tumors and related bone metastases. J Cell Physiol. 2011;226(3):780–4. doi: 10.1002/jcp.22402.
  18. Casimiro S, Mohammad KS, Pires R, et al. RANKL/RANK/MMP-1 Molecular Triad Contributes to the Metastatic Phenotype of Breast and Prostate Cancer Cells In Vitro. PLoS One. 2013;8(5):e63153. doi: 10.1371/journal.pone.0063153.
  19. Delmas PD. Clinical Potential of RANKL Inhibition for the Management of Postmenopausal Osteoporosis and Other Metabolic Bone Diseases. J Clin Densitom. 2008;11(2):325–38. doi: 10.1016/j.jocd.2008.02.002.
  20. Sattler AM, Schoppet M, Schaefer JR, Hofbauer LC. Novel Aspects on RANK Ligand and Osteoprotegerin in Osteoporosis and Vascular Disease. Calcif Tissue Int. 2004;74(1):103–6. doi: 10.1007/s00223-003-0011-y.
  21. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46. doi: 10.1016/
  22. Timotheadou E, Kalogeras KT, Koliou GA, et al. Evaluation of the Prognostic Value of RANK, OPG, and RANKL mRNA Expression in Early Breast Cancer Patients Treated with Anthracycline-Based Adjuvant Chemotherapy. Transl Oncol. 2017;10(4):589–98. doi: 10.1016/j.tranon.2017.05.006.
  23. Tsourdi E, Langdahl B, Cohen-Solal M, et al. Discontinuation of denosumab therapy for osteoporosis: A systematic review and position statement by ECTS. Bone. 2017;105:11–7. doi: 10.1016/J.BONE.2017.08.003.
  24. Popp AW, Varathan N, Buffat H, et al. Bone Mineral Density Changes After 1 Year of Denosumab Discontinuation in Postmenopausal Women with Long-Term Denosumab Treatment for Osteoporosis. Calcif Tissue Int. 2018;103(1):50–4. doi: 10.1007/S00223-018-0394-4.
  25. Kristinsson SY, Pfeiffer RM, Bjorkholm M, et al. Arterial and venous thrombosis in monoclonal gammopathy of undetermined significance and multiple myeloma: a population-based study. Blood. 2010;115(24):4991–8. doi: 10.1182/BLOOD-2009-11-252072.
  26. Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood. 2013;122(10):1712–23. doi: 10.1182/blood-2013-04-460121.
  27. Schoen MW, Luo S, Gage B, et al. Association of venous thromboembolism with increased mortality in patients with multiple myeloma. J Clin Oncol. 2018;36(15_suppl):8051. doi: 10.1200/JCO.2018.36.15_SUPPL.8051.
  28. Huang H, Li H, Li D. Effect of serum monoclonal protein concentration on haemostasis in patients with multiple myeloma. Blood Coagul Fibrinolysis. 2015;26(5):556–9. doi: 10.1097/MBC.0000000000000296.
  29. De Stefano V, Larocca A, Carpenedo M, et al. Thrombosis in multiple myeloma: risk stratification, antithrombotic prophylaxis, and management of acute events. A consensus-based position paper from an ad hoc expert panel. Haematologica. 2022;107(11):2536. doi: 10.3324/HAEMATOL.2022.280893.
  30. Palumbo A, Rajkumar SV, Dimopoulos MA, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–23. doi: 10.1038/sj.leu.2405062.
  31. Li A, Wu Q, Luo S, et al. Derivation and Validation of a Risk Assessment Model for Immunomodulatory Drug-Associated Thrombosis Among Patients With Multiple Myeloma. J Natl Compr Canc Netw. 2019;17(7):840–7. doi: 10.6004/JNCCN.2018.7273.
  32. Covut F, Ahmed R, Chawla S, et al. Validation of the IMPEDE VTE score for prediction of venous thromboembolism in multiple myeloma: a retrospective cohort study. Br J Haematol. 2021;193(6):1213–9. doi: 10.1111/BJH.17505.
  33. Miceli TS, Gonsalves WI, Buadi FK. Supportive Care in Multiple Myeloma: Current Practices and Advances. Cancer Treat Res Commun. 2021;29:100476. doi: 10.1016/J.CTARC.2021.100476.
  34. Sanfilippo KM, Luo S, Wang TF, et al. Predicting Venous Thromboembolism in Multiple Myeloma: Development and Validation of the IMPEDE VTE Score. Am J Hematol. 2019;94(11):1176. doi: 10.1002/AJH.25603.
  35. Piedra K, Peterson T, Tan C, et al. Comparison of Venous Thromboembolism Incidence in Newly Diagnosed Multiple Myeloma Patients Receiving Bortezomib, Lenalidomide, Dexamethasone (RVD) or Carfilzomib, Lenalidomide, Dexamethasone (KRD) with Aspirin or Rivaroxaban Thromboprophylaxis HHS Public Access. Br J Haematol. 2022;196(1):105–9. doi: 10.1111/bjh.17772.
  36. Callander NS, Baljevic M, Adekola K, et al. NCCN Guidelines® Insights: Multiple Myeloma, Version 3.2022. J Natl Compr Canc Netw. 2022;20(1):8–19. doi: 10.6004/JNCCN.2022.0002.
  37. Terpos E, Kleber M, Engelhardt M, et al. European myeloma network guidelines for the management of multiple myeloma-related complications. Haematologica. 2015;100(10):1254–66. doi: 10.3324/haematol.2014.117176.
  38. Leclerc V, Karlin L, Herledan C, et al. Thromboembolic events and thromboprophylaxis associated with immunomodulators in multiple myeloma patients: a real-life study. J Cancer Res Clin Oncol. 2022;148(3):975–84. doi: 10.1007/s00432-021-03693-5.
  39. Anderson SM, Beck B, Sterud S, et al. Evaluating the use of appropriate anticoagulation with lenalidomide and pomalidomide in patients with multiple myeloma. J Oncol Pharm Pract. 2019;25(4):806–12. doi: 10.1177/1078155218758500.
  40. Takaishi K, Tsukamoto S, Ohwada C, et al. Low incidence of thromboembolism in multiple myeloma patients receiving immunomodulatory drugs; a retrospective single-institution analysis. J Thromb Thrombolysis. 2019;48(1):141–8. doi: 10.1007/S11239-019-01809-W.
  41. Dede RJ, Pruemer JM. Comparing venous thromboembolism prophylactic strategies for ambulatory multiple myeloma patients on immunomodulatory drug therapy. J Oncol Pharm Pract. 2015;22(2):248–55. doi: 10.1177/1078155215569555.
  42. Piedra K, Peterson T, Tan C, et al. Comparison of Venous Thromboembolism Incidence in Newly Diagnosed Multiple Myeloma Patients Receiving Bortezomib, Lenalidomide, Dexamethasone (RVD) or Carfilzomib, Lenalidomide, Dexamethasone (KRD) with Aspirin or Rivaroxaban Thromboprophylaxis. Br J Haematol. 2022;196(1):105. doi: 10.1111/BJH.17772.
  43. Mizrahi T, Leclerc J-M, David M, et al. ABO Group as a Thrombotic Risk Factor in Children With Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol. 2015;37(5):e328–e332. doi: 10.1097/MPH.0000000000000333.
  44. Merlen C, Bonnefoy A, Wagner E, et al. L-Asparaginase lowers plasma antithrombin and mannan-binding-lectin levels: Impact on thrombotic and infectious events in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62(8):1381–7. doi: 10.1002/pbc.25515.
  45. Kristinsson SY, Tang M, Pfeiffer RM, et al. Monoclonal gammopathy of undetermined significance and risk of infections: a population-based study. Haematologica. 2012;97(6):854–8. doi: 10.3324/HAEMATOL.2011.054015.
  46. Blimark C, Holmberg E, Mellqvist UH, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2015;100(1):107–13. doi: 10.3324/HAEMATOL.2014.107714.
  47. Lim C, Sinha P, Harrison SJ, et al. Epidemiology and Risks of Infections in Patients With Multiple Myeloma Managed With New Generation Therapies. Clin Lymphoma Myeloma Leuk. 2021;21(7):444–450.e3. doi: 10.1016/J.CLML.2021.02.002.
  48. Drayson MT, Bowcock S, Planche T, et al. Levofloxacin prophylaxis in patients with newly diagnosed myeloma (TEAMM): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial. Lancet Oncol. 2019;20(12):1760. doi: 10.1016/S1470-2045(19)30506-6.
  49. Raje NS, Anaissie E, Kumar SK, et al. Consensus guidelines and recommendations for infection prevention in multiple myeloma: a report from the International Myeloma Working Group. Lancet Haematol. 2022;9(2):e143–e161. doi: 10.1016/S2352-3026(21)00283-0.
  50. Mateos MV, Richardson PG, Schlag R, et al. Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: Updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J Clin Oncol. 2010;28(13):2259–66. doi: 10.1200/JCO.2009.26.0638.
  51. Dimopoulos MA, Lonial S, Betts KA, et al. Elotuzumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: Extended 4-year follow-up and analysis of relative progression-free survival from the randomized ELOQUENT-2 trial. Cancer. 2018;124(20):4032–43. doi: 10.1002/cncr.31680.
  52. Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N Engl J Med. 2018;379(19):1811–22. doi: 10.1056/NEJMoa1805762.
  53. George LL, Malik MN, Miller EJ, et al. Special Considerations for Supportive Care and Management of Complications in Elderly Patients With Multiple Myeloma. Clin Lymphoma Myeloma Leuk. 2021;21(12):812–22. doi: 10.1016/J.CLML.2021.07.013.
  54. Karlsson J, Andreasson B, Kondori N, et al. Comparative study of immune status to infectious agents in elderly patients with multiple myeloma, Waldenstrom’s macroglobulinemia, and monoclonal gammopathy of undetermined significance. Clin Vaccine Immunol. 2011;18(6):969–77. doi: 10.1128/CVI.00021-11.
  55. Ludwig H, Kumar S. Prevention of infections including vaccination strategies in multiple myeloma. Am J Hematol. 2023;98(S2):S46–S62. doi: 10.1002/AJH.26766.
  56. Ведение пациентов онкогематологического профиля в период пандемии COVID-19. Под ред. И.В. Поддубной. М.: Экон-Информ, 2022. 140 с.
    [Poddubnaya IV, ed. Vedenie patsientov onkogematologicheskogo profilya v period pandemii COVID-19. (The management of oncohematological patients during COVID-19 pandemics.) Moscow: Ekon-Inform ; 2022. 140 p. (In Russ)]
  57. Dimopoulos MA, Moreau P, Terpos E, et al. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32(3):309–22. doi: 10.1016/J.ANNONC.2020.11.014.
  58. Hua Q, Zhu Y, Liu H. Severe and fatal adverse events risk associated with rituximab addition to B-cell non-Hodgkin’s lymphoma (B-NHL) chemotherapy: A meta-analysis. J Chemother. 2015;27(6):365–70. doi: 10.1179/1973947815Y.0000000025.
  59. Ren YR, Jin YD, Zhang ZH, et al. Rituximab treatment strategy for patients with diffuse large B‑cell lymphoma after first‑line therapy: A systematic review and meta‑ Chin Med J (Engl). 2015;128(3):378–83. doi: 10.4103/0366-6999.150111.
  60. Taniwaki M, Yoshida M, Matsumoto Y, et al. Elotuzumab for the treatment of relapsed or refractory multiple myeloma, with special reference to its modes of action and SLAMF7 signaling. Mediterr J Hematol Infect Dis. 2018;10(1):2018014. doi: 10.4084/mjhid.2018.014.
  61. Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9. doi: 10.1200/JCO.2011.37.2649.
  62. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N Engl J Med. 2015;373(13):1207–19. doi: 10.1056/NEJMoa1506348.
  63. Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab Plus Pomalidomide and Dexamethasone for Relapsed/Refractory Multiple Myeloma: Final Overall Survival Analysis From the Randomized Phase II ELOQUENT-3 Trial. J Clin Oncol. 2023;41(3):568. doi: 10.1200/JCO.21.02815.
  64. Sanchez L, Wang Y, Siegel DS, Wang ML. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J Hematol Oncol. 2016;9(1):51. doi: 10.1186/S13045-016-0283-0.
  65. Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;375(14):1319–31. doi: 10.1056/nejmoa1607751.
  66. Boyle EM, Leleu X, Petillon MO, et al. Daratumumab and dexamethasone is safe and effective for triple refractory myeloma patients: final results of the IFM 2014-04 (Etoile du Nord) trial. Br J Haematol. 2019;187(3):319–27. doi: 10.1111/bjh.16059.
  67. Baldo BA. Monoclonal Antibodies Approved for Cancer Therapy. In: Safety of Biologics Therapy. Springer International Publishing; 2016:57–140. doi: 10.1007/978-3-319-30472-4_3.
  68. Van De Donk NWCJ, Moreau P, Plesner T, et al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood. 2016;127(6):681–95. doi: 10.1182/blood-2015-10-646810.
  69. Nooka AK, Gleason C, Sargeant MO, et al. Managing infusion reactions to new monoclonal antibodies in multiple myeloma: Daratumumab and elotuzumab. J Oncol Pract. 2018;14(7):414–22. doi: 1200/JOP.18.00143.
  70. Головкина Л.Н., Минеева Н.В., Менделеева Л.П. и др. Модификация преаналитического этапа непрямой пробы Кумбса у больных множественной миеломой при лечении даратумумабом. Гематология и трансфузиология. 2018;63(1):44–54. doi: 10.25837/HAT.2018.45..1..004.
    [Golovkina LL, Mineeva NV, Mendeleeva LP, et al. A modification of the pre-analytical phase of the indirect coombs test for multiple myeloma patients treated with daratumumab. Russian journal of hematology and transfusiology. 2018;63(1):44–54. doi: 10.25837/HAT.2018.45..1..004. (In Russ)]
  71. De Vooght KMK, Oostendorp M, Van Solinge WW. New mAb therapies in multiple myeloma: interference with blood transfusion compatibility testing. Curr Opin Hematol. 2016;23(6):557–62. doi: 10.1097/MOH.0000000000000276.
  72. Li Y, Li C, Zhang L, et al. Long-term storage protocol of reagent red blood cells treated with 0.01M dithiothreitol (DTT) for pre-transfusion testing of patients receiving anti-CD38 therapy, daratumumab. Hematology. 2023;28(1):2186037. doi: 10.1080/16078454.2023.2186037.
  73. Van De Donk NWCJ, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131(1):13–29. doi: 10.1182/blood-2017-06-740944.
  74. Zhu C, Song Z, Wang A, et al. Isatuximab Acts Through Fc-Dependent, Independent, and Direct Pathways to Kill Multiple Myeloma Cells. Front Immunol. 2020;11:1771. doi: 10.3389/fimmu.2020.01771.
  75. Attal M, Richardson PG, Rajkumar SV, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394(10214):2096–107. doi: 10.1016/S0140-6736(19)32556-5.
  76. Moreau P, Dimopoulos MA, Mikhael J, et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial. Lancet. 2021;397(10292):2361–71. doi: 10.1016/S0140-6736(21)00592-4.
  77. Hesketh PJ. Chemotherapy-induced nausea and vomiting. N Engl J Med. 2008;358(23):2482–94. doi: 10.1056/NEJMra0706547.
  78. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–53. doi: 10.1158/0008-5472.CAN-07-6611.
  79. Navari RM, Aapro M. Antiemetic Prophylaxis for Chemotherapy-Induced Nausea and Vomiting. N Engl J Med. 2016;374(14):1356–67. doi: 10.1056/NEJMra1515442.
  80. Snowden JA, Ahmedzai SH, Ashcroft J, et al. Guidelines for supportive care in multiple myeloma 2011. Br J Haematol. 2011;154(1):76–103. doi: 10.1111/J.1365-2141.2011.08574.X.
  81. Bountra C, Gale JD, Gardner CJ, et al. Towards understanding the aetiology and pathophysiology of the emetic reflex: novel approaches to antiemetic drugs. Oncology. 1996;53(Suppl 1):102–9. doi: 10.1159/000227649.
  82. Mitchelson F. Pharmacological agents affecting emesis. A review (Part I). Drugs. 1992;43(3):295–315. doi: 10.2165/00003495-199243030-00002.
  83. Berger MJ, Ettinger DS, Aston J, et al. Antiemesis, version 2.2017 featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2017;15(7):883–93. doi: 10.6004/jnccn.2017.0117.
  84. Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus. Neurochem Int. 1985;7(2):191–211. doi: 10.1016/0197-0186(85)90106-8.
  85. Снеговой А.В., Абрамов М.Е., Бяхов М.Ю. и др. Практические рекомендации по профилактике и лечению тошноты и рвоты у онкологических больных. Злокачественные опухоли. 2016;4(2):378–89. doi: 10.18027/2224-5057-2016-4s2-378-389.
    [Snegovoi AV, Abramov ME, Byakhov MYu, et al. Practical recommendations for nausea and vomiting prevention and treatment in oncological patients. Malignant tumors. 2016;4(2):378–89. doi: 10.18027/2224-5057-2016-4s2-378-389. (In Russ)]
  86. Einhorn LH, Rapoport B, Navari RM, et al. 2016 updated MASCC/ESMO consensus recommendations: prevention of nausea and vomiting following multiple-day chemotherapy, high-dose chemotherapy, and breakthrough nausea and vomiting. Support Care Cancer. 2017;25(1):303–8. doi: 10.1007/S00520-016-3449-y.
  87. Hesketh PJ, Kris MG, Basch E, et al. Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(28):3240–61. doi: 10.1200/JCO.2017.74.4789.
  88. Loteta B, Paviglianiti A, Naso V, et al. Netupitant/palonosetron without dexamethasone for preventing nausea and vomiting in patients with multiple myeloma receiving high-dose melphalan for autologous stem cell transplantation: a single-center experience. Support Care Cancer. 2022;30(1):585. doi: 10.1007/S00520-021-06472-7.
  89. Tendas A, Marchesi F, Mengarelli A, et al. Prevention of chemotherapy-induced nausea and vomiting after high-dose melphalan and stem cell transplantation: review of the evidence and suggestions. Support Care Cancer. 2019;27(3):793–803. doi: 10.1007/S00520-018-4594-2.
  90. Ye P, Pei R, Wang T, et al. Multiple-day administration of fosaprepitant combined with tropisetron and olanzapine improves the prevention of nausea and vomiting in patients receiving chemotherapy prior to autologous hematopoietic stem cell transplant: a retrospective study. Ann Hematol. 2022;101(8):1835–41. doi: 10.1007/S00277-022-04877-w.
  91. Patel P, Leeder JS, Piquette-Miller M, Dupuis LL. Aprepitant and fosaprepitant drug interactions: a systematic review. Br J Clin Pharmacol. 2017;83(10):2148–62. doi: 10.1111/bcp.13322.
  92. Roila F, Aapro M, Ballatori E, et al. Prevention of chemotherapy- and radiotherapy-induced emesis: Results of the 2004 Perugia International Antiemetic Consensus Conference. Ann Oncol. 2006;17(1):20–8. doi: 10.1093/annonc/mdj078.
  93. Basch E, Prestrud AA, Hesketh PJ, et al. Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2011;29(31):4189–98. doi: 10.1200/JCO.2010.34.4614.
  94. Razvi Y, Chan S, McFarlane T, et al. ASCO, NCCN, MASCC/ESMO: a comparison of antiemetic guidelines for the treatment of chemotherapy-induced nausea and vomiting in adult patients. Support Care Cancer. 2019;27(1):87–95. doi: 10.1007/s00520-018-4464-y.
  95. Hesketh PJ, Kris MG, Basch E, et al. Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(28):3240–61. doi: 10.1200/JCO.2017.74.4789.
  96. Burget DW, Chiverton SG, Hunt RH. Is there an optimal degree of acid suppression for healing of duodenal ulcers?. A model of the relationship between ulcer healing and acid suppression. 1990;99(2):345–51. doi: 10.1016/0016-5085(90)91015-X.
  97. Ивашкин В.Т., Маев И.В., Царьков П.В. и др. Диагностика и лечение язвенной болезни у взрослых (клинические рекомендации Российской гастроэнтерологической ассоциации, Российского общества колоректальных хирургов и Российского эндоскопического общества). Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020;30(1):49–70.
    [Ivashkin VT, Maev IV, Tsarkov PV, et al. Diagnosis and treatment of peptic ulcer in adults (clinical guidelines of the Russian Gastroenterological Association, the Russian Society of Colorectal Surgeons, and the Russian Endoscopic Society). Rossiiskii zhurnal gastroenterologii, gepatologii, koloproktologii. 2020;30(1):49–70. (In Russ)]
  98. Hu Z-H, Shi A-M, Hu D-M, Bao J-J. Efficacy of proton pump inhibitors for patients with duodenal ulcers: A pairwise and network meta-analysis of randomized controlled trials. Saudi J Gastroenterol. 2017;23(1):11–9. doi: 10.4103/1319-3767.199117.
  99. Poynard T, Lemmaire M, Agostini H. Meta-analysis of randomized clinical trials comparing lansoprazole raitidine or famotidine in the treatment of acute duodenal ulcer. Eur J Gastroenterol Hepatol. 1995;7(7):661–5.
  100. Lanas A, Chan FKL. Peptic ulcer disease. Lancet. 2017;390(10094):613–24. doi: 10.1016/S0140-6736(16)32404-7.
  101. Семочкин С.В., Соловьев М.В., Менделеева Л.П. Профилактика и лечение бортезомибиндуцированной нейропатии у пациентов с множественной миеломой. Онкогематология. 2022;17(2):141–50. doi: 10.17650/1818-8346-2022-17-2-141-150.
    [Semochkin SV, Solovyev MV, Mendeleeva LP. Prevention and management of bortezomib-induced peripheral neuropathy in patients with multiple myeloma. Oncohematology. 2022;17(2):141–50. doi: 10.17650/1818-8346-2022-17-2-141-150. (In Russ)]
  102. Miceli TS, Gonsalves WI, Buadi FK. Supportive Care in Multiple Myeloma: Current Practices and Advances. Cancer Treat Res Commun. 2021;29:100476. doi: 10.1016/J.CTARC.2021.100476.
  103. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко М.: Практика, 2018. 1008 с.
    [Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika; 2018. 1008 p. (In Russ)]
  104. Morawska M, Grzasko N, Kostyra M, et al. Therapy-related peripheral neuropathy in multiple myeloma patients. Hematol Oncol. 2015;33(4):113–9. doi: 10.1002/HON.2149.
  105. Guzdar A, Costello C. Supportive Care in Multiple Myeloma. Curr Hematol Malig Rep. 2020;15(2):56–61. doi: 10.1007/S11899-020-00570-9.
  106. Zhi WI, Ingram E, Li SQ, et al. Acupuncture for Bortezomib-Induced Peripheral Neuropathy: Not Just for Pain. Integr Cancer Ther. 2018;17(4):1079. doi: 10.1177/1534735418788667.
  107. Shah N, Mustafa SS, Vinh DC. Management of secondary immunodeficiency in hematological malignancies in the era of modern oncology. Crit Rev Oncol Hematol. 2023;181:103896. doi: 10.1016/J.CRITREVONC.2022.103896.
  108. Girmenia C, Cavo M, Offidani M, et al. Management of infectious complications in multiple myeloma patients: Expert panel consensus-based recommendations. Blood Rev. 2019;34:84–94. doi: 10.1016/J.BLRE.2019.01.001.
  109. Compagno N, Malipiero G, Cinetto F, Agostini C. Immunoglobulin replacement therapy in secondary hypogammaglobulinemia. Front Immunol. 2014;5:626. doi: 10.3389/fimmu.2014.00626.
  110. Coluzzi F, Rolke R, Mercadante S. Pain Management in Patients with Multiple Myeloma: An Update. Cancers. 2019;11(12):2037. doi: 10.3390/CANCERS11122037.
  111. Davies MP, Fingas S, Chantry A. Mechanisms and treatment of bone pain in multiple myeloma. Curr Opin Support Palliat Care. 2019;13(4):408–16. doi: 10.1097/SPC.0000000000000467.
  112. Бесова Н.С., Борисова Т.Н., Ларионова В.Б. и др. Клинические рекомендации по нутритивной поддержке при химиотерапии и/или лучевой терапии (электронный документ). М., 2014. Доступно по: Ссылка активна на06.2023.
    [Besova NS, Borisova TN, Larionova VB, et al. Clinical guidelines for nutritional support on chemo- and/or radiotherapy. (Internet) Moscow; 2014. Available from: Accessed 28.06.2023. (In Russ)]
  113. Virizuela JA, Camblor-Alvarez M, Luengo-Perez LM, et al. Nutritional support and parenteral nutrition in cancer patients: an expert consensus report. Clin Transl Oncol. 2018;20(5):619–29. doi: 10.1007/s12094-017-1757-4.
  114. Arends J, Bachmann P, Baracos V, et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017;36(1):11–48. doi: 10.1016/j.clnu.2016.07.015.
  115. Сытов А.В., Лейдерман И.Н., Ломидзе С.В. и др. Практические рекомендации по нутритивной поддержке онкологических больных. Злокачественные опухоли. 2017;7(352):524–32. doi: 10.18027/2224-5057-2017-7-3s2-524-532.
    [Sytov AV, Leiderman IN, Lomidze SV, et al. Practical recommendations on nutritive support for cancer patients. Malignant tumors. 2017;7(352):524–32. doi: 10.18027/2224-5057-2017-7-3s2-524-532. (In Russ)]
  116. Isenring E, Elia M. Which screening method is appropriate for older cancer patients at risk for malnutrition? Nutrition. 2015;31(4):594–7. doi: 10.1016/J.NUT.2014.12.027.
  117. Camblor-Alvarez M, Ocon-Breton MJ, Luengo-Perez LM, et al. Soporte nutricional y nutricion parenteral en el paciente oncologico: informe de consenso de un grupo de expertos. Nutr Hosp. 2018;35(1):224–33. doi: 10.20960/nh.1361.
  118. Bower JE. Cancer-related fatigue: Mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014;11(10):597. doi: 10.1038/NRCLINONC.2014.127.
  119. Ahlberg K, Ekman T, Gaston-Johansson F, Mock V. Assessment and management of cancer-related fatigue in adults. Lancet. 2003;362(9384):640–50. doi: 10.1016/S0140-6736(03)14186-4.
  120. Miller AH, Ancoli-Israel S, Bower JE, et al. Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J Clin Oncol. 2008;26(6):971–82. doi: 10.1200/JCO.2007.10.7805.
  121. Tariman JD, Dhorajiwala S. Genomic Variants Associated With Cancer-Related Fatigue: A Systematic Review. Clin J Oncol Nurs. 2016;20(5):537–46. doi: 10.1188/16.CJON.537-546.
  122. Bower JE. The role of neuro-immune interactions in cancer-related fatigue: Biobehavioral risk factors and mechanisms. Cancer. 2019;125(3):353–64. doi: 10.1002/CNCR.31790.
  123. Berger AM, Wielgus K, Hertzog M, et al. Patterns of circadian activity rhythms and their relationships with fatigue and anxiety/depression in women treated with breast cancer adjuvant chemotherapy. Support Care Cancer. 2010;18(1):105–14. doi: 10.1007/S00520-009-0636-0.
  124. Al-Majid S, Mccarthy DO. Cancer-induced fatigue and skeletal muscle wasting: the role of exercise. Biol Res Nurs. 2001;2(3):186–97. doi: 10.1177/109980040100200304.
  125. O’Higgins CM, Brady B, O’Connor B, et al. The pathophysiology of cancer-related fatigue: current controversies. Support Care Cancer. 2018;26(10):3353–64. doi: 10.1007/S00520-018-4318-7.
  126. Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Cancer-Related Fatigue; 2023. Available from: (accessed 07.07.2023).
  127. Minton O, Stone P. A systematic review of the scales used for the measurement of cancer-related fatigue (CRF). Ann Oncol Off J Eur Soc Med Oncol. 2009;20(1):17–25. doi: 10.1093/annonc/mdn537.
  128. Ramsenthaler C, Kane P, Gao W, et al. Prevalence of symptoms in patients with multiple myeloma: a systematic review and meta-analysis. Eur J Haematol. 2016;97(5):416–29. doi: 10.1111/EJH.12790.
  129. Suzuki K, Kobayashi N, Ogasawara Y, et al. Clinical significance of cancer-related fatigue in multiple myeloma patients. Int J Hematol. 2018;108(6):580–7. doi: 10.1007/S12185-018-2516-1.
  130. Mendoza TR, Wang XS, Cleeland CS, et al. The Rapid Assessment of Fatigue Severity in Cancer Patients Use of the Brief Fatigue Inventory. 1999;85(5):1186–96. doi: 10.1002/(sici)1097-0142(19990301)85:5<1186::aid-cncr24>;2-n.