KA Levchuk1, EV Belotserkovskaya1,2, DYu Pozdnyakov1, LL Girshova1, AYu Zaritskey1, AV Petukhov1,2,3
1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341
2 Institute of Cytology, 4 Tikhoretskii pr-t, Saint Petersburg, Russian Federation, 194064
3 Sirius University of Science and Technology, 1 Olimpiiskii pr-t, Sochi, Russian Federation, 354340
For correspondence: Kseniya Aleksandrovna Levchuk, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; e-mail: levchuk_ka@almazovcentre.ru
For citation: Levchuk KA, Belotserkovskaya EV, Pozdnyakov DYu, et al. CAR T-Cell Therapy with NKG2D Chimeric Antigen Receptor in Relapsed/Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clinical oncohematology. 2021;14(1):138–48. (In Russ).
DOI: 10.21320/2500-2139-2021-14-1-138-148
ABSTRACT
NK-cells as innate immunity elements manifest key reactions of antitumor immune response. NKG2D is an activating transmembrane receptor of NK-cells which is responsible for cytotoxicity initiation in response to the binding of specific ligands of genetically modified cells. Selective expression of NKG2D ligands provides a unique perspective on the therapy of wide variety of tumors. Acute myeloid leukemias (AML) are malignant hematological tumors with a high relapse risk. Due to the complexity of AML treatment strategy it is necessary to develop new approaches to tumor elimination using novel genetic constructs. Currently available CAR T-cell drugs with NKG2D receptor are successfully subjected to clinical studies in AML patients and prove their high therapeutic potential.
Keywords: acute myeloid leukemias, chimeric antigen receptor, adoptive therapy, NKG2D, NK-cells.
Received: August 22, 2020
Accepted: December 5, 2020
Статистика Plumx английскийREFERENCES
- Arber D, Orazi A, Hasserjian R. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
- Bullinger L, Dohner K, Dohner H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J Clin Oncol. 2017;35(9):934–46. doi: 10.1200/JCO.2016.71.2208.
- The Leukemia & Lymphoma Society Updated data on blood cancers. Facts 2018–2019. Available from: https://www.lls.org/facts-and-statistics/facts-and-statistics-overview/facts-and-statistics (accessed 30.11.2020).
- Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.
- Herold T, Rothenberg-Thurley M, Grunwald VV, et al. Validation and refinement of the revised 2017 European LeukemiaNet genetic risk stratification of acute myeloid leukemia Leukemia. [published online ahead of print, 2020 Mar 30] doi: 10.1038/s41375-020-0806-0.
- Estey EH, Schrier SL. Prognosis of the myelodysplastic syndromes in adults. UpToDate. 2017. Available from: https://www.uptodate.com/contents/prognosis-of-the-myelodysplastic-syndromes-in-adults (accessed 28.11.2020).
- Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. 2005;106(4):1154–63. doi: 10.1182/blood-2005-01-0178.
- Burnett AK, Milligan D, Goldstone A, et al. The impact of dose escalation and resistance modulation in older patients with acute myeloid leukemia and high risk myelodysplastic syndrome: the results of the LRF AML14 trial. Br J Haematol. 2009;145(3):318–32. doi: 10.1111/j.1365-2141.2009.07604.x.
- Lowenberg G. Strategies in the treatment of acute myeloid leukemia. Haematologica. 2004;89(9):1029–32.
- Burnett AK. Acute myeloid leukemia: Treatment of adults under 60 years. Rev Clin Exp Hematol. 2002;6(1):26–45. doi: 10.1046/j.1468-0734.2002.00058.x.
- Estey EH. Treatment of relapsed and refractory acute myelogenous leukemia. 2000;14(3):476–9. doi: 10.1038/sj.leu.2401568.
- Giles F, O’Brien S, Cortes J, et al. Outcome of patients with acute myelogenous leukemia after second salvage therapy. 2005;104(3):547–54. doi: 10.1002/cncr.21187.
- Leopold LH, Willemze R. The treatment of acute myeloid leukemia in first relapse: A comprehensive review of the literature. Leuk Lymphoma. 2002;43(9):1715–27. doi: 10.1080/1042819021000006529.
- Lee S, Tallman MS, Oken MM, et al. Duration of second complete remission compared with first complete remission in patients with acute myeloid leukemia. 2000;14(8):1345–8. doi: 10.1038/sj.leu.2401853.
- Patel SA, Gerber JM. A User’s Guide to Novel Therapies for Acute Myeloid Leukemia. Clin Lymphoma Myel Leuk. 2020;20(5):277–88. doi: 10.1016/j.clml.2020.01.011.
- Kucukyurt S, Eskazan AE. New drugs approved for acute myeloid leukemia in 2018. Br J Clin Pharmacol. 2018;85(12):2689–93. doi: 10.1111/bcp.14105.
- Spear P, Wu MR, Sentman ML, Sentman CL. NKG2D ligands as therapeutic targets. Cancer Immun. 2013;13:8.
- Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. 2012;120(12):2454–65. doi: 10.1016/s0145-2126(13)70009-2.
- Blum WG. Hypomethylating agents in myelodysplastic syndromes. Clin Adv Hematol Oncol. 2011;9(2):123–8.
- Семочкин С.В., Толстых Т.Н., Иванова В.Л. и др. Азацитидин в лечении миелодиспластических синдромов: клиническое наблюдение и обзор литературы. Клиническая онкогематология. 2012;5(3):233–8.
[Semochkin SV, Tolstykh TN, Ivanova VL, et al. Azacitidine in the treatment of myelodysplastic syndromes: case report and literature review. Klinicheskaya onkogematologiya. 2012;5(3):233–8. (In Russ)] - Ширин А.Д., Баранова О.Ю. Гипометилирующие препараты в онкогематологии. Клиническая онкогематология. 2016;9(4):369–82. doi: 10.21320/2500-2139-2016-9-4-369-382.
[Shirin AD, Baranova OYu. Hypomethylating Agents in Oncohematology. Clinical oncohematology. 2016;9(4):369–82. doi: 10.21320/2500-2139-2016-9-4-369-382. (In Russ)] - Richard-Carpentier G, DeZern AE, Takahashi K, et al. Preliminary Results from the Phase II Study of the IDH2-Inhibitor Enasidenib in Patients with High-Risk IDH2-Mutated Myelodysplastic Syndromes (MDS). 2019;134(1):678. doi: 10.1182/blood-2019-130501.
- Foran JM, DiNardo CD, Watts JM, et al. Ivosidenib (AG-120) in Patients with IDH1-Mutant Relapsed/Refractory Myelodysplastic Syndrome: Updated Enrollment of a Phase 1 Dose Escalation and Expansion Study. 2019;134(1):4254. doi: 10.1182/blood-2019-123946.
- Garcia JS. Prospects for Venetoclax in Myelodysplastic Syndromes. Hematol Oncol Clin N Am. 2020;34(2):441–8. doi: 10.1016/j.hoc.2019.10.005.
- Germing U, Schroeder T, Kaivers J, et al. Novel therapies in low- and high-risk myelodysplastic syndrome. Exp Rev Hematol. 2019;12(10):893–908. doi: 10.1080/17474086.2019.1647778.
- Platzbecker U. Treatment of MDS. 2019;133(10):1096–107. doi: 10.1182/blood-2018-10-844696.
- Swoboda DM, Sallman DA. Mutation-Driven Therapy in MDS. Curr Hematol Malig Rep. 2019;14(6):550–60. doi: 10.1007/s11899-019-00554-4.
- Миелодиспластические синдромы. Интервью с С.В. Грицаевым. Клиническая онкогематология. 2018;11(2):125–37.
[Myelodysplastic syndromes. Interview with SV Gritsaev. Clinical oncohematology. 2018;11(2):125–37. (In Russ)] - Manley PW, Weisberg E, Sattler M, et al. Midostaurin, a Natural Product-Derived Kinase Inhibitor Recently Approved for the Treatment of Hematological Malignancies. 2018;57(5):477–8. doi: 10.1021/acs.biochem.7b01126.
- Liu X, Gong Y. Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomark Res. 2019;7(1):22. doi: 10.1186/s40364-019-0173-z.
- Kim ES. Enasidenib: First Global Approval. 2017;77(15):1705–11. doi: 10.1007/s40265-017-0813-2.
- Garcia-Aranda M, Perez-Ruiz E, Redondo M. Bcl-2 Inhibition to Overcome Resistance to Chemo- and Immunotherapy. Int J Mol Sci. 2018;19(12):3950. doi: 10.3390/ijms19123950.
- Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. Leukemia and Lymphoma Society Blood Cancer Research Partnership. N Engl J Med. 2016;375(2):143–53. doi: 10.1056/NEJMoa1601202.
- Li F, Sutherland MK, Yu C, et al. Characterization of SGN-CD123A, A Potent CD123-Directed Antibody-Drug Conjugate for Acute Myeloid Leukemia. Mol Cancer Ther. 2018;17(2):554–64. doi: 10.1158/1535-7163.MCT-17-0742.
- Mawad R, Gooley TA, Rajendran JG, et al. Radiolabeled AntiCD45 Antibody with Reduced-Intensity Conditioning and Allogeneic Transplantation for Younger Patients with Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome. Biol Blood Marrow Transplant. 2014;20(9):1363–8. doi: 10.1016/j.bbmt.2014.05.014.
- Guy DG, Uy GL. Bispecific Antibodies for the Treatment of Acute Myeloid Leukemia. Curr Hematol Malig Rep. 2018;13(6):417– doi: 10.1007/s11899-018-0472-8.
- Di Stasi A, Jimenez AM, Minagawa K, et al. Review of the Results of WT1 Peptide Vaccination Strategies for Myelodysplastic Syndromes and Acute Myeloid Leukemia from Nine Different Studies. Front Immunol. 2015;6:36. doi: 10.3389/fimmu.2015.00036.
- Van Acker HH, Versteven M, Lichtenegger FS, et al. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. J Clin Med. 2019;8(5):579. doi: 10.3390/jcm8050579.
- Yabe T, McSherry C, Bach FH, et al. A multigene family on human chromosome 12 encodes natural killer-cell lectins. 1993;37(6):455–60. doi: 10.1007/bf00222470.
- Houchins JP, Yabe T, McSherry C, Bach FH. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med. 1991;173(4):1017–20. doi: 10.1084/jem.173.4.1017.
- Upshaw JL, Arneson LN, Schoon RA, et al. NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells. Nat Immunol. 2006;7(5):524–32. doi: 10.1038/ni1325.
- Diefenbach A, Tomasello E, Lucas M, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol. 2002;3(12):1142–9. doi: 10.1038/ni858.
- Duan S, Guo W, Xu Z, et al. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer. 2019;18(1):29. doi: 10.1186/s12943-019-0956-8.
- Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complex formed by NKG2D and DAP10. 1999;285(5428):730–2. doi: 10.1126/science.285.5428.730.
- Ogasawara K, Lanier LL. NKG2D in NK and T cell-mediated immunity. J Clin Immunol. 2005;25(6):534–40. doi: 10.1007/s10875-005-8786-4.
- Gilfillan S, Ho EL, Cella M, et al. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol. 2002;3(12):1150–5. doi: 10.1038/ni857.
- Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2(3):255–60. doi: 10.1038/85321.
- Jamieson AM, Diefenbach A, McMahon CW, et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. 2002;17(1):19–29. doi: 10.1016/s1074-7613(02)00333-3.
- Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3(10):781–90. doi: 10.1038/nri1199.
- Roberts AI, Lee L, Schwarz E, et al. NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol. 2001;167(10):5527–30. doi: 10.4049/jimmunol.167.10.5527.
- Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23(1):225–74. doi: 10.1146/annurev.immunol.23.021704.115526.
- Raulet DH, Gasser S, Gowen BG, et al. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31(1):413–41. doi: 10.1146/annurev-immunol-032712-095951.
- Stephens HA. MICA and MICB genes: can the enigma of their polymorphism be resolved?. Trends Immunol. 2001;22(7):378–85. doi: 10.1016/s1471-4906(01)01960-3.
- Carapito R, Bahram S. Genetics, genomics, and evolutionary biology of NKG2D ligands. Immunol Rev. 2015;267(1):88–116. doi: 10.1111/imr.12328.
- Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. 2005;434(7035):864–70. doi: 10.1038/nature03482.
- Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. 2005;434(7035):907–13. doi: 10.1038/nature03485.
- Maeda T, Towatari M, Kosugi H, Saito H. Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood. 2000;96(12):3847–56. doi: 1182/blood.v96.12.3847.
- Diermayr S, Himmelreich H, Durovic B, et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. 2008;111(3):1428–36. doi: 10.1182/blood-2007-07-101311.
- Chang YH, Connolly J, Shimasaki N, et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013;73(6):1777–86. doi: 10.1158/0008-5472.CAN-12-3558.
- Hamerman JA, Ogasawara K, Lanier LL. Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol. 2004;172(4):2001–5. doi: 10.4049/jimmunol.172.4.2001.
- Carlsten M, Bjorkstrom NK, Norell H, et al. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res. 2007;67(3):1317–25. doi: 10.1158/0008-5472.CAN-06-2264.
- McGilvray RW, Eagle RA, Rolland P, et al. ULBP2 and RAET1E NKG2D ligands are independent predictors of poor prognosis in ovarian cancer patients. Int J Cancer. 2010;127(6):1412–20. doi: 10.1002/ijc.25156.
- Cathro HP, Smolkin ME, Theodorescu D, et al. Relationship between HLA class I antigen processing machinery component expression and the clinicopathologic characteristics of bladder carcinomas. Cancer Immunol Immunother. 2010;59(3):465–72. doi: 10.1007/s00262-009-0765-9.
- Seitz S, Hohla F, Schally AV, et al. Inhibition of estrogen receptor positive and negative breast cancer cell lines with a growth hormone-releasing hormone antagonist. Oncol Rep. 2008;20(5):1289–94.
- Mamessier E, Sylvain A, Thibult ML, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011;121(9):3609–22. doi: 10.1172/JCI45816.
- Busche A, Goldmann T, Naumann U, et al. Natural killer cell-mediated rejection of experimental human lung cancer by genetic overexpression of major histocompatibility complex class I chain-related gene A. Hum Gene Ther. 2006;17(2):135–46. doi: 10.1089/hum.2006.17.135.
- Platonova S, Cherfils-Vicini J, Damotte D, et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 2011;71(16):5412–22. doi: 10.1158/0008-5472.CAN-10-4179.
- Jinushi M, Takehara T, Tatsumi T, et al. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer. 2003;104(3):354–61. doi: 10.1002/ijc.10966.
- Watson NF, Spendlove I, Madjd Z, et al. Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer. 2006;118(6):1445–52. doi: 10.1002/ijc.21510.
- Sconocchia G, Spagnoli GC, Del Principe D, et al. Defective infiltration of natural killer cells in MICA/B-positive renal cell carcinoma involves beta(2)-integrin-mediated interaction. 2009;11(7):662–71. doi: 10.1593/neo.09296.
- Wu JD, Higgins LM, Steinle A, et al. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest. 2004;114(4):560–8. doi: 10.1172/JCI22206.
- Salih HR, Antropius H, Gieseke F, et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. 2003;102(4):1389–96. doi: 10.1182/blood-2003-01-0019.
- Diermayr S, Himmelreich H, Durovic B, et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. 2008;111(3):1428–36. doi: 10.1182/blood-2007-07-101311.
- Sconocchia G, Lau M, Provenzano M, et al. The antileukemia effect of HLA-matched NK and NK-T cells in chronic myelogenous leukemia involves NKG2D-target-cell interactions. 2005;106(10):3666–72. doi: 10.1182/blood-2005-02-0479.
- Nuckel H, Switala M, Sellmann L, et al. The prognostic significance of soluble NKG2D ligands in B-cell chronic lymphocytic leukemia. 2010;24(6):1152–9. doi: 10.1038/leu.2010.74.
- Zhang B, Kracker S, Yasuda T, et al. Immune surveillance and therapy of lymphomas driven by Epstein-Barr virus protein LMP1 in a mouse model. 2012;148(4):739–51. doi: 10.1016/j.cell.2011.12.031.
- Girlanda S, Fortis C, Belloni D, et al. MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells costimulates pamidronate-activated gammadelta lymphocytes. Cancer Res. 2005;65(16):7502–8. doi: 10.1158/0008-5472.CAN-05-0731.
- Paschen A, Sucker A, Hill B, et al. Differential clinical significance of individual NKG2D ligands in melanoma: soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin Cancer Res. 2009;15(16):5208–15. doi: 10.1158/1078-0432.CCR-09-0886.
- Verhoeven DH, de Hooge AS, Mooiman EC, et al. NK cells recognize and lyse Ewing sarcoma cells through NKG2D and DNAM-1 receptor dependent pathways. Mol Immunol. 2008;45(15):3917–25. doi: 10.1016/j.molimm.2008.06.016.
- Friese MA, Platten M, Lutz SZ, et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res. 2003;63(24):8996–9006.
- Raffaghello L, Prigione I, Airoldi I, et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. 2004;6(5):558–68. doi: 10.1593/neo.04316.
- Chitadze G, Lettau M, Bhat J, et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer. 2013;133(7):1557–66. doi: 10.1002/ijc.28174.
- Zhang T, Lemoi BA, Sentman CL. Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. 2005;106(5):1544–51. doi: 10.1182/blood-2004-11-4365.
- Zhang T, Barber A, Sentman CL. Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res. 2006;66(11):5927–33. doi: 10.1158/0008-5472.CAN-06-0130.
- Barber A, Zhang T, DeMars LR, et al. Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. Cancer Res. 2007;67(10):5003–8. doi: 10.1158/0008-5472.CAN-06-4047.
- Barber A, Zhang T, Megli CJ, et al. Chimeric NKG2D receptor-expressing T cells as an immunotherapy for multiple myeloma. Exp Hematol. 2008;36(10):1318–28. doi: 10.1016/j.exphem.2008.04.010.
- Barber A, Meehan KR, Sentman CL. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther. 2011;18(5):509–16. doi: 10.1038/gt.2010.174.
- Barber A, Rynda A, Sentman CL. Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. J Immunol. 2009;183(11):6939–47. doi: 10.4049/jimmunol.0902000.
- Zhang T, Sentman CL. Cancer immunotherapy using a bispecific NK receptor fusion protein that engages both T cells and tumor cells. Cancer Res. 2011;71(6):2066–76. doi: 10.1158/0008-5472.CAN-10-3200.
- Zhang T, Sentman CL. Mouse tumor vasculature expresses NKG2D ligands and can be targeted by chimeric NKG2D-modified T cells. J Immunol. 2013;190(5):2455–63. doi: 10.4049/jimmunol.1201314.
- Lehner M, Gotz G, Proff J, et al. Redirecting T cells to Ewing’s sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS One. 2012;7(2):e31210. doi: 10.1371/journal.pone.0031210.
- Song DG, Ye Q, Santoro S, et al. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum Gene Ther. 2013;24(3):295–305. doi: 10.1089/hum.2012.143.
- Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842.
- Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38. doi: 10.1126/scitranslmed.3005930.
- Meehan KR, Talebian L, Tosteson TD, et al. Adoptive cellular therapy using cells enriched for NKG2D+CD3+CD8+ T cells after autologous transplantation for myeloma. Biol Blood Marrow Transplant. 2013;19(1):129–37. doi: 10.1016/j.bbmt.2012.08.018.
- Nakajima J, Murakawa T, Fukami T, et al. A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg. 2010;37(5):1191–7. doi: 10.1016/j.ejcts.2009.11.051.
- Abe Y, Muto M, Nieda M, et al. Clinical and immunological evaluation of zoledronate-activated Vgamma9gammadelta T-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol. 2009;37(8):956–68. doi: 10.1016/j.exphem.2009.04.008.
- Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol. 2006;6(5):383–93. doi: 10.1038/nri1842.
- June CH. Principles of adoptive T cell cancer therapy. J Clin Invest. 2007;117(5):1204–12. doi: 10.1172/JCI31446.
- Morgan RA, Chinnasamy N, Abate-Daga D, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51. doi: 10.1097/CJI.0b013e3182829903.
- Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51. doi: 10.1038/mt.2010.24.
- Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. 2005;105(8):3051–7. doi: 10.1182/blood-2004-07-2974.
- Sentman CL, Meehan KR. NKG2D CARs as cell therapy for cancer. Cancer J. 2014;20(2):156–9. doi: 10.1097/PPO.0000000000000029.
- Lonez C, Hendlisz A, Shaza L, et al. Celyad’s novel CAR T-cell therapy for solid malignancies. Curr Res Transl Med. 2018;66(2):53–6. doi: 10.1016/j.retram.2018.03.001.
- Baumeister SH, Murad J, Werner L, et al. Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunol Res. 2019;7(1):100–12. doi: 10.1158/2326-6066.CIR-18-0307.
- Al-Homsi S, Purev E, Lewalle P, et al. Interim Results from the Phase I Deplethink Trial Evaluating the Infusion of a NKG2D CAR T-Cell Therapy Post a Non-Myeloablative Conditioning in Relapse or Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome Patients. 2019;134(Suppl_1):3844. doi: 10.1182/blood-2019-128267.
- Liu H, Wang S, Xin J, et al. Role of NKG2D and its ligands in cancer immunotherapy. Am J Cancer Res. 2019;9(10):2064–78.