CAR-T Technology and New Opportunities for Tumor Treatment

VYu Pavlova1, ES Livadnyi2

1 SV Belyaev Kemerovo Regional Clinical Hospital, 22 bld. 2 Oktyabrskii pr-t, Kemerovo, Russian Federation, 650066

2 Kemerovo State Medical University, 22a Voroshilova str., Kemerovo, Russian Federation, 650066

For correspondence: Vera Yurevna Pavlova, MD, PhD, 22 bld. 2 Oktyabrskii pr-t, Kemerovo, Russian Federation, 650066; Tel.: +7(951)570-57-86; e-mail: vera.4447.kem@mail.ru

For citation: Pavlova VYu, Livadnyi ES. CAR-T Technology and New Opportunities for Tumor Treatment. Clinical oncohematology. 2021;14(1):149–56. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-149-156


ABSTRACT

As a cause of death malignant neoplasms come in at the second place after cardiovascular disorders. CAR-T (chimeric antigen receptor of T-cells) therapy is an advanced malignant tumor treatment method. The use of CAR-T lymphocytes refers to adoptive immunotherapy. CAR-T technology is based on “extracting” immune cells (T-lymphocytes) and their genetic modification aimed at acquiring antitumor properties and followed by reinfusion. The advantage of CAR-T therapy in comparison to other treatment methods is that for target cell recognition T-lymphocytes are not dependent on major histocompatibility complex class 1 (MHC-I) molecules. The literature data we collected and analyzed show that this is a fundamentally new and effective treatment method of oncohematological diseases including acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin’s lymphomas. Clinical trials proved the advantage of CAR-T therapy in comparison to other treatment methods applied in this field. The analysis of literature showed that CAR-T therapy can be reasonably regarded as one of the advanced opportunities for malignant tumor treatment.

Keywords: adoptive immunotherapy, CAR-T lymphocytes, chimeric antigen receptor.

Received: September 20, 2020

Accepted: December 1, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–Е386. doi: 10.1002/ijc.29210.
  2. Stewart BW, Wilde CP (eds). World cancer report 2014. Lyon: IARC Press, 2014. 619 p.
  3. Plummer M, de Martel C, Vignat J, et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob 2016;4(9):e609–e616. doi: 10.1016/S2214-109X(16)30143-7.
  4. Состояние онкологической помощи населению России в 2018 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. 236 с.
    [Caprin AD, Starinskii VV, Petrova GV, eds. Sostoyanie onkologicheskoi pomoshchi naseleniyu Rossii v 2018 godu. (The state of cancer care in Russia in 2018.) Moscow: MNIOI im. P.A. Gertsena — a branch of FGBU “NMITs radiologii” Minzdrava Rossii Publ.; 2019. 236 p. (In Russ)]
  5. Здравоохранение в России. Статистический сборник. М.: Росстат, 2011. 326 с.
    [Zdravookhranenie v Rossii. Statisticheskii sbornik. (Health care in Russia. Statistics digest.) Мoscow: Rosstat Publ.; 2011. 326 p. (In Russ)]
  6. Halaleh K, Gale RP. Cancer care in the Palestinian territoried. Lancet Oncol. 2018;19(7):e359–е364. doi: 10.1016/S1470-2045(18)30323-1.
  7. Чикилева И.О., Шубина И.Ж., Киселевский М.В. Влияние регуляторных Т-клеток на функциональную активность натуральных киллеров при иммунотерапии злокачественных опухолей. Вестник РАМН. 2012;67(4):60–4.
    [Chikileva IO, Shubina IZh, Kiselevskii MV. Influence of regulatory T-cells on the functioning of natural killer cells during cancer immunotherapy. Vestnik RAMN. 2012;67(4):60–4. (In Russ)]
  8. Титов К.С., Демидов Л.В., Шубина И.Ж. и др. Технологии клеточной иммунотерапии в лечении больных со злокачественными новообразованиями. Вестник Российского государственного медицинского университета. 2014;1:42–7.
    [Titov KS, Demidov LV, Shubina IZh, et al. Technologies of cell immunotherapy in treatment of cancer patients. Vestnik Rossiiskogo gosudarstvennogo meditsinskogo universiteta; 2014;1:42–7. (In Russ)]
  9. Wahlang B, Falkner KC, Cave MC, et al. Role of Cytochrome P450 Monooxygenase in Carcinogen and Chemotherapeutic Drug Metabolism. Adv Pharmacol. 2015;74:1–33. doi: 10.1016/bs.apha.2015.04.004.
  10. Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science, 2001. 884 p.
  11. Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358(5):502–11. doi: 10.1056/NEJMra072367.
  12. Vicente-Duenas C, Romero-Camarero I, Cobaleda C, et al. Function of oncogenes in cancer development: a changing paradigm. EMBO J. 2013;32(11):1502–13. doi: 10.1038/emboj.2013.97.
  13. Den Haan JM, Arens R, Van Zelm MC. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett. 2014;162(2 Pt B):103–12. doi: 10.1016/j.imlet.2014.10.011.
  14. Emtage PC, Lo AS, Gomes EM, et al. Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin Cancer Res. 2008;14(24):8112–22. doi: 10.1158/1078-0432.
  15. Maher Immunotherapy of Malignant Disease Using Chimeric Antigen Receptor Engrafted T Cells. ISRN Oncol. 2012;2012:278093. doi: 10.5402/2012/278093.
  16. BonifantL, Jackson HJ, Brentjens RJ, et al. Toxicity and management in CAR T-cell therapy. Mol Ther. 2016;3:16011. doi: 10.1038/mto.2016.11.
  17. Xu J, Wang Q, Xu H, et al. Anti-BCMA CAR-T cells for treatment of plasma cell dyscrasia: case report on POEMS syndrome and multiple myeloma. J Hematol Oncol. 2018;11(1):128. doi: 10.1186/s13045-018-0672-7.
  18. Wang J, Chen S, Xiao W, et al. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol. 2018;11(1):7. doi: 10.1186/s13045-017-0553-5.
  19. Wei J, Han X, Bo J, et al. Target selection for CAR-T therapy. J Hematol Oncol. 2019;12(1):62. doi: 10.1186/s13045-019-0758-x.
  20. Si W, Li C, Wei P. Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synth Syst Biotechnol. 2018;3(3):179–85. doi: 10.1016/j.synbio.2018.08.001.
  21. Smith AJ, Oertle J, Warren D, Prato D. Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: Summary and perspective. J Cell Immunother. 2016;2(2):59–68. doi: 10.1016/j.jocit.2016.08.001.
  22. Chmielewski M, Abken H. Trucks: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):1145–54. doi: 10.1517/14712598.2015.1046430.
  23. Zhao Z, Chen Y, Francisco NM, et al. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin B. 2018;8(4):539–51. doi: 10.1016/j.apsb.2018.03.001.
  24. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019;34:45–55. doi: 10.1016/j.blre.2018.11.002.
  25. Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36(22):2267–80. doi: 10.1200/JCO.2018.77.8084.
  26. Maude SL, Frey N, Shaw PA, et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222.
  27. Fernandez A Cure for Cancer? How CAR T-Cell Therapy is Revolutionizing Oncology. Available from: https://www.labiotech.eu/features/car-t-therapy-cancer-review/ (accessed 25.11.2020).
  28. Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
  29. Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. doi: 10.1056/NEJMoa1708566.
  30. Pule MA, Savoldo B, Myers GD, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14(11):1264–70. doi: 10.1038/nm.1882.
  31. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842.
  32. Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33. doi: 10.1056/NEJMoa1103849.
  33. Riches JC, Gribben JG. Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol Oncol Clin North Am. 2013;27(2):207–35. doi: 10.1016/j.hoc.2013.01.003.
  34. Ellard R, Stewart O. The EBMT Guidelines for practice. A framework for managing Patient Care, CRS and Neurotoxicity. 1st European CAR T cell meeting, 14–16 February 2019, Paris, France.