Following an Article Published in This Issue (a Letter to the Editors)

Глубокоуважаемый редактор!

В настоящем выпуске журнала «Клиническая онкогематология. Фундаментальные исследования и клиническая практика» помещена статья Е.В. Байдюк и соавт. «Создание ксенографтных моделей от больных острыми миелоидными лейкозами с использованием иммунодефицитных мышей линии NSG-SGM3» (с. ххх–хх). Авторы изучили возможность моделирования лейкоза человека в экспериментах по введению опухолевых клеток иммунодефицитным мышам. Считаю, что важность и своевременность исследования обусловливают необходимость обсуждения проблемы.

Не вызывает сомнений необходимость создания моделей опухолей человека in vivo. Эти модели наряду с бесклеточными системами и сериями культивируемых линий клеток — незаменимые объекты современных доклинических протоколов [1]. Адекватность и надежность таких моделей требуют критической оценки, однако невозможно переоценить важность клинико-лабораторной (гематологической) картины заболевания.

Наиболее существенный результат авторов статьи — установление возможности получения ксенотрансплантатов клеток острого миелоидного лейкоза (ОМЛ) у мышей. Показано долговременное (до 30 дней) выживание опухолевых клеток в кровотоке животных после однократной внутривенной инъекции пула фракционированных клеток, полученных от пациентов с ОМЛ. Авторы демонстрируют эффективность мониторинга лабораторных показателей у мышей-опухоленосителей; имеется возможность молекулярного исследования бластных клеток. Эффективность ксенотрансплантации показана на ограниченном клинико-экспериментальном материале, однако важность установления такой возможности заслуживает высокой оценки.

Современные подходы к моделированию опухолей системы крови включают химический канцерогенез, а также трансплантацию (гетеро- и ортотопическую) сингенных опухолевых клеток. Оба подхода позволяют получать важные результаты, однако наблюдение за лейкозными клетками человека, выживающими и пролиферирующими в кровотоке мыши, — существенный аспект. Именно с помощью таких моделей можно исследовать клетки конкретного пациента в соответствующем (с известной условностью) тканевом окружении.

Особенно перспективны ксенотрансплантаты для создания и испытания лекарственных средств: появляется возможность воздействовать на опухолевые клетки в приближенной к клинике ситуации. В последние годы эти модели позволили разработать новые лекарственные «кандидаты», вызывающие гибель лейкозных клеток с конкретными генетическими маркерами [1, 2]. Для таких исследований необходимо относительно длительное присутствие бластных клеток в организме. Важно, чтобы опухоль не вызвала гибель животного, поэтому требуется подбор дозировок и путей введения, комбинации препаратов и время для реализации терапевтического эффекта. Результаты Е.В. Байдюк и соавт. позволяют надеяться, что полученная модель адекватна этим требованиям.

Моделирование опухолевого процесса in vivo — трудоемкий и дорогостоящий процесс. Исследователь имеет дело со сложной биологической системой, поведение которой на существующем уровне знаний трудно предсказать. Авторы статьи справедливо отмечают недостаточность отдельных клинико-морфологических параметров лейкозных клеток для прогнозирования эффективности трансплантации. Эмпирический фактор и удача — спутники онколога-экспериментатора. Тем важнее организация проведенного исследования, приоритетного для отечественной науки и здравоохранения, и полученные авторами результаты.

Read in PDF


REFERENCES

  1. Uckelmann HJ, Kim SM, Wong EM, et al. Therapeutic targeting of preleukemia cells in a mouse modelof NPM1 mutant acute myeloid leukemia. Science. 2020;367(6477):586–90. doi: 10.1126/science.aax5863.
  2. Krivtsov AV, Evans K, Gadrey JY, et al. A Menin-MLL inhibitor induces specific chromatin changes and eradicates disease in modelsof MLL-rearranged leukemia. Cancer Cell. 2019;36(6):660–673.e11. doi: 10.1016/j.ccell.2019.11.001.

А.А. Штиль,

д-р мед. наук, заведующий лабораторией механизмов гибели опухолевых клеток ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России

Infectious Complications in Multiple Myeloma under Current Epidemiological Conditions: A Literature Review

IL Davydkin, EV Mordvinova, TP Kuzmina

Samara State Medical University, 89 Chapaevskaya str., Samara, Russian Federation, 443099

For correspondence: Elizaveta Vladimirovna Mordvinova, 89 Chapaevskaya str., Samara, Russian Federation, 443099; Tel.: +7(917)037-52-10, e-mail: liza.mordvinova.94@mail.ru

For citation: Davydkin IL, Mordvinova EV, Kuzmina TP. Infectious Complications in Multiple Myeloma under Current Epidemiological Conditions: A Literature Review. Clinical oncohematology. 2021;14(3):386–90. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-386-390


ABSTRACT

The review outlines current views on immune system in multiple myeloma (MM) and the basic pathogens inducing infectious complications in such patients. Although in recent years there has been considerable progress in studying molecular mechanisms of the MM development (pathogenesis), methods of its diagnosis, treatment, and prediction of outcomes, one of the main causes of death within this group of patients is infectious complications. In this context, it would be relevant to further study immune disorders and the spectrum of infectious pathogens common in the MM patient cohort. The study and correction of immunological status can contribute to improving the MM outcomes, which in turn will lead to increased life expectancy.

Keywords: multiple myeloma, immunological status, infectious complications, COVID-19.

Received: March 12, 2021

Accepted: June 8, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Davydkin IL, Kuzmina TP, Naumova KV, et al. Endothelial dysfunction in patients with lymphoproliferative disorders and its changes in the course of polychemotherapy. Russ Open Med J. 2020;9(3):309–15. doi: 10.15275/rusomj.2020.0309.
  2. Joshua DE, Bryant C, Dix C, et al. Biology and therapy of multiple myeloma. Med J Aust. 2019;210(8):1–6. doi: 10.5694/mja2.50129.
  3. Smith L, McCourt O, Henrich M, et al. Multiple myeloma and physical activity: a scoping review. BMJ Open. 2015;5(11):1–10. doi: 10.1136/bmjopen-2015-009576.
  4. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018.
    [Kaprin AD, Starinskii VV, Petrova GV, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2017 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2017 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; (In Russ)]
  5. Alemu A, Richards JO, Oaks MK, Thompson MA. Vaccination in Multiple Myeloma: Review of Current Literature. Clin Lymphoma Myel Leuk. 2016;16(9):495–502. doi: 10.1016/j.clml.2016.06.006.
  6. Berlotti P, Pierre A, Rome S, Faiman B. Evidence-based guidelines for preventing and managing side effects of multiple myeloma. Semin Oncol Nurs. 2017;33(3):332–47. doi: 10.1016/j.soncn.2017.05.008.
  7. Teh BW, Slavin MA, Harrison SJ, Worth LJ. Prevention of viral infections in patients with multiple myeloma: the role of antiviral prophylaxis and immunization. Expert Rev Anti-Infect Ther. 2015;13(11):1325–36. doi: 10.1586/14787210.2015.1083858.
  8. Kastritis E, Zagouri F, Symeonidis A, et al. Preserved levels of uninvolved immunoglobulins are independently associated with favorable outcome in patients with symptomatic multiple myeloma. 2014;28(10):2075–9. doi: 10.1038/leu.2014.110.
  9. Mian H, Grant ShJ, Engelhardt M, et al. Caring for older adults with multiple myeloma during the COVID-19 pandemic: Perspective from the International Forum for Optimizing Care of Older Adults with Myeloma. J Geriatr Oncol. 2020;11(5):764–8. doi: 10.1016/j.jgo.2020.04.008.
  10. Brioli A, Klaus M, Sayer H, et al. The risk of infections in multiple myeloma before and after the advent of novel agents: a 12-year survey. Ann 2019;98(3):713–22. doi: 10.1007/s00277-019-03621-1.
  11. Guzdar A, Costello C. Supportive Care in Multiple Myeloma. Curr Hematol Malig Rep. 2020;15(2):56–61. doi: 10.1007/s11899-020-00570-9.
  12. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79. doi: 10.1111/j.1365-2141.2007.06705.x.
  13. Teh BW, Harrison SJ, Worth LJ, et al. Infection risk with immunomodulatory and proteasome inhibitor–based therapies across treatment phases for multiple myeloma: A systematic review and meta-analysis. Eur J Cancer. 2016;67:21–37. doi: 10.1016/j.ejca.2016.07.025.
  14. Dhakal B, D’Souza A, Chhabra S, Hari P. Multiple myeloma and COVID-19. Leukemia. 2020;34(7):1961–3. doi: 10.1038/s41375-020-0879-9.
  15. Girmenia C, Cavo M, Offidani M, et al. Management of infectious complications in multiple myeloma patients: Expert panel consensus-based recommendations. Blood Rev. 2019;34:84–94. doi: 10.1016/j.blre.2019.01.001.
  16. Nix EB, Hawdon N, Gravelle S, et al. Risk of invasive Haemophilus influenzae type b (Hib) disease in adults with secondary immunodeficiency in the post-Hib vaccine era. Clin Vacc Immunol. 2012;19(5):766–71. doi: 10.1128/CVI.05675-11.
  17. Blimark, C, Holmberg E, Mellqvist UH, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2014;100(1):107–13. doi: 10.3324/haematol.2014.107714.
  18. Truong Q, Veltri L, Kanate AS, et al. Impact of the duration of antiviral prophylaxis on rates of varicella-zoster virus reactivation disease in autologous hematopoietic cell transplantation recipients. Ann Hematol. 2013;93(4):677–82. doi: 10.1007/s00277-013-1913-z.
  19. Teh BW, Worth LJ, Harrison SJ, et al. The timing and clinical predictors of herpesvirus infections in patients with myeloma in the setting of antiviral prophylaxis. Available from: file:///Users/user/Downloads/EV0439.pdf (accessed 13.04.2021).
  20. Teh BW, Worth LJ, Harrison SJ, et al. Risks and burden of viral respiratory tract infections in patients with multiple myeloma in the era of immunomodulatory drugs and bortezomib: experience at an Australian Cancer Hospital. Supp Care Cancer. 2015;23(7):1901–6. doi: 10.1007/s00520-014-2550-3.
  21. Nahi H, Chrobok M, Gran C, et al. Infectious complications and NK cell depletion following daratumumab treatment of multiple myeloma. PLoS One. 2019;14(2):e0211927. doi: 10.1371/journal.pone.0211927.
  22. Bruno G, Saracino A, Monno L, Angarano G. The Revival of an “Old” Marker: CD4/CD8 Ratio. AIDS Rev. 2017;19(2):81–8.
  23. Tramontana AR, George B, Hurt AC, et al. Oseltamivir Resistance in Adult Oncology and Hematology Patients Infected with Pandemic (H1N1) 2009 Virus, Australia. Emerg Infect Dis. 2010;16(7):1068–75. doi: 10.3201/eid1607.091691.
  24. Hirsch HH, Martino R, Ward KN, et al. Fourth European Conference on Infections in Leukaemia (ECIL-4): Guidelines for Diagnosis and Treatment of Human Respiratory Syncytial Virus, Parainfluenza Virus, Metapneumovirus, Rhinovirus, and Coronavirus. Clin Infect Dis. 2012;56(2):258–66. doi: 10.1093/cid/cis844.
  25. Charil A, Samur MK, Martinez-Lopez J, et al. Clinical features associated with COVID-19 outcome in multiple myeloma: first results from the International Myeloma Society data set. 2020;136(26):3033–40. doi: 10.1182/blood.2020008150.
  26. Cook G, Ashcroft AJ, Pratt G, et al. Real-world assessment of the clinical impact of symptomatic infection with severe acute respiratory syndrome coronavirus (COVID-19 disease) in patients with multiple myeloma receiving systemic anti-cancer therapy. Br J Haematol. 2020;190(2):e83–e86. doi: 10.1111/bjh.16874.
  27. Hultcrantz M, Richter J, Rosenbaum C, et al. COVID-19 infections and outcomes in patients with multiple myeloma in New York City: a cohort study from five academic centers. Blood Cancer Discov. 2020;1(3):234–43. doi: 10.1158/2643-3230.bcd-20-0102.
  28. Wang B, Van Oekelen O, Mouhieddine TH, et al. A tertiary center experience of multiple myeloma patients with COVID-19: lessons learned and the path forward. J Hematol Oncol. 2020;13(1):94. doi: 10.1186/s13045-020-00934-x.

Immune Reconstitution Inflammatory Syndrome and Hodgkin’s Lymphoma

AV Pivnik1, AM Vukovich2, AA Petrenko3,4

1 SM Clinic, 42 bld. 12 Volgogradskii pr-t, Moscow, Russian Federation, 109548

2 IM Sechenov First Moscow State Medical University, 8 bld. 2 Trubetskaya str., Moscow, Russian Federation, 119991

3 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

4 Russian Medical Academy of Postgraduate Education, 2/1 Barrikadnaya str., Moscow, Russian Federation, 125993

For correspondence: Prof. Aleksandr Vasilevich Pivnik, MD, PhD, 42 bld. 12 Volgogradskii pr-t, Moscow, Russian Federation, 109548; Tel.: +7(906)065-99-32; e-mail: pivnikav@gmail.com

For citation: Pivnik AV, Vukovich AM, Petrenko AA. Immune Reconstitution Inflammatory Syndrome and Hodgkin’s Lymphoma. Clinical oncohematology. 2021;14(3):378–85. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-378-385


ABSTRACT

Immune reconstitution inflammatory syndrome (IRIS) is defined as a clinically significant exacerbation of known oligosymptomatic serious, more often infectious, diseases with considerably increased CD4+ T-lymphocyte count in response to highly active anti-retroviral therapy (HAART) of HIV infection. The review comprehensively discusses tuberculosis issues in HIV-positive HAART recipients. Related recommendations contain strict guidelines on compulsory treatment of tuberculosis prior to HAART assignment. Similar recommendations for specific therapy preceding HAART are provided for other opportunistic infections (mycotic and cryptococcal infections, parasitosis, molluscum contagiosum, toxoplasmosis, herpes-zoster virus, leishmaniasis, syphilis, and lepra). Without prior specific therapy of an opportunistic infection its exacerbation with pronounced symptoms and signs on HAART can be fatal for the patient. Lymphomas including Hodgkin’s lymphoma (HL) are dealt with in the context of the same challenge. However, what remains unclear is the specificity of targeted T-lymphocytes in the microenvironment to hitherto unclarified cause-specific antigens of the tumor. As opposed to other malignant lymphoid tumors arising with low level of CD4+ T-lymphocytes, HL develops when the level of CD4+ T-lymphocytes is increased in response to HAART in HIV-positive patients during the first months of anti-retroviral therapy. HL is diagnosed in 8 % of HIV-positive off-HAART subjects. After HAART assignment the HL incidence goes up to 17 %. Therefore, IRIS can be considered the main challenge in the study of etiology and pathogenesis of HL in HIV-positive patients. In this context, the demand to extend the research in this field becomes not only obvious but crucial for practical applications.

Keywords: immune reconstitution inflammatory syndrome (IRIS), highly active anti-retroviral therapy (HAART), Hodgkin’s lymphoma.

Received: January 19, 2021

Accepted: April 22, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Fanales-Belasio E, Raimondo M, Suligoi B, Butto S. HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanita. 2010;46(1):5–14. doi: 10.4415/ANN_10_01_02.
  2. Turner BG, Summers MF. Structural biology of HIV1. J Mol Biol. 1999;285(1):1–32. doi: 10.1006/jmbi.1998.2354.
  3. Richman DD, Little SJ, Smith DM, et al. HIV evolution and escape. Trans Am Clin Climatol Assoc. 2004;115:289–303.
  4. Zhu T, Korber BT, Nahmias AJ, et al. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature. 1998;391(6667):594–7. doi: 10.1038/35400.
  5. Sophie G, Thomas DW, Kabongo J-M, et al. A near full-length HIV-1 genome from 1966 recovered from formalin-fixed paraffin-embedded tissue. Proc Nat Acad Sci USA. 2020;117(22):12222–9. doi: 10.1073/pnas.1913682117.
  6. Klatt NR, Silvestri G, Hirsch V. Non pathogenic simian immunodeficiency virus infections. Cold Spring Harb Perspect Med. 2012;2(1):a007153. doi: 10.1101/cshperspect.a007153.
  7. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841. doi: 10.1101/cshperspect.a006841.
  8. Chitnis A, Rawls D, Moore J. Origin of HIV Type 1 in Colonial French Equatorial Africa? AIDS Res Hum Retrovir. 2000;16(1):5–8. doi: 10.1089/088922200309548.
  9. Gao F, Bailes E, Robertson DL, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397(6718):436–41. doi: 10.1038/17130.
  10. Haverkos HW, Curran JW. The Current Outbreak of Kaposi’s Sarcoma and Opportunistic Infections. CA: Cancer J Clin. 1982;32(6):330–9. doi: 10.3322/canjclin.32.6.330.
  11. Gallo RC, Sarin PS, Gelmann EP, et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):865–7. doi: 10.1126/science.6601823.
  12. Barre-Sinoussi F, Chermann J, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–71. doi: 10.1126/science.6189183.
  13. Pincock S. HIV discoverers awarded Nobel Prize for medicine. Lancet. 2008;372(9647):1373. doi: 10.1016/s0140-6736(08)61571-8.
  14. The Nobel Prize. Available from: https://www.nobelprize.org/prizes/medicine/2008/press-release/ (accessed 13.04.2021).
  15. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593):722–5. doi: 10.1038/382722a0.
  16. Galvani AP, Novembre J. The evolutionary history of the CCR5-Delta32 HIV-resistance mutation. Microbes Infect. 2005;7(2):302–9. doi: 10.1016/j.micinf.2004.12.006.
  17. Ni J, Wang D, Wang S. The CCR5-Delta32 Genetic Polymorphism and HIV-1 Infection Susceptibility: a Meta-analysis. Open Med (Wars). 2018;13(1):467–74. doi: 10.1515/med-2018-0062.
  18. Stephens JC, Reich DE, Goldstein DB, et al. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet. 1998;62(6):1507–15. doi: 10.1086/301867.
  19. Hopkins Princes and Peasants: Smallpox in History. Chicago: University of Chicago Press; 1983. 380 p.
  20. Galvani AP, Slatkin M. Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. Proc Natl Acad Sci USA. 2003;100(25):15276–9. doi: 10.1073/pnas.2435085100.
  21. Brown TR. I am the Berlin patient: a personal reflection. AIDS Res Hum Retrovir. 2015;31(1):2–3. doi: 10.1089/AID.2014.0224.
  22. Gallagher J. Berlin patient: First person cured of HIV, Timothy Ray Brown, dies. Available from: https://www.bbc.com/news/health-54355673. (accessed 13.04.2021).
  23. Gupta RK, Peppa D, Hill AL, et al. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV. 2020;7(5):340–7. doi: 10.1016/S2352-3018(20)30069-2.
  24. Normile D. Shock greets claim of CRISPR-edited babies. Science. 2018;362(6418):978–9. doi: 10.1126/science.362.6418.978.
  25. ВИЧ-инфекция и СПИД: национальное руководство. Под ред. В.В. Покровского. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2020. 696 с. doi: 10.33029/9704-5421-3-2020-VIC-1-696.
    [Pokrovsky VV, ed. VICh-infektsiya i SPID: natsionalnoe rukovodstvo. (HIV infection and AIDS: national guidelines.) 2nd edition, revised and enlarged. Moscow: GEOTAR-Media Publ.; 2020. 696 p. doi: 10.33029/9704-5421-3-2020-VIC-1-696. (In Russ)]
  26. ЮНЭЙДС. COVID-19 и ВИЧ [электронный документ]. Доступно по: https://www.unaids.org/ru. Ссылка активна на 04.2021.
    [UNAIDS. COVID-19 and HIV. [Internet] Available from: https://www.unaids.org/ru. (accessed 13.04.2021) (In Russ)]
  27. Peterman TA, Drotman DP, Curran JW. Epidemiology of the acquired immunodeficiency syndrome (AIDS). Epidemiol Rev. 1985;7(1):1–21. doi: 10.1093/oxfordjournals.epirev.a036277.
  28. Aliouat-Denis CM, Chabe M, Demanche C, et al. Pneumocystis species, co-evolution and pathogenic power. Infect Genet Evol. 2008;8(5):708–26. doi: 10.1016/j.meegid.2008.05.001.
  29. Giffin L, Damania B. KSHV: pathways to tumorigenesis and persistent infection. Adv Vir Res. 2014;88:111–59. doi: 10.1016/B978-0-12-800098-4.00002-7.
  30. De Clercq E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents. 2009;33(4):307–20. doi: 10.1016/j.ijantimicag.2008.10.010.
  31. Леви Д.Э. ВИЧ и патогенез СПИДа. 3-е издание. Пер. с англ. Е.А. Монастырской. М.: Научный мир, 2010. 736 с.
    [Levy JA. HIV and the pathogenesis of AIDS, 3rd edition. Wiley; 2007. 752 p. (Russ. transl.: Monastyrskaya EA. VICh i patogenez SPIDa. 3-e izdanie. Moscow: Nauchnyi mir Publ.; 2010. 736 p.)]
  32. Pau AK, George JM. Antiretroviral therapy: current drugs. Infect Dis Clin North Am. 2014;28(3):371–402. doi: 10.1016/j.idc.2014.06.001.
  33. Lai RP, Meintjes G, Wilkinson RJ. HIV-1 tuberculosis-associated immune reconstitution inflammatory syndrome. Semin Immunopathol. 2016;38(2):185–98. doi: 10.1007/s00281-015-0532-2.
  34. Richter E, Wessling J, Lugering N, et al. Mycobacterium avium subsp. paratuberculosis infection in a patient with HIV, Germany. Emerg Infect Dis. 2002;8(7):729–31. doi: 10.3201/eid0807.010388.
  35. Amerson EH, Maurer TA. Immune Reconstitution Inflammatory Syndrome and Tropical Dermatoses. Dermatol Clin. 2011;29(1):39–43. doi: 10.1016/j.det.2010.09.007.
  36. Gupta A, Sharma YK, Ghogre M, et al. Giant molluscum contagiosum unmasked probably during an immune reconstitution inflammatory syndrome. Indian J Sex Transm Dis AIDS. 2018;39(2):139–40. doi: 10.4103/ijstd.IJSTD_60_16.
  37. Balasko A, Keynan Y. Shedding light on IRIS: from Pathophysiology to Treatment of Cryptococcal Meningitis and Immune Reconstitution Inflammatory Syndrome in HIV-Infected Individuals. HIV Med. 2019;20(1):1–10. doi: 10.1111/hiv.12676.
  38. Martin-Blondel G, Alvarez M, Delobel PV, et al. Toxoplasmic encephalitis IRIS in HIV-infected patients: a case series and review of the literature. J Neurol Neurosurg Psych. 2010;82(6):691–3. doi: 10.1136/jnnp.2009.199919.
  39. Karavellas MP, Lowder CY, Macdonald C, et al. Immune recovery vitritis associated with inactive cytomegalovirus retinitis: a new syndrome. Arch Ophthalmol. 1998;116(2):169–75. doi: 10.1001/archopht.116.2.169.
  40. Boulougoura A, Sereti I. HIV infection and immune activation: the role of coinfections. Curr Opin HIV AIDS. 2016;11(2):191–200. doi: 10.1097/COH.0000000000000241.
  41. Hosoda T, Uehara Y, Kasuga K, et al. An HIV-infected patient with acute retinal necrosis as immune reconstitution inflammatory syndrome due to varicella-zoster virus. AIDS. 2020;34(5):795–6. doi: 10.1097/QAD.0000000000002477.
  42. Auyeung P, French MA, Hollingsworth PN. Immune Restoration Disease Associated with Leishmania donovani Infection Following Antiretroviral Therapy for HIV Infection. J Microbiol Immunol Infect. 2010;43(1):74–6. doi: 10.1016/S1684-1182(10)60011-4.
  43. Alcedo S, Newby R, Montenegro J, et al. Immune reconstitution inflammatory syndrome associated with secondary syphilis: dermatologic, neurologic and ophthalmologic compromise in an HIV patient. Int J STD AIDS. 2019;30(5):509–11. doi: 10.1177/0956462418813045.
  44. Mathukumalli NL, Ali N, Kanikannan MA, Yareeda S. Worsening Guillain-Barre syndrome: harbinger of IRIS in HIV? BMJ Case Rep. 2017;2017:bcr-2017-221874. doi: 10.1136/bcr-2017-221874.
  45. Weetman A. Immune reconstitution syndrome and the thyroid. Best Pract Res Clin Endocrinol Metabol. 2009;23(6):693–702. doi: 10.1016/j.beem.2009.07.003.
  46. DeSimone JA, Pomerantz RJ, Babinchak TJ. Inflammatory Reactions in HIV-1–Infected Persons after Initiation of Highly Active Antiretroviral Therapy. Ann Intern Med. 2000;133(6):447–54. doi: 10.7326/0003-4819-133-6-200009190-00013.
  47. Meintjes G, Lawn SD, Scano F, et al. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis. 2008;8(8):516–23. doi: 10.1016/s1473-3099(08)70184-1.
  48. Shelburne SA, Montes M, Hamill RJ. Immune reconstitution inflammatory syndrome: more answers, more questions. J Antimicrob Chemother. 2005;57(2):167–70. doi: 10.1093/jac/dki444.
  49. French MA, Price P, Stone SF. Immune restoration disease after antiretroviral therapy. AIDS. 2004;18(12):1615–27. doi: 10.1097/01.aids.0000131375.21070.06.
  50. Lai RPJ, Nakiwala JK, Meintjes G, Wilkinson RJ. The immunopathogenesis of the HIV tuberculosis immune reconstitution inflammatory syndrome. Eur J Immunol. 2013;43(8):1995–2002. doi: 10.1002/eji.201343632.
  51. Improving the diagnosis and treatment of smear-negative pulmonary and extrapulmonary tuberculosis among adults and adolescents: recommendations for HIV-prevalent and resource-constrained settings. Geneva: Stop TB Department, Department of HIV/AIDS, World Health Organization; 2006.
  52. Manosuthi W, Kiertiburanakul S, Phoorisri T, Sungkanuparph S. Immune reconstitution inflammatory syndrome of tuberculosis among HIV-infected patients receiving antituberculous and antiretroviral therapy. J Infect. 2006;53(6):357–63. doi: 10.1016/j.jinf.2006.01.002.
  53. Lawn SD, Myer L, Bekker LG, Wood R. Tuberculosis-associated immune reconstitution disease: incidence, risk factors and impact in an antiretroviral treatment service in South Africa. AIDS. 2007;21(3):335–41. doi: 10.1097/QAD.0b013e328011efac.
  54. Narita M, Ashkin D, Hollender ES, Pitchenik AE. Paradoxical worsening of tuberculosis following antiretroviral therapy in patients with AIDS. Am J Respir Crit Care Med. 1998;158(1):157–61. doi: 10.1164/ajrccm.158.1.9712001.
  55. Breen RA, Smith CJ, Bettinson H, et al. Paradoxical reactions during tuberculosis treatment in patients with and without HIV co-infection. Thorax. 2004;59(8):704–7. doi: 10.1136/thx.2003.019224.
  56. Breton G, Duval X, Estellat C, et al. Determinants of Immune Reconstitution Inflammatory Syndrome in HIV Type 1-Infected Patients with Tuberculosis after Initiation of Antiretroviral Therapy. Clin Infect Dis. 2004;39(11):1709–12. doi: 10.1086/425742.
  57. Meintjes G, Wilkinson RJ, Morroni C, et al. Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS. 2010;24(15):2381–90. doi: 10.1097/QAD.0b013e32833dfc68.
  58. Michailidis C, Pozniak AL, Mandalia S, et al. Clinical characteristics of IRIS syndrome in patients with HIV and tuberculosis. Antivir Ther. 2005;10(3):417–22.
  59. Chang CC, Dorasamy AA, Gosnell BI, et al. Clinical and mycological predictors of cryptococcosis-associated immune reconstitution inflammatory syndrome. AIDS. 2013;27(13):2089–99. doi: 10.1097/qad.0b013e3283614a8d.
  60. Sereti Immune reconstruction inflammatory syndrome in HIV infection: beyond what meets the eye. Top Antivir Med. 2020;27(4):106–11.
  61. Jenny-Avital ER, Abadi Immune Reconstitution Cryptococcosis after Initiation of Successful Highly Active Antiretroviral Therapy. Clin Infect Dis. 2002;35(12):128–33. doi: 10.1086/344467.
  62. Somnuek S, Scott GF, Ploenchan C, et al. Cryptococcal Immune Reconstitution Inflammatory Syndrome after Antiretroviral Therapy in AIDS Patients with Cryptococcal Meningitis: A Prospective Multicenter Study. Clin Infect Dis. 2009;6(15):931–4. doi: 10.1086/605497.
  63. Meya DB, Okurut S, Zziwa G, et al. HIV-Associated Cryptococcal Immune Reconstitution Inflammatory Syndrome Is Associated with Aberrant T Cell Function and Increased Cytokine Responses. J Fungi. 2019;5(2):42. doi: 10.3390/jof5020042.
  64. Arevalo JF, Mendoza AJ, FerrettiI Y. Immune Recovery Uveitis In AIDS Patients With Cytomegalovirus Retinitis Treated With Highly Active Antiretroviral Therapy In Venezuela. Retina. 2003;23(4):495–502. doi: 10.1097/00006982-200308000-00009.
  65. Jabs DA. Cytomegalovirus retinitis and the acquired immunodeficiency syndrome—bench to bedside: LXVII Edward Jackson Memorial Lecture. Am J Ophthalmol. 2011;151(2):198–216. doi: 10.1016/j.ajo.2010.10.018.
  66. Kaplan JE, Benson C, Holmes KK, et al; Centers for Disease Control and Prevention (CDC). Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America, National Institutes of Health, HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm. 2009;58(RR-4):1–207. doi: 10.1037/e537722009-001.
  67. Jacobson MA, Zegans M, Pavan P. Cytomegalovirus retinitis after initiation of highly active antiretroviral therapy. Lancet. 1997;349(9063):1443–5. doi: 10.1016/s0140-6736(96)11431-8.
  68. Mitchell SM, Membrey WL, Youle MS, et al. Cytomegalovirus retinitis after the initiation of highly active antiretroviral therapy: a 2 year prospective study. Br J Ophthalmol. 1999;83(6):652–5. doi: 10.1136/bjo.83.6.652.
  69. Jabs DA, Ahuja A, Van Natta M, et al. Course of cytomegalovirus retinitis in the era of highly active antiretroviral therapy: five-year outcomes. Ophthalmology. 2010;117(11):2152–2161.е2. doi: 10.1016/j.ophtha.2010.03.031.
  70. Матиевская Н.В. Воспалительный синдром восстановления иммунитета у ВИЧ-инфицированных пациентов: факторы риска, клинические проявления, исходы, профилактика. Вестник Балтийского федерального университета им. И. Канта. 2012;7:44–51.
    [Matievskaya NV. Immune reconstitution inflammatory syndrome: risk factors, clinical manifestations, outcomes, prevention. Vestnik Baltiiskogo federal’nogo universiteta im. I. Kanta. 2012;7:44–51. (In Russ)]
  71. Пантелеев А.М. Патогенез, клиника, диагностика и лечение туберкулеза у больных ВИЧ-инфекцией: Дис.… д-ра мед. наук. СПб., 2012. 236 с.
    [Panteleev AM. Patogenez, klinika, diagnostika i lechenie tuberkuleza u bol’nykh VICh-infektsiei. (Pathogenesis, clinical features, diagnosis, and treatment of tuberculosis in patients with HIV infection.) [dissertation] Petersburg; 2012. 236 p. (In Russ)]
  72. Битнева А.М., Козлова Т.П., Савинцева Е.В. Особенности начала и течения синдрома восстановления иммунитета у больных туберкулезом легких. Проблемы науки. 2017;6(19):104–5.
    [Bitneva AM, Kozlova TP, Savintseva EV. Characteristics of the start and course of immune reconstitution inflammatory syndrome in pulmonary tuberculosis. Problemy nauki. 2017;6(19):104–5. (In Russ)]
  73. ТищенкоТ.В., Цыркунов В.М. Воспалительный синдром восстановления иммунитета у ВИЧ-инфицированных пациентов: клинико-морфологические аспекты. Здравоохранение (Минск). 2017;10:5–11.
    [Tishchenko TV, Tsyrkunov VM. Immune reconstitution inflammatory syndrome in HIV-positive patients: clinicopathologic Zdravookhranenie (Minsk). 2017;10:5–11. (In Russ)]
  74. Улюкин И.М. ВИЧ-инфекция: особенности восстановления иммунной системы на фоне специфической терапии туберкулеза. Клиническая патофизиология. 2017;23(2):29–33.
    [Ulyukin IM. HIV-infection: characteristics of immune reconstitution on specific therapy of tuberculosis. Klinicheskaya patofiziologiya. 2017;23(2):29–33. (In Russ)]
  75. Sun H-Y, Singh N. Immune reconstitution inflammatory syndrome in non-HIV immunocompromised patients. Curr Opin Infect Dis. 2009;22(4):394–402. doi: 10.1097/QCO.0b013e32832d7aff.
  76. Vishnu P, Dorer RP, Aboulafia DM. Immune reconstitution inflammatory syndrome-associated Burkitt lymphoma after combination antiretroviral therapy in HIV-infected patients. Clin Lymphoma Myel Leuk. 2015;15(1):23–9. doi: 10.1016/j.clml.2014.09.009.
  77. Serraino D, Boschini A, Carrieri P, et al. Cancer risk among men with, or at risk of, HIV infection in southern Europe. AIDS. 2000;14(5):553–9. doi: 10.1097/00002030-200003310-00011.
  78. Noy A. Update on HIV lymphoma. Curr Oncol Rep. 2007;9(5):384–90. doi: 10.1007/s11912-007-0052-x.
  79. Franceschi S, Dal Maso L, Pezzotti P, et al. Incidence of AIDS-defining cancers after AIDS diagnosis among people with AIDS in Italy, 1986–1998. J Acquir Immune Defic Syndr. 2003;34(1):84–90. doi: 10.1097/00126334-200309010-00013.
  80. Carbone A, Gloghini A, Larocca LM, et al. Human immunodeficiency virus associated Hodgkin’s disease derives from post-germinal center B cells. Blood. 1999;93(7):2319–26. doi: 10.1182/blood.V93.7.2319.
  81. Biggar RJ, Jaffe ES, Goedert JJ, et al. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood. 2006;108(12):3786–91. doi: 10.1182/blood-2006-05-024109.
  82. Engels EA, Pfeiffer RM, Goedert JJ, et al. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS. 2006;20(12):1645–54. doi: 10.1097/01.aids.0000238411.75324.59.
  83. Dauby N, De Wit S, Delforge M, et al. Characteristics of non-AIDS-defining malignancies in the HAART era: a clinico-epidemiological study. J Int AIDS Soc. 2011;14(1):16. doi: 10.1186/1758-2652-14-16.
  84. Stein H, Mann R, Delsol G, et al. Hodgkin lymphoma. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001. рр. 237–52.
  85. Lanoy E, Rosenberg PS, Fily F, et al. HIV-associated Hodgkin lymphoma during the first months on combination antiretroviral therapy. Blood. 2011;118(1):44–9. doi: 10.1182/blood-2011-02-339275.
  86. Bohlius J, Schmidlin K, Boue F, et al; Collaboration of Observational HIV Epidemiological Research Europe. HIV-1–related Hodgkin lymphoma in the era of combination antiretroviral therapy: incidence and evolution of CD4+ T-cell lymphocytes. 2011;117(23):6100–8. doi: 10.1182/blood-2010-08-301531.
  87. Kowalkowski MA, Mims MP, Amiran ES, et al. Effect of immune reconstitution on the incidence of HIV-related Hodgkin lymphoma. PloS One. 2013;8(10):e77409. doi: 10.1371/journal.pone.0077409.
  88. Kowalkowski MA, Mims MA, Day RS, et al. Longer duration of combination antiretroviral therapy reduces the risk of Hodgkin lymphoma: A cohort study of HIV-infected male veterans. Cancer Epidemiol. 2014;38(4):386–92. doi: 10.1016/j.canep.2014.05.009.
  89. Gotti D, Danesi M, Calabresi A, et al. Clinical Characteristics, Incidence, and Risk Factors of HIV-Related Hodgkin Lymphoma in the Era of Combination Antiretroviral Therapy. AIDS Patient Care STDs. 2013;27(5):259. doi: 10.1089/apc.2012.0424.
  90. Patel P, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med. 2008;148(10):728–36. doi: 10.7326/0003-4819-148-10-200805200-00005.
  91. Yotsumoto M, Hagiwara S, Ajisawa A, et al. Clinical characteristics of human immunodeficiency virus-associated Hodgkin lymphoma patients in Japan. Int J Hematol. 2012;96(2):247–53. doi: 10.1007/s12185-012-1127-5.
  92. Sombogaard F, Franssen EJF, Terpstra WE. Outcome effects of antiretroviral drug combinations in HIV-positive patients with chemotherapy for lymphoma: a retrospective analysis. Int J Clin Pharm. 2018;40(5):1402–8. doi: 10.1007/s11096-018-0620-1.
  93. Eschke M, Piehler D, Schulze B, et al. A novel experimental model of Cryptococcus neoformans‐related immune reconstitution inflammatory syndrome (IRIS) provides insights into pathogenesis. Eur J Immunol. 2015;45(12):3339–50. doi: 10.1002/eji.201545689.
  94. Tadokera R, Wilkinson KA, Meintjes GA, et al. Role of the interleukin 10 family of cytokines in patients with immune reconstitution inflammatory syndrome associated with HIV infection and tuberculosis. J Infect Dis. 2013;207(7):1148–56. doi: 10.1093/infdis/jit002.
  95. Sereti I, Rodger AJ, French MA. Biomarkers in immune reconstitution inflammatory syndrome: signals from pathogenesis. Curr Opin HIV AIDS. 2010;5(6):504–10. doi: 10.1097/COH.0b013e32833ed774.
  96. Chang CC, Lim A, Omarjee S, et al. Cryptococcosis-IRIS is associated with lower cryptococcus-specific IFN-γ responses before antiretroviral therapy but not higher T-cell responses during therapy. J Infect Dis. 2013;208(6):898–906. doi: 10.1093/infdis/jit271.
  97. Meya DB, Manabe YC, Boulware DR, Janoff EN. The immunopathogenesis of cryptococcal immune reconstitution inflammatory syndrome: understanding a conundrum. Curr Opin Infect Dis. 2016;29(1):10–22. doi: 10.1097/QCO.0000000000000224.
  98. de Sa NBR, Ribeiro-Alves M, da Silva TP, et al. Clinical and genetic markers associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. BMC Infect Dis. 2020;20(1):59. doi: 10.1186/s12879-020-4786-5.
  99. Crane M, Matthews G, Lewin SR. Hepatitis virus immune restoration disease of the liver. Curr Opin HIV AIDS. 2008;3(4):446–52. doi: 10.1097/coh.0b013e3282fdc953.
  100. Ravimohan S, Tamuhla N, Nfanyana K, et al. Robust Reconstitution of Tuberculosis-Specific Polyfunctional CD4+ T-Cell Responses and Rising Systemic Interleukin 6 in Paradoxical Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. Clin Infect Dis. 2016;62(6):795–803. doi: 10.1093/cid/civ978.
  101. Stek C, Allwood B, Du Bruyn E, et al. The effect of HIV-associated tuberculosis, tuberculosis-IRIS and prednisone on lung function. Eur Respir J. 2020;55(3):1901692. doi: 10.1183/13993003.01692-2019.
  102. Dhasmana DJ, Dheda K, Ravn P, et al. Immune reconstitution inflammatory syndrome in HIV–infected patients receiving antiretroviral therapy: pathogenesis, clinical manifestations and management. Drugs. 2008;68:191–208. doi: 10.2165/00003495-200868020-00004.
  103. Beishuizen SJ, Geerlings SE. Immune reconstitution inflammatory syndrome: immunopathogenesis, risk factors, diagnosis and prevention. Neth J Med. 2009;67(10):327–31.
  104. Herida A, Mary-Krause M, Kaphan R, et al. Incidence of non AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients. J Clin Oncol. 2003;21(8):3447–53. doi: 10.1200/JCO.2003.01.096.
  105. Clifford GM, Polesel J, Rickenbach M, et al.; for the Swiss HIV Cohort. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005;97(6):425–32. doi: 10.1093/jnci/dji072.
  106. Stein H, Hummel M. Hodgkin’s disease: biology and origins of Hodgkin and Reed-Sternberg cells. Cancer Treat Rev. 1999;25(3):161–8. doi: 10.1053/ctrv.1999.0117.
  107. Chan The Reed-Sternberg cells in classical Hodgkin’s disease. Hematol Oncol. 2001;19(1):1–17. doi: 10.1002/hon.659.

Multiple Myeloma and Dendritic Cell Vaccines

IV Gribkova, AA Zavyalov

Research Institute for Healthcare Organization and Medical Management, 9 Sharikopodshipnikovskaya str., Moscow, Russian Federation, 115088

For correspondence: Irina Vladimirovna Gribkova, PhD in Biology, 9 Sharikopodshipnikovskaya str., Moscow, Russian Federation, 115088; Tel.: +7(916)078-73-90; e-mail: igribkova@yandex.ru

For citation: Gribkova IV, Zavyalov AA. Multiple Myeloma and Dendritic Cell Vaccines. Clinical oncohematology. 2021;14(3):370–7. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-370-377


ABSTRACT

Despite advances in the treatment of multiple myeloma, most of patients after its completion retain minimal residual disease (MRD-positive status), which increases the risk of relapse. Antigen-specific immunotherapy of tumors contributes to improving the clinical outcomes in such patients by the killing of cancer drug resistant clone of tumor cells without any damage to normal tissues. Dendritic cells (DC) are antigen-presenting elements with the main function of antigen-capturing, processing, and presenting them to naive T-lymphocytes for the activation of immune response against the captured antigen. The unique ability of DC to activate T-helpers and cytotoxic T-lymphocytes as well as to target thereby the immune reactions was used in developing DC-based tumor immunotherapy. This approach suggests the implementation of the so-called ‘DC-vaccines’. The clinical trials performed by now also showed the results of using DC-vaccines in various tumors including hematological ones. On the whole, according to the studies DC-vaccines are characterized by satisfactory safety profile, moderate immunological activity, and moderate clinical efficacy. The present review provides the results of clinical trials dealing with the use of DC-based vaccines in multiple myeloma patients. Besides, the potentials of improving the clinical efficacy of this therapy are discussed.

Keywords: multiple myeloma, dendritic cells, DC-vaccines, hematological malignancies, immunotherapy.

Received: March 9, 2021

Accepted: June 11, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Семочкин С.В. Новые ингибиторы протеасомы в терапии множественной миеломы. Онкогематология. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40.
    [Semochkin SV. New proteasome inhibitors in the management of multiple myeloma. Onkogematologiya. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40. (In Russ)]
  2. Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol. 2017;183:181–90. doi: 10.1016/j.clim.2017.08.016.
  3. Mody N, Dubey S, Sharma R, et al. Dendritic cell-based vaccine research against cancer. Expert Rev Clin Immunol. 2015;11(2):213–32. doi: 10.1586/1744666X.2015.987663.
  4. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52. doi: 10.1038/32588.
  5. Ito T, Liu YJ, Kadowaki N. Functional diversity and plasticity of human dendritic cell subsets. Int J Hematol. 2005;81(3):188–96. doi: 10.1532/IJH97.05012.
  6. Qian X, Wang X, Jin H. Cell transfer therapy for cancer: past, present, and future. J Immunol Res. 2014;2014:1–9. doi: 10.1155/2014/525913.
  7. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–77. doi: 10.1038/nrc3258.
  8. Марков О.В., Миронова Н.Л., Власов В.В., Зенкова М.А. Противоопухолевые вакцины на основе дендритных клеток: от экспериментов на животных моделях до клинических испытаний. Acta Naturae. 2017;9(3):29–41.
    [Markov OV, Mironova NL, Vlasov VV, Zenkova МА. Antitumor vaccines based on dendritic cells: from experiments using animal tumor models to clinical trials. Acta Naturae. 2017;9(3):29–41. (In Russ)]
  9. Богданова И.М., Постовалова Е.А. Клеточная иммунотерапия в онкологии. Противоопухолевые вакцины на основе дендритных клеток. Клиническая и экспериментальная морфология. 2017;22(3):62–73.
    [Bogdanova IM, Postovalova EA. Cellular immunotherapy in oncology. Antitumor vaccines based on dendritic cells. Klinicheskaya i eksperimental’naya morfologiya. 2017;22(3):62–73. (In Russ)]
  10. Yi Q, Szmania S, Freeman J, et al. Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol. 2010;150(5):554–64. doi: 10.1111/j.1365-2141.2010.08286.x.
  11. Hobo W, Strobbe L, Maas F, et al. Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother. 2013;62(8):1381–92. doi: 10.1007/s00262-013-1438-2.
  12. Jung SH, Lee HJ, Lee YK, et al. A phase I clinical study of autologous dendritic cell therapy in patients with relapsed or refractory multiple myeloma. Oncotarget. 2017;8(25):41538–48. doi: 10.18632/oncotarget.14582.
  13. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant. 2000;6(6):621–7. doi: 10.1016/s1083-8791(00)70027-9.
  14. Yi Q, Desikan R, Barlogie B, Munshi N. Optimizing dendritic cell-based immunotherapy in multiple myeloma. Br J Haematol. 2002;117(2):297–305. doi: 10.1046/j.1365-2141.2002.03411.x.
  15. Rosenblatt J, Vasir B, Uhl L, et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011;117(2):393–402. doi: 10.1182/blood-2010-04-277137.
  16. Kitawaki T. DC-based immunotherapy for hematological malignancies. Int J Hematol. 2014;99(2):117–22. doi: 10.1007/s12185-013-1496-4.
  17. Reichardt VL, Okada CY, Liso A, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood. 1999;93(7):2411–9. doi: 10.1182/blood.v93.7.2411.
  18. Massaia M, Borrione P, Battaglio S, et al. Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood. 1999;94(2):673–83. doi: 10.1182/blood.v94.2.673.
  19. Lim SH, Bailey-Wood R. Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int J Cancer. 1999;83(2):215–22. doi: 10.1002/(sici)1097-0215(19991008)83:2<215::aid-ijc12>3.0.co;2-q.
  20. Cull G, Durrant L, Stainer C, et al. Generation of anti-idiotype immune responses following vaccination with idiotype-protein pulsed dendritic cells in myeloma. Br J Haematol. 1999;107(3):648–55. doi: 10.1046/j.1365-2141.1999.01735.x.
  21. Titzer S, Christensen O, Manzke O, et al. Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br J Haematol. 2000;108(4):805–16. doi: 10.1046/j.1365-2141.2000.01958.x.
  22. Lacy MQ, Mandrekar S, Dispenzieri A, et al. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol. 2009;84(12):799–802. doi: 10.1002/ajh.21560.
  23. Rollig C, Schmidt C, Bornhauser M, et al. Induction of cellular immune responses in patients with stage-I multiple myeloma after vaccination with autologous idiotype-pulsed dendritic cells. J Immunother. 2011;34(1):100–6. doi: 10.1097/CJI.0b013e3181facf48.
  24. Rosenblatt J, Avivi I, Vasir B, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res. 2013;19(13):3640–8. doi: 10.1158/1078-0432.CCR-13-0282.
  25. Palumbo A, Rajkumar SV, San Miguel JF, et al. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J Clin Oncol. 2014;32(6):587–600. doi: 10.1200/JCO.2013.48.7934.
  26. Richter J, Neparidze N, Zhang L, et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood. 2013;121(3):423–30. doi: 10.1182/blood-2012-06-435503.
  27. Kolb HJ, Schattenberg A, Goldman JM, et al.; European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86(5):2041–50. doi: 10.1182/blood.v86.5.2041.bloodjournal8652041.
  28. Goulmy Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol Rev. 1997;157(1):125–40. doi: 10.1111/j.1600-065x.1997.tb00978.x.
  29. Oostvogels R, Kneppers E, Minnema MC, et al. Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients. Bone Marrow Transplant. 2017;52(2):228–37. doi: 10.1038/bmt.2016.250.
  30. Franssen LE, Roeven MWH, Hobo W, et al. A phase I/II minor histocompatibility antigen-loaded dendritic cell vaccination trial to safely improve the efficacy of donor lymphocyte infusions in myeloma. Bone Marrow Transplant. 2017;52(10):1378–83. doi: 10.1038/bmt.2017.118.
  31. Weinstock M, Rosenblatt J, Avigan D. Dendritic Cell Therapies for Hematologic Malignancies. Mol Ther Methods Clin Dev. 2017;5:66–75. doi: 10.1016/j.omtm.2017.03.004.
  32. Wilgenhof S, Corthals J, Heirman C, et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol. 2016;34(12):1330–8. doi: 10.1200/JCO.2015.63.4121.
  33. Ribas A, Comin-Anduix B, Chmielowski B, et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin Cancer Res. 2009;15(19):6267–76. doi: 10.1158/1078-0432.CCR-09-1254.
  34. Emens LA, Machiels JP, Reilly RT, Jaffee EM. Chemotherapy: friend or foe to cancer vaccines? Curr Opin Mol Ther. 2001;3(1):77–84.
  35. Emens LA. Chemoimmunotherapy. Cancer J. 2010;16(4):295–303. doi: 10.1097/PPO.0b013e3181eb5066.
  36. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65. doi: 10.1093/jnci/djs629.
  37. Demaria S, Formenti SC. Radiotherapy effects on anti-tumor immunity: implications for cancer treatment. Front Oncol. 2013;3:128. doi: 10.3389/fonc.2013.00128.
  38. Chi KH, Liu SJ, Li CP, et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother. 2005;28(2):129–35. doi: 10.1097/01.cji.0000154248.74383.5e.
  39. Shibamoto Y, Okamoto M, Kobayashi M, et al. Immune-maximizing (IMAX) therapy for cancer: Combination of dendritic cell vaccine and intensity-modulated radiation. Mol Clin Oncol. 2013;1(4):649–54. doi: 10.3892/mco.2013.108.
  40. de Haas N, de Koning C, Spilgies L, et al. Improving cancer immunotherapy by targeting the STATe of MDSCs. Oncoimmunology. 2016;5(7):e1196312. doi: 10.1080/2162402X.2016.1196312.
  41. Butt AQ, Mills KH. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene. 2014;33(38):4623–31. doi: 10.1038/onc.2013.432.
  42. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;3. В печати.
    [Gribkova IV, Zavyalov AA. Chimeric antigen receptor T‑cell therapy of B-cell non-Hodgkin’s lymphoma: opportunities and challenges. Voprosy onkologii. 2021;3. In print. (In Russ)]
  43. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза: обзор литературы. Клиническая онкогематология. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230.
    [Gribkova IV, Zavyalov AA. CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review. Clinical oncohematology. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230. (In Russ)]
  44. Stripecke R, Cardoso AA, Pepper KA, et al. Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage–colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood. 2000;96(4):1317–26. doi: 10.1182/blood.v96.4.1317.
  45. Sundarasetty BS, Singh VK, Salguero G, et al. Lentivirus-induced dendritic cells for immunization against high-risk WT1(+) acute myeloid leukemia. Hum Gene Ther. 2013;24(2):220–37. doi: 10.1089/hum.2012.128.

Treatment of Mastocytosis: A Literature Review

KM Chernavina1, AS Orlova1, EA Nikitin2

1 IM Sechenov First Moscow State Medical University, 8 bld. 2 Trubetskaya str., Moscow, Russian Federation, 119991

2 Russian Medical Academy of Postgraduate Education, 2/1 Barrikadnaya str., Moscow, Russian Federation, 125993

For correspondence: Karina Maksimovna Chernavina, 8 bld. 2 Trubetskaya str., Moscow, Russian Federation, 119992; e-mail: Shkyrlak@gmail.com

For citation: Chernavina KM, Orlova AS, Nikitin EA. Treatment of Mastocytosis: A Literature Review. Clinical oncohematology. 2021;14(3):361–9. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-361-369


ABSTRACT

The term “mastocytosis” refers to a group of rare heterogeneous disorders resulting from proliferation and accumulation of neoplastic mast cells in various organs. The World Health Organization (WHO) classifies these diseases into three types: cutaneous mastocytosis, systemic mastocytosis (SM), and mast cell sarcoma (MCS). Depending on the degree of aggressiveness SM can be indolent, smoldering, aggressive (ASM), or associated with another proliferative hematological disease of non-mast cell line (SM-AHD). SM also includes mast cell leukemia (MCL). Numerous studies confirm the prognostic value of the WHO classification. All mastocytosis patients require treatment aimed at reducing the symptoms of mast cell activation. In case of prognostically unfavorable types of mastocytosis, such as ASM, SM-AHD, MCL, and MCS, more intensive treatment methods should come into consideration, which include allogeneic hematopoietic stem cell transplantation, cytoreductive therapy with tyrosine kinase inhibitors (TKI), interferon-α, and cladribine. In the pathogenesis of mastocytosis, mutations in different KIT gene exons have a dominating role. Most common is KITD816V activating mutation (80–90 % of SM cases). Some of TKIs (imatinib mesylate and midostaurin) had been successfully used in clinical trials and were approved for treating prognostically unfavorable mastocytosis. However, in some patients exclusive TKI treatment does not result in long-lasting remission due to therapy resistance induced by KIT activating mutations as well as other additional somatic mutations and molecular changes. For the purpose of comparative analysis, the review provides the results of major clinical trials dealing with various methods of mastocytosis treatment.

Keywords: mast cells, mastocytosis, KITD816V mutation, targeted therapy, tyrosine kinase inhibitors, imatinib, midostaurin.

Received: March 12, 2021

Accepted: June 10, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Gotlib J, Gerds AT, Bose P, et al. Systemic Mastocytosis, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16(12):1500–37. doi: 10.6004/jnccn.2018.0088.
  2. Bibi S, Arock M. Tyrosine Kinase Inhibition in Mastocytosis: KIT and Beyond KIT. Immunol Allergy Clin North 2018;38(3):527–43. doi: 10.1016/j.iac.2018.04.007.
  3. Pardanani A. Systemic mastocytosis in adults: 2017 update on diagnosis, risk stratification and management. Am J Hematol. 2016;91(11):1146–59. doi: 10.1002/ajh.24553.
  4. Valent P, Sotlar K, Blatt K, et al. Proposed diagnostic criteria and classification of basophilic leukemias and related disorders. Leukemia. 2017;31(4):788–97. doi: 10.1038/leu.2017.15.
  5. Swerdlow SH, Campo E, Harris N, et al. (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. 4th edition. Lyon: IARC Press; 2017. 586 p.
  6. Valent P, Akin C, Metcalfe DD. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood. 2017;129(11):1420–7. doi: 10.1182/blood-2016-09-731893.
  7. Valent P, Akin C, Hartmann K, et al. Advances in the Classification and Treatment of Mastocytosis: Current Status and Outlook toward the Future. Cancer Res. 2017;77(6):1261–70. doi: 10.1158/0008-5472.CAN-16-2234.
  8. Parwaresch MR, Horny HP, Lennert K. Tissue mast cells in health and disease. Pathol Res Pract. 1985;179(4–5):439–61. doi: 10.1016/s0344-0338(85)80184-9.
  9. Valent P, Akin C, Sperr WR et al. Diagnosis and treatment of systemic mastocytosis: state of the art. Br J Haematol. 2003;122(5):695–717. doi: 10.1046/j.1365-2141.2003.04575.x.
  10. Metcalfe DD. Mast cells and mastocytosis. Blood. 2008;112(4):946–56. doi: 10.1182/blood-2007-11-078097.
  11. Horny HP, Parwaresch MR, Lennert K. Bone marrow findings in systemic mastocytosis. Hum Pathol. 1985;16(8):808–14. doi: 1016/s0046-8177(85)80252-5.
  12. Carter MC, Metcalfe DD, Komarow HD. Immunol Allergy Clin North Am. 2014;34(1):181–96. doi: 10.1016/j.iac.2013.09.001.
  13. Valent P, Akin C, Escribano L, et al. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Invest. 2007;37(6):435–53. doi: 10.1111/j.1365-2362.2007.01807.x.
  14. Hartmann K, Escribano L, Grattan C, et al. Cutaneous manifestations in patients with mastocytosis: Consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma & Immunology; and the European Academy of Allergology and Clinical Immunology. J Allergy Clin Immunol. 2016;137(1):35–45. doi: 10.1016/j.jaci.2015.08.034.
  15. Valent P, Horny HP, Escribano L, et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res. 2001;25(7):603–25. doi: 10.1016/s0145-2126(01)00038-8.
  16. Komi DEA, Rambasek T, Wohrl S. Mastocytosis: from a molecular point of view. Clin Rev Allergy Immunol. 2018;54(3):397–411. doi: 10.1007/s12016-017-8619-2.
  17. Lange M, Nedoszytko B, Gorska A, et al. Mastocytosis in children and adults: clinical disease heterogeneity. Arch Med Sci. 2012;8(3):533–41. doi: 10.5114/aoms.2012.29409.
  18. Brockow K, Metcalfe DD. Mastocytosis. Chem Immunol Allergy. 2010;95:110–24. doi: 10.1159/000315946.
  19. Valent P, Sotlar K, Sperr WR, et al. Refined diagnostic criteria and classification of mast cell leukemia (MCL) and myelomastocytic leukemia (MML): a consensus proposal. Ann Oncol. 2014;25(9):1691–700. doi: 10.1093/annonc/mdu047.
  20. Falchi L, Verstovsek S. Kit Mutations: New Insights and Diagnostic Value. Immunol Allergy Clin North Am. 2018;38(3):411–28. doi: 10.1016/j.iac.2018.04.005.
  21. Cohen SS, Skovbo S, Vestergaard H, et al. Epidemiology of systemic mastocytosis in Denmark. Br J Haematol. 2014;166(4):521–8. doi: 10.1111/bjh.12916.
  22. Morales JK, Falanga YT, Depcrynski A, et al. Mast cell homeostasis and the JAK-STAT pathway. Genes Immun. 2010;11(8):599–608. doi: 10.1038/gene.2010.35.
  23. Sperr WR, Horny HP, Valent P. Spectrum of associated clonal hematologic non-mast cell lineage disorders occurring in patients with systemic mastocytosis. Int Arch Allergy Immunol. 2002;127(2):140–2. doi: 10.1159/000048186.
  24. Arock M, Akin C, Hermine O, et al. Current treatment options in patients with mastocytosis: status in 2015 and future perspectives. Eur J Haematol. 2015;94(6):474–90. doi: 10.1111/ejh.12544.
  25. Шкурлатовская К.М., Орлова А.С., Силина Е.В. и др. Молекулярно-генетические механизмы мастоцитоза. Патологическая физиология и экспериментальная терапия. 2019;63(3):127–33. doi: 10.25557/0031-2991.2019.03.127-133.
    [Shkurlatovskaia KM, Orlova AS, Silina EV, et al. Molecular and genetic mechanisms of mastocytosis. Patologicheskaya fiziologiya i eksperimental’naya terapiya. 2019;63(3):127–33. doi: 10.25557/0031-2991.2019.03.127-133. (In Russ)]
  26. Pardanani A. Systemic mastocytosis in adults: 2019 update on diagnosis, risk stratification and management. Am J Hematol. 2019;94(3):363–77. doi: 10.1002/ajh.25371.
  27. Cardet JC, Akin C, Lee MJ. Mastocytosis: update on pharmacotherapy and future directions. Expert Opin Pharmacother. 2013;14(15):2033–45. doi: 10.1517/14656566.2013.824424.
  28. Халиулин Г.Ю. Мастоцитоз: клинические проявления, методы диагностики и тактика ведения пациентов. Лечащий врач. 2012;8:83.
    [Khaliulin GYu. Mastocytosis: clinical manifestations, diagnostic methods, and patient management strategy. Lechashchii vrach. 2012;8:83. (In Russ)]
  29. Scherber RM, Borate U. How we diagnose and treat systemic mastocytosis in adults. Br J Haematol. 2018;180(1):11–23. doi: 10.1111/bjh.14967.
  30. Дробик О.С., Воронова М.Ю. Омализумаб: новые горизонты в терапии хронической спонтанной крапивницы. Эффективная фармакотерапия. 2014;44:36–43.
    [Drobik OS, Voronova MYu. Omalizumab: new horizons in the therapy of chronic spontaneous urticaria. Effektivnaya farmakoterapiya. 2014;44:36–43. (In Russ)]
  31. Valent P, Akin C, Sperr WR, et al. Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria. Leuk Res. 2003;27(7):635–41. doi: 10.1016/s0145-2126(02)00168-6.
  32. Alvarez-Twose I, Matito A, Morgado JM, et al. Imatinib in systemic mastocytosis: a phase IV clinical trial in patients lacking exon 17. Oncotarget. 2017;8(40):68950–63. doi: 10.18632/oncotarget.10711.
  33. Gotlib J, Pardanani A, Akin C, et al. International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) & European Competence Network on Mastocytosis (ECNM) consensus response criteria in advanced systemic mastocytosis. Blood. 2013;121(13):2393–401. doi: 10.1182/blood-2012-09-458521.
  34. Ustun C, Reiter A, Scott BL, et al. Hematopoietic stem-cell transplantation for advanced systemic mastocytosis. J Clin Oncol. 2014;32(29):3264–74. doi: 10.1200/JCO.2014.55.2018.
  35. Simon J, Lortholary O, Caillat-Vigneron N, et al. Interest of interferon alpha in systemic mastocytosis. The French experience and review of the literature. Pathol Biol (Paris). 2004;52(5):294–9. doi: 10.1016/j.patbio.2004.04.012.
  36. Lim KH, Pardanani A, Butterfield JH, et al. Cytoreductive therapy in 108 adults with systemic mastocytosis: Outcome analysis and response prediction during treatment with interferon-alpha, hydroxyurea, imatinib mesylate or 2-chlorodeoxyadenosine. Am J Hematol. 2009;84(12):790–4. doi: 10.1002/ajh.21561.
  37. Barete S, Lortholary O, Damaj G, et al. Long-term efficacy and safety of cladribine (2-CdA) in adult patients with mastocytosis. Blood. 2015;126(8):1009–16. doi: 10.1182/blood-2014-12-614743.
  38. Hochhaus A, Baccarani M, Giles FJ, et al. Nilotinib in patients with systemic mastocytosis: analysis of the phase 2, open-label, single-arm nilotinib registration study. J Cancer Res Clin Oncol. 2015;141(11):2047–60. doi: 10.1007/s00432-015-1988-0.
  39. Verstovsek S, Tefferi A, Cortes J, et al. Phase II study of dasatinib in Philadelphia chromosome-negative acute and chronic myeloid diseases, including systemic mastocytosis. Clin Cancer Res. 2008;14(12):3906–15. doi: 10.1158/1078-0432.CCR-08-0366.
  40. Gotlib J, Kluin-Nelemans HC, George TI, et al. Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis. N Engl J Med. 2016;374(26):2530–41. doi: 10.1056/NEJMoa1513098.
  41. DeAngelo DJ, George TI, Linder A, et al. Efficacy and safety of midostaurin in patients with advanced systemic mastocytosis: 10-year median follow-up of a phase II trial. Leukemia. 2018;32(2):470–8. doi: 10.1038/leu.2017.234.
  42. Deininger MW, Gotlib J, Robinson WA, et al. А vapritinib (BLU-285), a selective kit inhibitor, is associated with high response rate and tolerable safety profile in advanced systemic mastocytosis (ADVSM): results of a phase 1 study. 2018. [Internet] Available from: https://www.blueprintmedicines.com/wp-content/uploads/2018/12/2018_EHA_EXPLORER_Ph1_Avapritinib_AdvSM.pdf (accessed 15.03.2021).
  43. Ustun C, Gotlib J, Popat U, et al. Consensus Opinion on Allogeneic Hematopoietic Cell Transplantation in Advanced Systemic Mastocytosis. Biol Blood Marrow Transplant. 2016;22(8):1348–56. doi: 10.1016/j.bbmt.2016.04.018.
  44. Gilreath JA, Tchertanov L, Deininger MW. Novel approaches to treating advanced systemic mastocytosis. Clin Pharmacol. 2019;11:77–92. doi: 10.2147/CPAA.S206615.
  45. Ma Y, Zeng S, Metcalfe DD, et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. 2002;99(5):1741–4. doi: 10.1182/blood.v99.5.1741.
  46. Dubreuil P, Letard S, Ciufolini M, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PloS One. 2009;4(9):e7258. doi: 10.1371/journal.pone.0007258.
  47. Saleh R, Wedeh G, Herrmann H, et al. A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection. Blood. 2014;124(1):111–20. doi: 10.1182/blood-2013-10-534685.
  48. Gotlib J, Berube C, Growney JD, et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood. 2005;106(8):2865–70. doi: 10.1182/blood-2005-04-1568.
  49. S. Food and Drug Administration. [Internet] Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/midostaurin (accessed 15.03.2021).
  50. Lortholary O, Chandesris MO, Bulai Livideanu C, et al. Masitinib for treatment of severely symptomatic indolent systemic mastocytosis: a randomised, placebo-controlled, phase 3 study. Lancet. 2017;389(10069):612–20. doi: 10.1016/S0140-6736(16)31403-9.
  51. Paul C, Sans B, Suarez F, et al. Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study. Am J Hematol. 2010;85(12):921–5. doi: 10.1002/ajh.21894.
  52. Bibi S, Arslanhan MD, Langenfeld F, et al. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica. 2014;99(3):417–29. doi: 10.3324/haematol.2013.098442.

Current Issues of Targeted Therapy of Polycythemia Vera

AL Melikyan, IN Subortseva

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Anait Levonovna Melikyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: anoblood@ mail.ru

For citation: Melikyan AL, Subortseva IN. Current Issues of Targeted Therapy of Polycythemia Vera. Clinical oncohematology. 2021;14(3):355–60. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-355-360


ABSTRACT

The issues of therapy response criteria, first-line hydroxycarbamide intolerance and resistance to it as well as early changes in treatment strategy remain controversial and debatable in the management of polycythemia vera patients. The review outlines the results of literature data analysis related to the estimation of first-line therapy efficacy, it considers the spectrum and frequency of adverse events of hydroxycarbamide treatment, and focuses on the experience of using ruxolitinib, JAK2 inhibitor. The review provides results, including the long-term ones, of the comparative analysis of ruxolitinib use and the best available therapy of polycythemia vera patients with hydroxycarbamide resistance. The present review uses the materials of expert panel with the participation of Prof. Giuseppe A. Palumbo (University of Catania, Sicily, Italy) held on June 7, 2020.

Keywords: polycythemia vera, JAK2V617F, prognosis, hydroxycarbamide, ruxolitinib.

Received: December 22, 2020

Accepted: May 10, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Меликян А.Л., Туркина А.Г., Абдулкадыров К.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз). Гематология и трансфузиология. 2014;59(4):31–56.
    [Melikyan AL, Turkina AG, Abdulkadyrov KM, et al. Clinical recommendations for the diagnosis and therapy of Ph-negative myeloproliferative diseases (polycythemia vera, essential thrombocythemia, primary myelofibrosis). Gematologiya i transfuziologiya. 2014;59(4):31–56. (In Russ)]
  2. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;62(1):25–60.
    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical recommendations for the diagnosis and therapy of Ph-negative myeloproliferative diseases (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2016). Gematologiya i transfuziologiya. 2017;62(1):25–60. (In Russ)]
  3. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.) Гематология и трансфузиология. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2018). Gematologiya i transfuziologiya. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001. (In Russ)]
  4. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  5. Танашян М.М., Кузнецова П.И., Лагода О.В. и др. Миелопролиферативные заболевания и ишемический инсульт. Анналы клинической и экспериментальной неврологии. 2014;8(2):41–5.
    [Tanashyan MM, Kuznetsova PI, Lagoda OV, et al. Myeloproliferative diseases and ischemic stroke. Annaly klinicheskoi i eksperimental’noi nevrologii. 2014;8(2):41–5. (In Russ)]
  6. Танашян М.М., Кузнецова П.И., Суборцева И.Н. и др. Хроническая и острая цереброваскулярная патология при Ph-негативных миелопролиферативных заболеваниях. Гематология и трансфузиология. 2016;61(3):146–50. doi: 18821/0234-5730-2016-61-3-146-150.
    [Tanashyan MM, Kuznetsova PI, Subortseva IN, et al. Chronic and acute cerebrovascular pathology in patients with Ph-negative myeloproliferative diseases. Gematologiya i transfuziologiya. 2016;61(3):146–50. doi: 10.18821/0234-5730-2016-61-3-146-150. (In Russ)]
  7. Меликян А.Л., Суборцева И.Н., Суханова Г.А. Тромбогеморрагические осложнения у больных Ph-негативными миелопролиферативными заболеваниями. Кровь. 2014;2(18):21–5.
    [Melikyan AL, Subortseva IN, Sukhanova GA. Thrombohemorrhagic complications in patients with Ph-negative myeloproliferative diseases. Krov’. 2014;2(18):21–5. (In Russ)]
  8. Суборцева И.Н., Колошейнова Т.И., Пустовая Е.И. и др. Истинная полицитемия: обзор литературы и собственные данные. Клиническая онкогематология. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412.
    [Subortseva IN, Kolosheinova TI, Pustovaya EI, et al. Polycythemia Vera: Literature Review and Own Data. Clinical oncohematology. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412. (In Russ)]
  9. Falchi L, Newberry KJ, Verstovsek S. New Therapeutic Approaches in Polycythemia Vera. Clin Lymphoma Myel Leuk. 2015;15:27–33. doi: 10.1016/j.clml.2015.02.013.
  10. Barosi G, Mesa R, Finazzi G, et al. Revised response criteria for polycythemia vera and essential thrombocythemia: an ELN and IWG-MRT consensus project. Blood. 2013;121(23):4778–81. doi: 10.1182/blood-2013-01-478891.
  11. Меликян А.Л., Суборцева И.Н., Шуваев В.А. и др. Современный взгляд на диагностику и лечение классических Ph-негативных миелопролиферативных заболеваний. Клиническая онкогематология. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137.
    [Melikyan AL, Subortseva IN, Shuvaev VA, et al. Current View on Diagnosis and Treatment of Classical Ph-Negative Myeloproliferative Neoplasms. Clinical oncohematology. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137. (In Russ)]
  12. Barosi G, Birgegard G, Finazzi G, et al. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood. 2009;113(20):4829–33. doi: 10.1182/blood-2008-09-176818.
  13. Palandri F, Elli ME, Benevolo G, et al. Clinical Outcomes Under Hydroxyurea and Impact of ELN Responses in Patients with Polycythemia Vera: A PV-NET Real World Study. Blood. 2019;134(1):4174. doi: 10.1182/blood-2019-125388.
  14. Barosi G, Birgegard G, Finazzi G, et al. A unified definition of clinical resistance and intolerance to hydroxycarbamide in polycythaemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br J Haematol. 2010;148(6):961–3. doi: 10.1111/j.1365-2141.2009.08019.x.
  15. Alvarez-Larran A, Kerguelen A, Hernandez-Boluda JC, et al.; Grupo Espanol de Enfermedades Mieloproliferativas Filadelfia Negativas (GEMFIN). Frequency and prognostic value of resistance/intolerance to hydroxycarbamide in 890 patients with polycythaemia vera. Br J Haematol. 2016;172(5):786–93. doi: 10.1111/bjh.13886.
  16. Kiladjian J-J, Pierre Z, Masayuki H, et al. Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study. Lancet Haematol. 2020;7(3):е226–е doi: 10.1016/S2352-3026(19)30207-8.
  17. Alvarez-Larran A, Verstovsek S, Perez-Encinas M, et al. Comparison of ruxolitinib and real-world best available therapy in terms of overall survival and thrombosis in patients with polycythemia vera who are resistant or intolerant to hydroxyurea. EHA Library. 2018;215071:PF628.
  18. Curto-Garcia N, Baxter J, Harris E, et al. Molecular analysis in MAJIC PV correlation with clinical endpoints. HemaSphere. 2019;3(S1):740. doi: 10.1097/01.HS9.0000564676.68330.b5.

Anemia of Chronic Diseases

NV Kurkina, EI Gorshenina, LV Chegodaeva, AV Polagimova

NP Ogarev National Research Mordovia State University, 68 Bolshevistskaya str., Saransk, Russian Federation, 430005

For correspondence: Nadezhda Viktorovna Kurkina, MD, PhD, 26А Ul’yanova str., Saransk, Russian Federation, 430032; Tel.: +7(927)172-48-63; e-mail: nadya.kurckina@yandex.ru

For citation: Kurkina NV, Gorshenina EI, Chegodaeva LV, Polagimova AV. Anemia of Chronic Diseases. Clinical oncohematology. 2021;14(3):347–54. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-347-354


ABSTRACT

Anemia of chronic diseases (ACD) refers to a group of anemias arising in various inflammatory infections, autoimmune or tumor diseases due to acute or chronic immune activation. ACD ranks second in incidence after iron deficiency anemia (IDA). Within the variety of pathogenetic mechanisms one of the primary ones is hepcidin synthesis in hepatocytes, which blocks iron absorption in the intestine and contributes to its deposition in cells of the monocyte-macrophage system. Besides, excessive cytokines in such diseases and pathologies lead to lower erythropoietin production which does not correspond to the severity grade of anemia. This results in impaired erythropoiesis in the bone marrow. The differential diagnosis should also specify iron deficiency type (the absolute one in IDA and the functional one in ACD). The effective treatment of the main disease and anemia correction speed up the improvement of patient’s status, rehabilitation, and quality of life.

Keywords: anemia, chronic diseases, immune system, hepcidin, cytokines, erythropoietin, ferritin, serum iron.

Received: January 17, 2021

Accepted: April 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Андреичев Н.А., Балеева Л.В. Анемия хронических заболеваний. Российский медицинский журнал. 2014;20(2):50–5.
    [Andreichev NA, Baleeva LV. Anemia of chronic diseases. Rossiiskii meditsinskii zhurnal. 2014;20(2):50–5. (In Russ)]
  2. Волкова С.А., Боровков Н.Н. Основы клинической гематологии: учебное пособие. Н. Новгород: НижГМА, 2013. 400 с.
    [Volkova SA, Borovkov NN. Osnovy klinicheskoi gematologii: uchebnoe posobie. (Fundamentals of clinical hematology: learning guide.) Nizhny Novgorod: NizhGMA Publ.; 2013. 400 p. (In Russ)]
  3. John M, Hoernig S, Doehner W, et al. Anemia and inflammation in COPD. Chest. 2005;127(3):825–9. doi: 10.1378/chest.127.3.825.
  4. Будневский А.В., Есауленко И.Е., Овсянников Е.С., Жусина Ю.Г. Анемия при хронической обструктивной болезни легких. Терапевтический архив. 2016;88(3):96–9. doi: 10.17116/terarkh201688396-99.
    [Budnevsky AV, Esaulenko IE, Ovsyannikov ES, Zhusina YuG. Anemia in chronic obstructive pulmonary disease. Terapevticheskii arkhiv. 2016;88(3):96–9. doi: 10.17116/terarkh201688396-99. (In Russ)]
  5. Жусина Ю.Г., Будневский А.В., Феськова А.А., Овсянников Е.С. О взаимосвязи хронической обструктивной болезни легких и анемии. Пульмонология. 2018;28(6):730–5. doi: 10.18093/0869-0189-2018-28-6-730-735.
    [Zhusina YuG, Budnevskiy AV, Fes’kova AA, Ovsyannikov ES. About relationship between chronic obstructive pulmonary disease and anemia. Pulmonologiya. 2018;28(6):730–5. doi: 10.18093/0869-0189-2018-28-6-730-735. (In Russ)]
  6. Tsantes AE, Tassiopoulos ST, Papadhimitriou SI, et al. Theophylline treatment may adversely affect the anoxia-induced erythropoietic response without suppressing erythropoietin production. Eur J Clin Pharmacol. 2003;59(5–6):379–83. doi: 10.1007/s00228-003-0640-0.
  7. Marathias KP, Agroyannis B, Mavromoustakos T, et al. Hematocrit-lowering effect following inactivation of renin-angiotensin system with angiotensin converting enzyme inhibitors and angiotensin receptor blockers. Curr Top Med Chem. 2004;4(4):483–6. doi: 10.2174/1568026043451311.
  8. Рукавицын О.А. Гематология. Национальное руководство. М.: ГЭОТАР-Медиа, 2017. 784 с.
    [Rukavitsyn OA. Natsional’noe rukovodstvo. (Hematology. National Guidelines.) Moscow: GEOTAR-Media Publ.; 2017. 784 p. (In Russ)]
  9. Groenveld HF, Januzzi JL, Damman K, et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol. 2008;52(10):818–27. doi: 10.1016/j.jacc.2008.04.061.
  10. Снеговой А.В., Aapro M., Гладков О.А. и др. Практические рекомендации по лечению анемии у онкологических больных. Злокачественные опухоли. 2016;4:368–77.
    [Snegovoi AV, Aapro M, Gladkov OA, et al. Practical guidelines for anemia treatment in oncological patients. Zlokachestvennye opukholi. 2016;4:368–77. (In Russ)]
  11. Voulgari PV, Kolios G, Papadopoulos GK, et al. Role of cytokines in the pathogenesis of anemia of chronic disease in rheumatoid arthritis. Clin Immunol. 1999;92(2):153–60. doi: 10.1006/clim.1999.4736.
  12. Stauffer ME, Fan T. Prevalence of Anemia in Chronic Kidney Disease in the United States. PLoS One. 2014;9(1):e84943. doi: 10.1371/journal.pone.0084943.
  13. McClellan W, Aronoff SL, Bolton WK, et al. The prevalence of anemia in patients with chronic kidney disease. Curr Med Ress Opion. 2004;20(9):1501–10. doi: 10.1185/030079904X2763.
  14. Stenvinkel P. The role of inflammation in the anaemia of end-stage renal disease. Nephrol Dial Transplant. 2001;16(Suppl 7):36–40. doi: 10.1093/ndt/16.suppl_7.36.
  15. Thorp ML, Johnson ES. Effect of anemia on mortality, cardiovascular hospitalizations and end stage renal disease among patients with chronic kidney disease. Nephrology. 2009;14(2):240–6. doi: 10.1111/j.1440-1797.2008.01065.x.
  16. Andrews M, Arredondo M. Ferritin levels and hepcidin mRNA expression in peripheral mononuclear cells from anemic type 2 diabetic patients. Biol Trace Elem Res. 2012;149(1):1–4. doi: 10.1007/s12011-012-9389-6.
  17. Zoppini G, Targher G, Chonchol M, et al. Anaemia, independent of chronic kidney disease, predicts all cause and cardiovascular mortality in type 2 diabetic patients. Atherosclerosis. 2010;210(2):575–80. doi: 10.1016/j.atherosclerosis.2009.12.008.
  18. Ito H, Takeuchi Y, Ishida H, et al. Mild anemia is frequent and associated with micro- and macroangiopathies in patients with type 2 diabetes mellitus. J Diab Invest. 2010;1(6):273–8. doi: 10.1111/j.2040-1124.2010.00060.x.
  19. Roy CN, Mak HH, Akpan I, et al. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood. 2007;109(9):4038–44. doi: 10.1182/blood-2006-10-051755.
  20. Ganz T, Nemeth E. Iron sequestration and anemia of inflammation. Semin Hematol. 2009;46(4):387–393. doi: 10.1053/j.seminhematol.2009.06.001.
  21. Морщакова Е.Ф., Павлов А.Д., Румянцев А.Г. Эритропоэз, эритропоэтин, железо. М.: ГЭОТАР-Медиа, 2013. 178 с.
    [Morshchakova EF, Pavlov AD, Rumyantsev AG. Eritropoez, eritropoetin, zhelezo. (Erythropoiesis, erythropoietin, iron.) Moscow: GEOTAR-Media Publ.; 2013. 178 p. (In Russ)]
  22. Рукавицын О.А. Анемия хронических заболеваний: отдельные аспекты патогенеза и пути коррекции. Онкогематология. 2016;11(1):37–46. doi: 10.17650/1818-8346-2016-11-1-37-46.
    [Rukavitsyn OA. Anemia of chronic diseases: the important aspects of pathogenesis and treatment. Oncohematology. 2016;11(1):37–46. doi: 10.17650/1818-8346-2016-11-1-37-46. (In Russ)]
  23. Румянцев А.Г., Масчан А.А. Федеральные клинические рекомендации по диагностике и лечению анемии хронических заболеваний (электронный документ). Доступно по: https://nodgo.org/sites/default/files/%D0%A4%D0%9A%D0%A0%20%D0%BF%D0%BE%20%D0%B4%D0%B8%D0%B0%D0%B3%D0%BD%D0%BE%D1%81%D1%82%D0%B8%D0%BA%D0%B5%20%D0%B8%20%D0%BB%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D1%8E%20%D0%B0%D0%BD%D0%B5%D0%BC%D0%B8%D0%B8%20%D1%85%D1%80%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85%20%D0%B1%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D0%B5%D0%Bpdf. Ссылка активна на 13.04.2021.
    [Rumyantsev AG, Maschan AA. Federal clinical guidelines for diagnosis and treatment of anemia of chronic diseases. [Internet] Available from: https://nodgo.org/sites/default/files/%D0%A4%D0%9A%D0%A0%20%D0%BF%D0%BE%20%D0%B4%D0%B8%D0%B0%D0%B3%D0%BD%D0%BE%D1%81%D1%82%D0%B8%D0%BA%D0%B5%20%D0%B8%20%D0%BB%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D1%8E%20%D0%B0%D0%BD%D0%B5%D0%BC%D0%B8%D0%B8%20%D1%85%D1%80%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85%20%D0%B1%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D0%B5%D0%B9.pdf. (accessed 13.04.2021) (In Russ)]
  24. Nemeth E, Ganz T. Anemia of Inflammation. Hematol Oncol Clin North Am. 2014;28(4):671–81. doi: 10.1016/j.hoc.2014.04.005.
  25. Weiss Pathogenesis and treatment of anemia of chronic disease. Blood Rev. 2002;16(2):87–96. doi: 10.1054/blre.2002.0193.
  26. Сморкалова Е.В. Иммуногематологические особенности железодефицитной анемии и анемии хронических заболеваний: Автореф. дис.… канд. мед. наук. Уфа, 2012. 22 с.
    [Smorkalova EV. Immunogematologicheskie osobennosti zhelezodefitsitnoi anemii i anemii khronicheskikh zabolevanii. (Immunohematological characteristics of iron deficiency anemia and anemia of chronic diseases.) [dissertation] Ufa; 2012. 22 p. (In Russ)]
  27. Kato Y, Takagi C, Tanaka J, et al. Effect of daily subcutaneous administration of recombinant erythropoietin on chronic anemia in rheumatoid arthritis. Intern Med. 1994;33(4):193–7. doi: 10.2169/internalmedicine.33.193.
  28. Peeters HR, Jongen-Lavrencic M, Bakker CH, et al. Recombinant human erythropoietin improves health-related quality of life in patients with rheumatoid arthritis and anaemia of chronic disease; utility measures correlate strongly with disease activity measures. Rheumatol Int. 1999;18(5–6):201–6. doi: 10.1007/s002960050085.
  29. Arndt U, Kaltwasser JP, Gottschalk R, et al. Correction of iron-deficient erythropoiesis in the treatment of anemia of chronic disease with recombinant human erythropoietin. Ann Hematol. 2005;84(3):159–66. doi: 10.1007/s00277-004-0950-z.
  30. Schipperus M, Rijnbeek B, Reddy M, et al. CNTO328 (Anti-IL-6 mAb) Treatment Is Associated with An Increase in Hemoglobin (Hb) and Decrease in Hepcidin Levels in Renal Cell Carcinoma (RCC). Blood. 2009;114(22):4045. doi: 10.1182/blood.v114.22.4045.4045.
  31. Hohlbaum A, Gille H, Christian J, et al. Iron mobilization and pharmacodynamic marker measurements in non-human primates following administration of PRS-080, a novel and highly specific antihepcidin therapeutic. Am J Hematol. 2013;88(5):E41.
  32. Schwoebel F, van Eijk LT, Zboralski D, et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013;121(12):2311–5. doi: 10.1182/blood-2012-09-456756.
  33. Poli M, Girelli D, Campostrini N, et al. Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo. Blood. 2011;117(3):997–1004. doi: 10.1182/blood-2010-06-289082.
  34. Crosby JR, Gaarde WA, Egerston J, et al. Targeting hepcidin with antisense oligonucleotides improves anemia endpoints in mice. Blood. 2006;108(11, Pt 1):269. doi: 10.1182/blood.v108.11.269.269.
  35. Akinc A, Chan-Daniels A, Sehgal A, et al. Targeting the hepcidin pathway with RNAi therapeutics for the treatment of anemia. Blood. 2011;118(21):688. doi: 10.1182/blood.v118.21.688.688.
  36. Гармиш Е.А. Анемия хронического воспаления при ревматоидном артрите: патогенез и выбор терапии. Украинский ревматологический журнал. 2016;1(63):39–41.
    [Garmish EА. Anemia of chronic inflammation of rheumatoid arthritis: pathogenesis and choice of treatment. Ukrainskii revmatologicheskii zhurnal. 2016;1(63):39–41. (In Russ)]

Polymorphism of Interleukins and Tumor Necrosis Factor α Genes in Multiple Myeloma Patients with Autologous Hematopoietic Stem Cell Transplantation

SP Svitina, ZhYu Sidorova, II Kostroma, AA Zhernyakova, AV Chechetkin, ZhV Chubukina, SV Gritsaev, SI Kapustin, SS Bessmeltsev

Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Pavlovna Svitina, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; e-mail: shvetikova@gmail.com

For citation: Svitina SP, Sidorova ZhYu, Kostroma II, et al. Polymorphism of Interleukins and Tumor Necrosis Factor α Genes in Multiple Myeloma Patients with Autologous Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2021;14(3):340–6. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-340-346


ABSTRACT

Aim. To assess polymorphism value of interleukins (IL6, IL1B, IL10) and tumor necrosis factor α (TNF) genes in multiple myeloma (MM) patients who received autologous hematopoietic stem cell transplantation (auto-HSCT).

Materials & Methods. The study enrolled 37 MM patients (15 men and 22 women) aged 38–66 years (mean age 54.5 ± 6.4 years), who received auto-HSCT. After transplantation, partial (PR), very good partial (VGPR), and complete (CR) responses were reported in 11, 7, and 19 patients, respectively. In 23 (62.2 %) patients CD34+ cell collection on the day of the first leukocytapheresis session exceeded the suboptimal level of 2.5 × 106/kg. The control group included 236 healthy subjects. Genotyping by PCR with subsequent analysis of restriction fragment length polymorphism of amplified products was performed. To identify between-group differences in genotype distribution, Fisher’s exact test with measurements of odds ratio (OR) and рvalue was used.

Results. The study group of patients was distinguished from the control group by more than twofold increased proportion of homozygous IL1B –31C (OR 2.7; = 0.029). The proportion of heterozygous –174G/C allelic variant of IL6 gene in the subgroup of patients with CR after auto-HSCT was considerably higher than in patients with VGPR and PR (OR 5.6; = 0.022). In the subgroup of patients with CD34+ cell collection > 2.5 × 106/kg the proportion of those with IL10 –592C/C genotype was twice as high as in patients with lower CD34+ cell collection (OR 3.9; = 0.091).

Conclusion. The present study confirms the relationship of –31C/Т polymorphism in IL1B gene in homozygous state with higher MM risk. It proved the association of –174G/C polymorphism in IL6 gene and –592C/A polymorphism in IL10 gene with the chosen criteria for auto-HSCT efficacy. To precisely clarify the value of variants in the above genes for predicting chemotherapy effect in MM, further studies involving more patients are required.

Keywords: multiple myeloma, genes polymorphism, immune response, cytokines, autologous hematopoietic stem cell transplantation.

Received: March 4, 2021

Accepted: June 10, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Бессмельцев С.С. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть Клиническая онкогематология. 2013;6(3):237–57.
    [Bessmeltsev SS. Multiple myeloma (pathogenesis, clinical features, diagnosis, differential diagnosis). Part I. Klinicheskaya onkogematologiya. 2013;6(3):237–57. (In Russ)]
  2. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]
  3. Грицаев С.В., Кузяева А.А., Бессмельцев С.С. Отдельные аспекты аутологичной трансплантации гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2017;10(1):7–12. doi: 10.21320/2500-2139-2017-10-1-7-12.
    [Gritsaev SV, Kuzyaeva AA, Bessmel’tsev SS. Certain Aspects of Autologous Hematopoietic Stem Cell Transplantation in Patients with Multiple Myeloma. Clinical oncohematology. 2017;10(1):7–12. doi: 10.21320/2500-2139-2017-10-1-7-12. (In Russ)]
  4. Бессмельцев С.С. Множественная миелома (лечение первичных больных): обзор литературы и собственные данные. Часть Клиническая онкогематология. 2013;6(4):379–414.
    [Bessmeltsev SS. Multiple myeloma (management of newly diagnosed patients): literature review and our on data. Part II. Klinicheskaya onkogematologiya. 2013;6(4):379–414. (In Russ)]
  5. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома. Современный взгляд на проблему. Алматы: Коста, 2007. 480 c.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma. Sovremennyi vzglyad na problemu. (Multiple myeloma. Current view on the problem.) Almaty: Kosta Publ.; 2007. 480 p. (In Russ)]
  6. Назарова Е.Л., Минаева Н.В., Хоробрых М.Н. и др. Прогностическое значение генетических маркеров в оценке эффективности индукционной терапии, включающей аутологичную трансплантацию гемопоэтических стволовых клеток, у больных множественной миеломой. Клиническая онкогематология. 2018;11(1):54–69. doi: 10.21320/2500-2139-2018-11-1-54-69.
    [Nazarova EL, Minaeva NV, Khorobrykh MN, et al. Prognostic Value of Genetic Markers for Efficacy Estimation of Induction Treatment Including Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma Patients. Clinical oncohematology. 2018;11(1):54–69. doi: 10.21320/2500-2139-2018-11-1-54-69. (In Russ)]
  7. Vangsted AJ, Klausen TW, Ruminski W, et al. The polymorphism IL-1β T-31C is associated with a longer overall survival in patients with multiple myeloma undergoing auto-SCT. Bone Marrow Transplant. 2009;43(7):539–45. doi: 10.1038/bmt.2008.351.
  8. Kasamatsu T, Saitoh T, Ino R, et al. Polymorphism of IL-10 receptor β affects the prognosis of multiple myeloma patients treated with thalidomide and/or bortezomib. Hematol Oncol. 2017;35(4):711–18. doi: 10.1002/hon.2322.
  9. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res. 1988;16(3):1215–8. doi: 10.1093/nar/16.3.1215.
  10. Mullis KB, Faloona FA. Specific synthesis of DNA via a polymerase-catalysed chain reaction. Methods Enzymol. 1987;155:335–50. doi: 10.1016/0076-6879(87)55023-6.
  11. Zheng C, Huang DR, Bergenbrant S, et al. Interleukin 6, tumor necrosis factor alpha, interleukin 1 beta and interleukin 1 receptor antagonist promoter or coding gene polymorphisms in multiple myeloma. Br J Haematol. 2000;109(1):39– doi: 10.1046/j.1365-2141.2000.01963.x.
  12. Wang X, Jiang F, Liang Y, et al. Interleukin-1β -31C/T and -511T/C Polymorphisms Were Associated with Preeclampsia in Chinese Han Population. PLoS One. 2014;9(9):1– doi: 10.18632/oncotarget.23472.
  13. Alexander DD, Mink PJ, Adami HO, et al. Multiple myeloma: a review of the epidemiologic literature. Int J Cancer. 2007;120(S12):40–61. doi: 10.1002/ijc.22718.
  14. Павлова А.А., Павлова И.Е., Бубнова Л.Н. и др. Взаимосвязь однонуклеотидного полиморфизма генов цитокинов и клинико-лабораторных показателей у больных множественной миеломой. Медицинская иммунология. 2019;21(4):703–14. doi: 10.15789/1563-0625-2019-4-703-714.
    [Pavlova AA, Pavlova IE, Bubnova LN, et al. Relationship between single nucleotide polymorphisms in cytokine genes and clinical laboratory parameters in patients with multiple myeloma. Meditsinskaya Immunologiya. 2019;21(4):703–14. doi: 10.15789/1563-0625-2019-4-703-714. (In Russ)]
  15. Ghobrial IM. Myeloma as a model for the process of metastasis: implications for therapy. Blood. 2012;120(1):20–30. doi: 10.1182/blood-2012-01-379024.
  16. Насонов Е.Л. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2018;56:19–27. doi: 10.14412/1995-4484-2018-19-27.
    [Nasonov EL. The role of interleukin 1 in the development of human diseases. Nauchno-Prakticheskaya Revmatologiya. 2018;56:19–27. doi: 10.14412/1995-4484-2018-19-27. (In Russ)]
  17. Costes V, Portier M, Lu ZY, et al. Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production. Br J Haematol. 1998;103(4):1152–60. doi: 10.1046/j.1365-2141.1998.01101.x.
  18. Lacy MQ, Donovan KA, Heimbach JK, et al. Comparison of interleukin-1 beta expression by in situ hybridization in monoclonal gammopathy of undetermined significance and multiple myeloma. Blood. 1999;93(1):300–5. doi: 10.1182/blood.V93.1.300.
  19. Xiong Y, Donovan KA, Kline MP, et al. Identification of two groups of smoldering multiple myeloma patients who are either high or low producers of interleukin-1. J Interferon Cytokine Res. 2006;26(2):83–95. doi: 0.1089/jir.2006.26.83.
  20. Honemann D, Chatterjee M, Savino R, et al. The IL-6 receptor antagonist SANT-7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells. Int J Cancer. 2001;93(5):674–80. doi: 10.1002/ijc.1388.
  21. Lauta VM. A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer. 2003;97(10):2440–52. doi: 10.1002/cncr.11072.
  22. Chakraborty B, Vishnoi G, Gowda SH, Goswami B. Interleukin-6 gene-174 G/C promoter polymorphism and its association with clinical profile of patients with multiple myeloma. Asia Pac J Clin Oncol. 2014;13(5):402–7. doi: 10.1111/ajco.12290.
  23. Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem. 2000;275(24):18138–44. doi: 10.1074/jbc.M000379200.
  24. Ray A, Sassone-Corsi P, Sehgal PB. A multiple cytokine- and second messenger-responsive element in the enhancer of the human interleukin-6 gene: similarities with c-fos gene regulation. Mol Cell Biol. 1989;9(12):5537–47. doi: 10.1128/mcb.9.12.5537.
  25. Duch CR, Figueiredo MS, Ribas C, et al. Analysis of polymorphism at site -174 G/C of interleukin-6 promoter region in multiple myeloma. Braz J Med Biol Res. 2007;40(2):265–7. doi: 10.1590/s0100-879х2007000200014.
  26. Mazur G, Bogunia-Kubik K, Wrobel T, et al. IL-6 and IL-10 promoter gene polymorphisms do not associate with the susceptibility for multiple myeloma. Immunol Lett. 2005;96(2):241–6. doi: 10.1016/j.imlet.2004.08.015.
  27. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res. 1988;16(3):1215–8. doi: 10.1093/nar/16.3.1215.
  28. Banu C, Moise A, Arion CV, et al. Cytokine Gene Polymorphisms support diagnostic monitoring of Romanian multiple myeloma patients. J Med Life. 2011;4(3):264–8.
  29. Rousset F, Garcia E, Defrance T, et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci USA. 1992;89(5):1890–3. doi: 10.1073/pnas.89.5.1890.
  30. Taga K, Tosato G. IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol. 1992;148(4):1143–8.
  31. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev. 2008;226(1):205–18. doi: 10.1111/j.1600-065X.2008.00706.x.
  32. Kingo K, Ratsep R, Koks S, et al. Influence of genetic polymorphisms on interleukin-10 mRNA expression and psoriasis susceptibility. J Dermatol Sci. 2005;37(2):111–3. doi: 10.1016/j.jdermsci.2004.10.002.
  33. Howell MW. Interleukin-10 Gene Polymorphisms and Cancer. Madame Curie Bioscience Database [Internet]. Landes Bioscience; 2000–2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6117/ (accessed 4.03.2021).
  34. Sabouri AH, Saito M, Lloyd AL, et al. Polymorphism in the interleukin-10 promoter affects both provirus load and the risk of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J Infect Dis. 2004;190(7):1279–85. doi: 10.1086/423942.
  35. Zhang X, Hei P, Deng L, Lin J. Interleukin-10 gene promoter polymorphism and their protein production in peritoneal fluid in patients with endometriosis. Mol Hum Reprod. 2007;13(2):135–40. doi: 10.1093/molehr/gal106.

Potential Predictors and Response Quality after Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma

II Kostroma1, ZhYu Sidorova1, NYu Semenova1, AA Zhernyakova1, RR Sabitova1, SP Svitina1, EI Stepchenkova2,3, SS Bessmeltsev1, AV Chechetkin1, SV Gritsaev1

1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

2 Saint Petersburg State University, 7/9 Universitetskaya emb., Saint Petersburg, Russian Federation, 199034

3 NI Vavilov Institute of General Genetics, Saint Petersburg branch, 7/9 Universitetskaya emb., Saint Petersburg, Russian Federation, 199034

For correspondence: Ivan Ivanovich Kostroma, MD, PhD, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel.: +7(921)784-82-82; e-mail: obex@rambler.ru

For citation: Kostroma II, Sidorova ZhYu, Semenova NYu, et al. Potential Predictors and Response Quality after Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma. Clinical oncohematology. 2021;14(3):333–9. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-333-339


ABSTRACT

Aim. To assess the rate of cases without antitumor response quality improvement after high-dose chemotherapy (HDCT) with autologous hematopoietic stem cell transplantation (auto-HSCT) in multiple myeloma (MM). To assess the rate of allelic variants of IL1B, IL6, IL10, TNF genes and the status of hematopoietic niche cells as potential predictors of auto-HSCT efficacy.

Materials & Methods. A retrospective analysis was based on the data of 84 MM patients who received 112 auto-HSCTs, including 84 first and 28 repeated courses. Response variants were estimated according to IWG criteria. Molecular profiling of IL1B, IL6, IL10, and TNF genes was performed using polymerase chain reaction (PCR) with subsequent analysis of restriction fragment length polymorphism of PCR products. To analyze the status of hematopoietic niche cells histological, immunohistochemical, and morphometric methods were applied.

Results. The first auto-HSCT yielded response quality improvement in 29 (54.7 %) out of 84 patients. The rate of complete response was significantly higher in patients who showed very good partial response before HDCT with auto-HSCT, than in patients with partial response (PR), i.e., 57.9 % and 18.2 %, respectively (р = 0.005). No differences were identified in the groups of patients with other clinical and hematological parameters. After the second auto-HSCT in 4 out of 6 patients with PR the response variant did not change. A significant decrease of MM activity was associated with IL6 (–174С) mutant allele carrier status of 81.3 % vs. 41.6 % in the group with the unchanged response variant (р = 0.05). Response quality improvement was also related to a large number of cells on the endosteum in histological specimens of bone marrow (р = 0.038).

Conclusion. The carrier status of IL6 (–174С) pathologic allele as well as the number of cells on the endosteum in histological specimens of bone marrow can be regarded as predictors of response quality improvement or lack thereof in MM patients after auto-HSCT.

Keywords: multiple myeloma, autologous hematopoietic stem cell transplantation, IL6 gene, hematopoietic niche.

Received: January 29, 2021

Accepted: May 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Legarda MA, Cejalvo MJ, de la Rubia J. Recent advances in the treatment of patients with multiple myeloma. Cancers (Basel). 2020;12(12):3576. doi: 10.3390/cancers12123576.
  2. Gulla A, Anderson KC. Multiple myeloma: the (r)evolution of current therapy and a glance into future. 2020;105(10):2358–67. doi: 10.3324/haematol.2020.247015.
  3. Munshi NC, Avet-Loiseau H, Anderson KC, et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020;4(25):5988–99. doi: 10.1182/bloodadvances.2020002827.
  4. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]
  5. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]
  6. Attal M, Harousseau J-L, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med. 2003;349(26):2495–502. doi: 10.1056/NEJMoa032290.
  7. Cavo M, Tosi P, Zamagni E, et al. Prospective, randomized study of single compared with double autologous stem-cell transplantation for multiple myeloma: Bologna 96 clinical study. J Clin Oncol. 2007;25(17):2434–41. doi: 10.1200/JCO.2006.10.2509.
  8. Mai TR, Benner F, Bertsch U, et al. Single versus tandem high-dose melphalan followed by autologous blood stem cell transplantation in multiple myeloma: long-term results from the phase III GMMG-HD2 trial. Br J Haematol. 2016;173(5):731–41. doi: 10.1111/bjh.13994.
  9. Blocka J, Hielscher T, Goldschmidt H, Hillengass J. Response improvement rather than response status after first autologous stem cell transplantation is a significant prognostic factor for survival benefit from tandem compared with single transplantation in multiple myeloma patients. Biol Blood Marrow Transplant. 2020;26(7):1280–7. doi: 10.1016/j.bbmt.2020.03.006.
  10. Грицаев С.В., Кострома И.И., Жернякова А.А. и др. Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2019;12(3):282–8. doi: 10.21320/2500-2139-2019-12-3-282-288.
    [Gritsaev SV, Kostroma II, Zhernyakova AA, et al. Experience with the Use of Thio/Mel Conditioning Regimen Prior to Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma. Clinical oncohematology. 2019;12(3):282–8. doi: 10.21320/2500-2139-2019-12-3-282-288. (In Russ)]
  11. Кострома И.И., Жернякова А.А., Запреева И.М. и др. Опыт включения карфилзомиба в состав режима кондиционирования при выполнении аутологичной трансплантации гемопоэтических стволовых клеток больным множественной миеломой. Гематология и трансфузиология. 2020;65(1, прил. 1):155.
    [Kostroma II, Zhernyakova AA, Zapreeva IM, et al. Experience with the inclusion of carfilzomib into the conditioning regimen when performing autologous stem cell transplantation in patients with multiple myeloma. Gematologiya i transfuziologiya. 2020;65(1, Suppl 1):155. (In Russ)]
  12. Gagelmann N, Kroger N. The role of novel agents for consolidation after autologous transplantation in newly diagnosed multiple myeloma: a systematic review. Ann Hematol. 2020;100(2):405–19. doi: 10.1007/s00277-020-04316-8.
  13. Durie BGM, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73. doi: 10.1038/sj.leu.2404284.
  14. Rajkumar SV, Harousseau JL, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: Report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117(18):4691–5. doi: 10.1182/blood-2010-10-299487.
  15. Martinez-Lopez J, Blade J, Mateos MV, et al. Long-term prognostic significance of response in multiple myeloma after stem cell transplantation. Blood. 2011;118(3):529–34. doi: 10.1182/blood-2011-01-332320.
  16. Brioli A, vom Hofe F, Rucci P, et al. Melphalan 200 mg/m2 does not increase toxicity and improves survival in comparison to reduced doses of melphalan in multiple myeloma patients. Bone Marrow Transplant. 2020. Published online ahead of print. doi: 10.1038/s41409-020-01170-0.
  17. Katragadda L, McCullough LM, Dai Y, et al. Effect of melphalan 140 mg/m2 vs 200 mg/m2 on toxicities and outcomes in multiple myeloma patients undergoing single autologous stem cell transplantation-a single center experience. Clin Transplant. 2016;30(8):894–900. doi: 10.1111/ctr.12762.
  18. Ghilardi G, Pabst T, Jeker B, et al. Melphalan dose in myeloma patients ≥ 65 years of age undergoing high-dose therapy and autologous stem cell transplantation: a multicentric observational registry study. Bone Marrow Transplant. 2019;54(7):1029–37. doi: 10.1038/s41409-018-0379-y.
  19. Кострома И.И., Жернякова А.А., Запреева И.М. и др. Ретроспективный анализ выживаемости больных множественной миеломой после трансплантации аутологичных гемопоэтических стволовых клеток. Клиническая онкогематология. 2021;14(1):73–9. doi: 10.21320/2500-2139-2021-14-1-73-79.
    [Kostroma II, Zhernyakova AA, Zapreeva IM, et al. Retrospective survival analysis of multiple myeloma patients after autologous hematopoietic stem cell transplantation. Clinical oncohematology. 2021;14(1):73–9. doi: 10.21320/2500-2139-2021-14-1-73-79. (In Russ)]
  20. Bygrave C, Pawlyn C, Davies F, et al. Early relapse after high-dose melphalan autologous stem cell transplant predicts inferior survival and is associated with high disease burden and genetically high-risk disease in multiple myeloma. Br J Haematol. 2020. Published online ahead of print. doi: 10.1111/bjh.16793.
  21. Dhakal B, D’Souza A, Callander N, et al. Novel prognostic scoring system for autologous hematopoietic cell transplantation in multiple myeloma. Br J Haematol. 2020;191(3):442–52. doi: 10.1111/bjh.16987.
  22. Paiva B, van Dongen JJ, Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood. 2015;125(20):3059–68. doi: 10.1182/blood-2014-11-568907.
  23. Lee B-H, Park Y, Kim JH, et al. PD-L1 expression in bone marrow plasma cells as a biomarker to predict multiple myeloma prognosis: developing a nomogram-based prognostic model. Sci Rep. 2020;10(1):12641. doi: 10.1038/s41598-020-69616-5.
  24. Soliman AM, Lin TS, Mahakkanukrauh P, Das S. Role of microRNAs in diagnosis, prognosis, and management of multiple myeloma. Int J Mol Sci. 2020;21(20):7539. doi: 10.3390/ijms21207539.
  25. Duch CR, Figueiredo MS, Ribas C, et al. Analysis of polymorphism at site -174 G/C of interleukin-6 promoter region in multiple myeloma. Braz J Med Biol Res. 2007;40(2):265–7. doi: 10.1590/s0100-879х2007000200014.
  26. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev. 2008;226(1):205–18. doi: 10.1111/j.1600-065X.2008.00706.x.
  27. Типтева Т.А., Чумакова О.С., Бакланова Т.Н. и др. Однонуклеотидный полиморфизм С(-592)А гена интерлейкина-10 ассоциирован с аортальным стенозом. Кремлевская медицина. Клинический вестник. 2017;1:24–31.
    [Tipteva TA, Chumakova OS, Baklanova TN, et al. Single-nucleotide polymorphism С(-592)А of interleukin-10 gene is associated with aortic stenosis. Kremlevskaya meditsina. Klinicheskii vestnik. 2017;1:24–31. (In Russ)]
  28. Ругаль В.И., Бессмельцев С.С., Семенова Н.Ю. и др. Характеристика микроокружения костного мозга при множественной миеломе до и после терапии. Сибирский научный медицинский журнал. 2019;39(1):112–8. doi: 10.15372/SSMJ
    [Rugal VI, Bessmeltsev SS, Semenova NYu, et al. Characteristics of bone marrow microenvironment in multiple myeloma before and treatment. Sibirskii nauchnyi meditsinskii zhurnal. 2019;39(1):112–8. doi: 10.15372/SSстMJ20190116. (In Russ)]
  29. Ellis SL, Grassinger J, Jones A, et al. The relationship between bone, hemopoietic stem cells, and vasculature. Blood. 2011;118(6):1516–24. doi: 10.1182/blood-2010-08-303800.
  30. Покровская О.С., Менделеева Л.П., Капланская И.Б. и др. Ангиогенез в костном мозге больных множественной миеломой на различных этапах высокодозной химиотерапии. Клиническая онкогематология. 2010;3(4):347–53.
    [Pokrovskaya OS, Mendeleeva LP, Kaplanskaya IB, et al. Bone marrow angiogenesis in patients with multiple myeloma at different stages of high-dose therapy. Klinicheskaya onkogematologiya. 2010;3(4):347–53. (In Russ)]

Pharmacoeconomic Analysis of R-DA-EPOCH and R-mNHL-BFM-90 Combination Immunochemotherapy in Patients with Prognostically Unfavorable Diffuse Large B-Cell Lymphoma within Randomized Multi-Center Clinical Trial DLBCL-2015

MO Bagova1, AU Magomedova1, SK Kravchenko1, RI Yagudina2, VG Serpik2, SM Kulikov1, YuA Chabaeva1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 NA Semashko National Scientific Research Institute for Public Health, 12 bld. 1 Vorontsovo pole str., Moscow, Russian Federation, 105064

For correspondence: Madina Olegovna Bagova, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(938)913-43-83; e-mail: mbagova89@mail.ru

For citation: Bagova MO, Magomedova AU, Kravchenko SK, et al. Pharmacoeconomic Analysis of R-DA-EPOCH and R-mNHL-BFM-90 Combination Immunochemotherapy in Patients with Prognostically Unfavorable Diffuse Large B-Cell Lymphoma within Randomized Multi-Center Clinical Trial DLBCL-2015. Clinical oncohematology. 2021;14(3):321–32. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-321-332


ABSTRACT

Aim. Pharmacoeconomic analysis of R-DA-EPOCH and R-mNHL-BFM-90 combination immunochemotherapy in patients with prognostically unfavorable diffuse large B-cell lymphoma within randomized multi-center clinical trial DLBCL-2015.

Materials & Methods. The pharmacoeconomic analysis conducted between September 2018 and February 2020 was based on the treatment data of 22 patients enrolled in the DLBCL-2015 randomized multi-center clinical trial. This paper deals with the estimation of treatment outcomes in only one center, i.e., the National Research Center for Hematology. The R-DA-EPOCH induction therapy was administered to 14 out of 22 patients, 8 patients received the R-mNHL-BFM-90 block treatment. Within the R-DA-EPOCH group the second-line therapy was administered subsequently to 5 (36 %) out of 14 patients with partial remission or disease progression. The R-mNHL-BFM-90 treatment resulted in no need to assign second-line regimens. At the first stage, the efficacy of the compared induction therapy regimens was assessed. The next stage of the pharmacoeconomic study sought to analyze only the direct medical costs associated with the whole chemotherapy process. Further, the cost-effectiveness analysis was carried out, which allowed to estimate the financial resources necessary to achieve 1 case of complete remission (CR). A pharmacoeconomic decision-tree model was developed.

Results. CR was achieved in all 8 patients (100 %) who received the R-mNHL-BFM-90 block treatment. In the R-DA-EPOCH group CR was achieved only in 9 (64 %) out of 14 patients. The total mean cost of achieving 1 CR case per patient at all stages of diagnosis and chemotherapy with account for bed turnover (induction, second-line therapy, total supportive care) using R-mNHL-BFM-90 was 1,640,757 rubles, whereas in the R-DA-EPOCH group it was 1,469,878 rubles per patient. However, cumulative treatment costs of R-DA-EPOCH including chemotherapy of the second and further lines and supportive care were 2,896,519 rubles which exceeded those in the R-mNHL-BFM-90 group. Due to its higher efficacy the R-mNHL-BFM-90 immunochemotherapy precludes additional costs associated with both chemotherapy of the second and further lines and supportive care.

Conclusion. R-mNHL-BFM-90 as intensive induction block immunochemotherapy for DLBCL patients with poor prognosis is more effective than R-DA-EPOCH and allows to considerably reduce cumulative costs. It is possible due to complete preclusion of the costs of second-line chemotherapy and supportive care including blood component transfusions.

Keywords: diffuse large B-cell lymphoma, pharmacoeconomic analysis, cost-effectiveness analysis.

Received: March 26, 2021

Accepted: June 13, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Gascoyne RD, Campo E, Jaffe ES, et al. High-grade B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017. pp. 291–7.
  2. Магомедова А.У., Кравченко С.К., Кременецкая А.М. и др. Эффективность курса СНОР-21 в терапии диффузной В-крупноклеточной лимфосаркомы. Терапевтический архив. 2005;77(7):58–61.
    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. The efficacy of CHOP-21 in the treatment of diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2005;77(7):58–61. (In Russ)]
  3. Wilson WH, Dunleavy K, Pittaluga S, et al. Phase II study of dose-adjusted EPOCH-rituximab in untreated diffuse large B-cell lymphoma with analysis of germinal center and post-germinal center biomarkers. J Clin Oncol. 2008;26(16):2717–24. doi: 10.1200/jco.2007.13.1391.
  4. Bartlett NL, Wilson WH, Jung SH, et al. Dose-adjusted EPOCH-R compared with R-CHOP as frontline therapy for diffuse large B-cell lymphoma: clinical outcomes of the phase III intergroup trial alliance/CALGB 50303. J Clin Oncol. 2019;37(21):1790–9. doi: 10.1200/jco.18.01994.
  5. Purroy N, Bergua J, Gallur L, et al. Long-term follow-up of dose-adjusted EPOCH plus rituximab (DA-EPOCH-R) in untreated patients with poor prognosis large B-cell lymphoma. A phase II study conducted by the Spanish PETHEMA Group. Br J Haematol. 2014;169(2):188–98. doi: 10.1111/bjh.13273.
  6. Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–91. doi: 10.1016/s1470-2045(06)70664-7.
  7. Qualls D, Abramson JS. Advances in risk assessment and prophylaxis for central nervous system relapse in diffuse large B-cell lymphoma. Haematol. 2019;104(1):25–34. doi: 3324/haematol.2018.195834.
  8. Gleeson M, Counsell N, Cunningham D, et al. Central nervous system relapse of diffuse large B-cell lymphoma in the rituximab era: results of the UK NCRI R-CHOP-14 versus 21 trial. J Ann Oncol. 2017;28(10):2511–6. doi: 10.1093/annonc/mdx353.
  9. Boehme V, Schmitz N, Zeynalova S, et al. CNS events in elderly patients with aggressive lymphoma treated with modern chemotherapy (CHOP-14) with or without rituximab: an analysis of patients treated in the RICOVER-60 trial of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Blood. 2009;113(17):3896–902. doi: 10.1182/blood-2008-10-182253.
  10. Cunningham D, Hawkes EA, Jack A, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet. 2013;381(9880):1817–26. doi: 10.1016/s0140-6736(13)60313-x.
  11. Gisselbrecht C, Glass B, Mounier N, et al. R-ICE versus R-DHAP in relapsed patients with CD20 diffuse large B-cell lymphoma (DLBCL) followed by autologous stem cell transplantation: CORAL study. J Clin Oncol. 2009;27(15):8509. doi: 10.1200/jco.2009.27.15_suppl.8509.
  12. Магомедова А.У., Кравченко С.К., Кременецкая А.М. и др. Девятилетний опыт лечения больных диффузной В-крупноклеточной лимфосаркомой. Терапевтический архив. 2011;83(7):5–10.
    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. Nine-year experience in the treatment of patients with diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2011;83(7):5–10. (In Russ)]
  13. Дорохина Е.И. Отдаленные результаты и токсичность высокодозной химиотерапии взрослых больных диффузной В-крупноклеточной лимфомой по модифицированной программе NHL-BFM-90: Дис.… канд. мед. наук. М., 2016. 90 c.
    [Dorokhina EI. Otdalennye rezul’taty i toksichnost’ vysokodoznoi khimioterapii vzroslykh bol’nykh diffuznoi В-krupnokletochnoi limfomoi po modifitsirovannoi programme NHL-BFM-90. (Long-term results and toxicity of high-dose chemotherapy in adult patients with diffuse large B-cell lymphoma according to the modified NHL-BFM-90 program.) [dissertation] Moscow; 2016. 90 p. (In Russ)]
  14. Крысанов И.С. Применение фармакоэкономических и фармакоэпидемиологических подходов к фармакотерапии неходжкинских лимфом. Биомедицина. 2006;4:40.
    [Krysanov IS. Pharmacoeconomic and pharmacoepidemiological approaches to pharmacotherapy of non-Hodgkin’s lymphomas. 2006;4:40. (In Russ)]
  15. Ягудина Р.И., Серпик В.Г., Сороковиков И.В. Методологические основы анализа «затраты-эффективность». Фармакоэкономика: теория и практика. 2014;2(2):23–7.
    [Yagudina RI, Serpik VG, Sorokovikov IV. Methodological foundations of cost-effectiveness analysis. Farmakoekonomika: teoriya i praktika. 2014;2(2):23–7. (In Russ)]
  16. Ягудина Р.И., Серпик В.Г. Методология анализа затрат. Фармакоэкономика: теория и практика. 2016;4(2):3–14.
    [Yagudina RI, Serpik VG. Cost analysis methodology. Farmakoekonomika: teoriya i praktika. 2016;4(2):3–14. (In Russ)]
  17. Крысанов И.С., Ягудина Р.И., Моисеева Т.Н. Оценка стоимости лечения заболевания (на примере диффузной В-крупноклеточной лимфосаркомы). Вестник Росздравнадзора. 2008;4:34–9.
    [Krysanov IS, Yagudina RI, Moiseeva TN. Cost of disease treatment: a case of diffuse large B-cell lymphosarcoma. Vestnik Roszdravnadzora. 2008;4:34–9. (In Russ)]
  18. Магомедова А.У., Мисюрина А.Е., Ковригина А.М. Протокол лечения взрослых больных диффузной В-клеточной крупноклеточной лимфомой. В кн.: Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2018. Т. 2. С. 557–82.
    [Magomedova AU, Misyurina AE, Kovrigina AM. Treatment protocol for adult patients with diffuse large B-cell lymphoma. In: Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika Publ.; 2018. 2. pр. 557–582. (In Russ)]
  19. Blay B, Gomez F, Sebban C, et al. The International Prognostic Index correlates to survival in patients with aggressive lymphoma in relapse: analysis of the PARMA trial. Parma Group. Blood. 1998;92(10):3562–8.
  20. Chau I, Webb A, Catovsky D, et al. An oxaliplatin-based chemotherapy in patients with relapsed or refractory intermediate and high-grade non-Hodgkin’s lymphoma. Br J Haematol. 2001;115(4):786–92. doi: 10.1046/j.1365-2141.2001.03181.x.
  21. Cortelazzo S, Rambaldi A, Rossi A, et al. Intensification of salvage treatment with high-dose sequential chemotherapy improves the outcome of patients with refractory or relapsed aggressive non-Hodgkin’s lymphoma. Br J Haematol. 2001;114(2):333–41. doi: 1046/j.1365-2141.2001.02955.x.
  22. Vitolo U, Trneny M, Belada D, et al. Obinutuzumab or rituximab plus CHOP in patients with previously untreated diffuse large B-cell lymphoma: final results from an open-label, randomized phase 3 study (GOYA). Blood. 2016;128(22):470. doi: 10.1182/blood.v128.22.470.470.
  23. Chiappella A, Martelli M, Angelucci E, et al. Rituximab-dose-dense chemotherapy with or without high-dose chemotherapy plus autologous stem-cell transplantation in high-risk diffuse large B-cell lymphoma (DLCL04): final results of a multicentre, open-label, randomised, controlled, phase 3 study. Lancet Oncol. 2017;18(8):1076–88. doi: 10.1016/S1470-2045(17)30444-8.
  24. Stiff PJ, Unger JM, Cook JR, et al. Autologous transplantation as consolidation for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 2013;369(18):1681–90. doi: 10.1056/nejmoa1301077.
  25. Wang HI, Smith A, Aas E, et al. Treatment cost and life expectancy of diffuse large B-cell lymphoma (DLBCL): a discrete event simulation model on a UK population-based observational cohort. Eur J Health Econ. 2017;18(2):255–67. doi: 10.1007/s10198-016-0775-4.
  26. Lee RC, Zou D, Demetrick DJ, et al. Costs Associated with Diffuse Large B-Cell Lymphoma Patient Treatment in a Canadian Integrated Cancer Care Center. Value Health. 2008;11(2):221–30. doi: 10.1111/j.1524-4733.2007.00227.x.