Safety and Efficacy of BeEAC as a Conditioning Regimen Prior to Autologous Hematopoietic Stem Cell Transplantation in Relapsed/Refractory Lymphomas

VO Sarzhevskii, AA Samoilova, VYa Melnichenko, YuN Dubinina, NE Mochkin, DS Kolesnikova, DA Fedorenko, EG Smirnova, AE Bannikova, VS Bogatyrev

NI Pirogov Russian National Medical Center of Surgery, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

For correspondence: Anastasiya Aleksandrovna Samoilova, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203; Tel.: +7(495)603-72-17; e-mail: samoylove03@gmail.com

For citation: Sarzhevskii VO, Samoilova AA, Melnichenko VYa, et al. Safety and Efficacy of BeEAC as a Conditioning Regimen Prior to Autologous Hematopoietic Stem Cell Transplantation in Relapsed/Refractory Lymphomas. Clinical oncohematology. 2020;13(2):185–92 (In Russ).

DOI: 10.21320/2500-2139-2020-13-2-185-192


ABSTRACT

Aim. To assess the safety and efficacy of BeEAC as a conditioning regimen prior to autologous hematopoietic stem cell transplantation (auto-HSCT) in relapsed and primary resistant lymphomas (ClinicalTrials.gov NCT03315520).

Materials & Methods. The trial included 113 patients with Hodgkin’s (HL) and non-Hodgkin’s lymphomas (NHL). The patients were included into the protocol during the period from February 2016 to June 2018. Median follow-up was 26 months. Among the patients there were 58 men and 55 women. Median age was 33 years (range 18–65 years). In 72 patients HL and in 41 patients NHL (in 15 diffuse large B-cell lymphoma, in 8 primary mediastinal (thymic) large B-cell lymphoma, in 10 mantle cell lymphoma, in 4 peripheral T-cell lymphoma unspecified, and in 4 patients follicular lymphoma) were diagnosed. BeEAC conditioning regimen consisted of administering 160–200 mg/m2 bendamustine in increasing doses on Day –6 and Day –5 combined with fixed doses of 200 mg/m2 cytarabine every 12 hours, 200 mg/m2 etoposide, and 140 mg/kg cyclophosphamide from Day –4 to Day –1.

Results. In phase 1, when bendamustine dose was increased from 160 mg/m2 to 200 mg/m2, no dose-limiting toxicity was observed. Afterwards patients received 200 mg/m2 of bendamustine. The assessment of tumor status in 2–3 months after auto-HSCT showed that complete remission was achieved in 62.9 % (n = 71) of patients, partial remission in 16.8 % (n = 19) of patients, stabilization in 0.9 % (n = 1) of patients and progression in 15 % (n = 17) of patients. In 5 patients the treatment effect was not assessed. Early post-transplant mortality (up to Day +30) was 3.6 % (n = 4) and overall mortality within the follow-up period (median 26 months) was 23 % (n = 26). Overall survival in the whole cohort of patients for 12, 18, 24, and 36 months was 88 %, 82 %, 78 %, and 64 %, respectively, and progression-free survival was 61 %, 57 %, 54 %, and 40 %, respectively.

Conclusion. BeEAC proved to be relatively safe when applied as a conditioning regimen prior to auto-HSCT in HL and NHL patients. Further data need to be collected to finally assess the efficacy of this regimen and to conduct a retrospective comparative analysis of it and other conditioning regimens in lymphomas.

Keywords: high-dose chemotherapy, autologous hematopoietic stem cell transplantation, conditioning regimens, bendamustine, toxicity.

Received: September 6, 2019

Accepted: March 3, 2020

Read in PDF


REFERENCES

  1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2019. CA: A Cancer J Clin. 2019;69(1):7–34. doi: 10.3322/caac.21551.

  2. Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med. 1995;333(23):1540–5. doi: 10.1056/nejm199512073332305.

  3. Damon LE, Johnson JL, Niedzwiecki D, et al. Immunochemotherapy and autologous stem-cell transplantation for untreated patients with mantle-cell lymphoma: CALGB 59909. J Clin Oncol. 2009;27(36):6101–8. doi: 10.1200/JCO.2009.22.2554.

  4. Schouten HC, Qian W, Kvaloy S, et al. High-dose therapy improves progression-free survival and survival in relapsed follicular non-Hodgkin’s lymphoma: results from the randomized European CUP trial. J Clin Oncol. 2003;21(21):3918–27. doi: 10.1200/JCO.2003.10.023.

  5. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018. 155 с.

    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 155 p. (In Russ)]

  6. Geisler CH, Kolstad A, Laurell A, et al. Nordic MCL2 trial update: six-year follow-up after intensive immunochemotherapy for untreated mantle cell lymphoma followed by BEAM or BEAC + autologous stem cell support: still very long survival but late relapses do occur. Br J Haemotol. 2012;158(3):355–62. doi: 10.1111/j.1365-2141.2012.09174.x.

  7. Carreras E, Dufour C, Mohty M, Kroger N. (eds.) The EBMT Handbook. Hematopoietic Stem Cell Transplantation and Cellular Therapies. Springer International Publishing; 2019. 702 р. doi: 10.1007/978-3-030-02278-5.

  8. Visani G, Malerba L, Stefani PM, et al. BeEAM (bendamustine, etoposide, cytarabine, melphalan) before autologous stem cell transplantation is safe and effective for resistant/relapsed lymphoma patients. Blood. 2011;118(12):3419–25. doi: 10.1182/blood-2011-04-351924.

  9. Chantepie SP, Garciaz S, Tchernonog E, et al. Bendamustine-based conditioning prior to autologous stem cell transplantation (ASCT): Results of a French multicenter study of 474 patients from LYmphoma Study Association (LYSA) centers. Am J Hematol. 2018;93(6):729–35. doi: 10.1002/ajh.25077.

  10. Carella AM, Santini G, Giordano D, et al. High-Dose Chemotherapy and Non-Frozen Autologous Bone Marrow transplantation in Relapsed Advanced Lymphomas or Those Resistant to Convential Chemotherapy. Cancer. 1984;54(12):2836–9. doi: 10.1002/1097-0142(19841215)54:12<2836::aid-cncr2820541203>3.0.co;2-r.

  11. Caballero MD, Rubio V, Rifon J, et al. BEAM chemotherapy followed by autologous stem cell support in lymphoma patients: analysis of efficacy, toxicity and prognostic factors. Bone Marrow Transplant. 1997;20(6):451–8. doi: 10.1038/sj.bmt.1700913.

  12. Jo JC, Kang BW, Jang G, et al. BEAC or BEAM high-dose chemotherapy followed by autologous stem cell transplantation in non-Hodgkin’s lymphoma patients: comparative analysis of efficacy and toxicity. Ann Hematol. 2008;87(1):43–8. doi: 10.1007/s00277-007-0360-0.

  13. Shi Y, Liu P, Zhou S, et al. Comparison of CBV, BEAM and BEAC high‐dose chemotherapy followed by autologous hematopoietic stem cell transplantation in non‐Hodgkin lymphoma: Efficacy and toxicity. Asia-Pacific J Clin Oncol. 2017;13(5):e423–e429. doi: 10.1111/ajco.12610.

  14. Sureda A, Constans M, Iriondo A, et al. Prognostic factors affecting long- term outcome after stem cell transplantation in Hodgkin’s lymphoma autografted after a first relapse. Ann Oncol. 2005;16(4):625–33. doi: 10.1093/annonc/mdi119.

  15. Rauf MS, Maghfoor I, Elhassan TAM, Akhtar S. High-dose chemotherapy and auto-SCT for relapsed and refractory Hodgkin’s lymphoma patients refractory to first-line salvage chemotherapy but responsive to second-line salvage chemotherapy. Med Oncol. 2015;32(1):388. doi: 10.1007/s12032-014-0388-7.

  16. Vose JM, Rizzo DJ, Tao-Wu J, et al. Autologus transplantation for diffuse aggressive non-Hodgkin lymphoma in first relapse or second remission. Biol Blood Marrow Transplant. 2004;10(2):116–27. doi: 10.1016/j.bbmt.2003.09.015.

  17. Vose JM, Zhang MJ, Rowlings PA, et al. Autologous Transplantation for Diffuse Aggressive Non-Hodgkin’s Lymphoma in Patients Never Achieving Remission: A Report from the Autologous Blood and Marrow Transplant Registry. J Clin Oncol. 2001;19(2):406–13. doi: 10.1200/jco.2001.19.2.406.

Development and Validation Results of the Russian MPN10 Form for Symptom Assessment in Patients with Myeloproliferative Neoplasms Compliant with International Recommendations

TI Ionova1,2, OYu Vinogradova3,4,5, EV Efremova6, AE Kersilova6, TP Nikitina1,2, MM Pankrashkina3, NM Porfir’eva2, A-PA Poshivai6, MS Fominykh6,7, DI Shikhbabaeva3, VA Shuvaev6

1 NI Pirogov Clinic for High Medical Technology, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg, Russian Federation, 199034

2 Multinational Research Center for Quality of Life, 1 Artilleriiskaya str., Saint Petersburg, Russian Federation, 191014

3 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

4 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

5 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

6 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

7 Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg, Russian Federation, 199034

For correspondence: Tat’yana Pavlovna Nikitina, MD, PhD, 1 Artilleriiskaya str., Saint Petersburg, Russian Federation, 191014; Tel.: +7(962)710-17-12; e-mail: qolife@mail.ru

For citation: Ionova TI, Vinogradova OYu, Efremova EV, et al. Development and Validation Results of the Russian MPN10 Form for Symptom Assessment in Patients with Myeloproliferative Neoplasms Compliant with International Recommendations. Clinical oncohematology. 2020;13(2):176–84 (In Russ).

DOI: 10.21320/2500-2139-2020-13-2-176-184


ABSTRACT

Aim. To develop a Russian version of MPN10 form for patients with myeloproliferative neoplasms (MPN) compliant with international recommendations.

Materials & Methods. The trial included 57 patients treated in 2019 at the Moscow Municipal Center for Hematology of the SP Botkin Clinical Hospital (n = 30) and the Russian Research Institute of Hematology and Transfusiology (n = 27). Among them there were 36 myelofibrosis, 9 polycythemia vera, and 12 essential thrombocythemia patients. Mean age of the patients was 54.6 years (standard deviation 15.9 years; age range 20–79 years). The male/female ratio was 23/34 (40.4 %/59.6 %). Underlying disease duration was from 1 month to 33 years (mean duration 7 years; standard deviation 8.6 years).

Results. A stable structure and a high inner consistency of the form as well as its reproducibility as a tool were demonstrated. The trial also confirmed its convergent and discriminant validity and satisfactory sensitivity to changes in a patient’s status.

Conclusion. The Russian MPN10 version can be used for symptom assessment in MPN patients in clinical practice and scientific research.

Keywords: symptom assessment form, myeloproliferative neoplasms, psychometric properties of the form, validation.

Received: January 15, 2020

Accepted: March 29, 2020

Read in PDF


REFERENCES

  1. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.). Гематология и трансфузиология. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001.

    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National сlinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2018). Russian Journal of Hematology and Transfusiology. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001. (In Russ)]

  2. Arber DA, Orazi А, Hasserjian R., et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  3. Меликян А.Л., Суборцева И.Н. Материалы 57-го конгресса Американского гематологического общества (декабрь 2015 г., Орландо). Клиническая онкогематология. 2016;9(2):218–28.

    [Melikyan AL, Subortseva IN. Materials of the 57th Annual Meeting of the American Society of Hematology (December, 2015; Orlando). Clinical oncohematology. 2016;9(2):218–28. (In Russ)]

  4. Passamonti F, Merli M, Caramazza D, et al. Clinical Predictors of Outcome in MPN. Hematol Oncol Clin N Am. 2012;26(5):1101–16. doi: 10.1016/j.hoc.2012.07.009.

  5. Reilly JT, McMullin MF, Beer PA, et al. Guideline for the diagnosis and management of myelofibrosis. Br J Haematol. 2012;158(4):453–71. doi: 10.1111/j.1365-2141.2012.09179.x.

  6. Patient-reported outcomes in hematology. EHA SWG “Quality of life and Symptoms”. Forum Service Editore. Genoa; 2012. 206 p.

  7. Scherber R, Dueck AC, Johansson P, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood. 2011;118(2):401–8. doi: 10.1182/blood-2011-01-328955.

  8. Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative Neoplasm (MPN) Symptom Assessment Form Total Symptom Score: Prospective International Assessment of an Abbreviated Symptom Burden Scoring System Among Patients With MPNs. J Сlin Oncol. 2012;30(33):4098–103. doi: 10.1200/jco.2012.42.3863.

  9. NCCN Clinical Practice Guidelines in Oncology. Myeloproliferative Neoplasms. Version 2.2019 — October 29, 2018. Available from: http://www.gaca.org.cn/uploadfolder/files/201903/ny27_930697.pdf (accessed 28.03.2020).

  10. Barosi G, Mesa R, Finazzi G, et al. Revised response criteria for polycythemia vera and essential thrombocythemia: an ELN and IWG-MRT consensus project. Blood. 2013;121(23):4778–81. doi: 10.1182/blood-2013-01-478891.

  11. Bullinger M, Power MJ, Aaronson NK, et al. Creating and evaluating cross-cultural instruments. In: Spilker B, ed. Quality of Life and Pharmacoeconomics in Clinical Trials. Philadelphia: Lippincott-Raven; 1996. pp. 659–68.

  12. Aaronson N, Alonso J, Burnam A, et al. Assessing health status and quality of life instruments: attributes and review. Qual Life Res. 2002;11(3):193–205.

  13. Beaton DE, Bombardier C, Guillemin F, et al. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine. 2000;25(24):3186–91. doi: 10.1097/00007632-200012150-00014.

  14. Cull A, Sprangers M, Bjordal K, et al. Translation Procedure. EORTC Monograph. Brussels; 1998. 26

  15. Ионова Т.И. Принципы языковой и культурной адаптации опросников оценки качества жизни. Вестник Межнационального центра исследования качества жизни. 2018;31–32:12–7.

    [Ionova Principles of linguistic and cultural adaptation of life quality assessment forms. Vestnik Mezhnatsional’nogo tsentra issledovaniya kachestva zhizni. 2018;31–32:12–7. (In Russ)]

  16. Ионова Т.И., Виноградова О.Ю., Ефремова Е.В. и др. Языковая и культурная адаптация русской версии инструмента для оценки симптомов у пациентов с миелопролиферативными новообразованиями — МПН10. Вестник Межнационального центра исследования качества жизни. 2019;33–34:19–30.

    [Ionova TI, Vinogradova OYu, Efremova EV, et al. Linguistic and cultural adaptation of the Russian version of the instrument for symptom assessment in patients with myeloproliferative neoplasms — MPN10. Vestnik Mezhnatsional’nogo tsentra issledovaniya kachestva zhizni. 2019;33–34:19–30. (In Russ)]

  17. Guidelines for Best Practice in Cross-Cultural Surveys. Available from: https://ccsg.isr.umich.edu/images/PDFs/CCSG_Full_Guidelines_2016_Version.pdf (accessed 28.03.2020).

Prognostic Value of Next-Generation Sequencing Data in Patients with Myelodysplastic Syndrome

NYu Tsvetkov1, EV Morozova1, IM Barkhatov1, IS Moiseev1, MV Barabanshchikova1, AV Tishkov2, DS Bug2, NV Petukhova2, EA Izmailova1, SN Bondarenko1, BV Afanasyev1

1 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

2 Research Center for Bioinformatics, Academic Institute of Biomedicine, IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Nikolai Yur’evich Tsvetkov, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(911)233-48-77, +7(812)338-62-27; e-mail: nikolai.tcvetkov@yandex.ru

For citation: Tsvetkov NYu, Morozova EV, Barkhatov IM, et al. Prognostic Value of Next-Generation Sequencing Data in Patients with Myelodysplastic Syndrome. Clinical oncohematology. 2020;13(2):170–5 (In Russ).

DOI: 10.21320/2500-2139-2020-13-2-170-175


ABSTRACT

Aim. To assess the prognostic value of the mutation of DNA methylation genes, SF3B1, and TP53 in patients with myelodysplastic syndrome (MDS).

Materials & Methods. Out of 35 MDS patients included into the trial 2 had multilineage dysplasia, 13 with excess blasts-I, 19 with excess blasts-II, and 1 had 5q-syndrome (criteria WHO 2016). In 30 patients primary MDS was identified, in 5 patients it was detected after prior chemo- or radiotherapy. 25 patients received allogeneic hematopoietic stem cell transplantation (allo-HSCT). According to IPSS-R there were 1 low-risk, 5 intermediate risk, 17 high-risk, and 12 very high-risk patients. Hypomethylating agents were administered to 28 patients. Median age of patients was 49 years (range 18–80 years). Next-generation sequencing was applied for identifying somatic mutations in DNA methylation genes (TET2, IDH1/2, ASXL1, and DNMT3A) as well as in SF3B1, TP53, IDH, and RUNX1. Time to progression (TTP) was defined as the time from the initial diagnosis to the date of acute leukemia diagnosis. Allo-HSCT- or antitumor therapy-associated death was considered as competing risk.

Results. Methylation gene analysis showed no mutation in 37 % of patients, in 40 % mutation was detected only in one of the genes, in 23 % mutation was identified in ≥ 2 genes. SF3B1 mutations were reported in 23 % and TP53 in 11 % of patients. Median follow-up was 25 months (range 5–116 months). Univariate analysis showed no considerable differences in overall survival depending on mutation status. Median TTP in the group with allo-HSCT was not achieved, in the group without allo-HSCT it was 6 months (= 0.0001). In patients with no SF3B1 mutation median TTP was 35 months, in patients with this mutation it was not achieved (= 0.043). With ≥ 2 mutations in methylation genes median TTP was 12 months, in other cases it was not achieved (= 0.024). In cases of TP53 mutation median TTP was 6 months, in cases without this mutation it was 43 months (= 0.023). Multivariate analysis confirmed unfavorable prognostic value of TP53 mutation or ≥ 2 mutations in methylation genes in terms of TTP regardless of the drug treatment or allo-HSCT performed (hazard ratio 7.1; 95% confidence interval 2.6–19.6; = 0.0001).

Conclusion. The analysis of molecular markers yields additional data concerning the MDS prognosis. Further research is required to determine the prognostic value of molecular markers in clinical practice which will enable to individualize approaches to MDS treatment.

Keywords: myelodysplastic syndrome, molecular markers, mutations, next-generation sequencing, prognosis.

Received: December 27, 2019

Accepted: March 25, 2020

Read in PDF


REFERENCES

  1. Ma X. Epidemiology of Myelodysplastic Syndromes. Am J Med. 2012;125(7):S2–S5. doi: 10.1016/j.amjmed.2012.04.014.

  2. Greenberg P, Cox C, LeBeau MM, et al. International Scoring System for Evaluating Prognosis in Myelodysplastic Syndromes. 1997;89(6):2079–88. doi: 10.1182/blood.v89.6.2079.

  3. Alessandrino EP, Della Porta MG, Bacigalupo A, et al. WHO classification and WPSS predict posttransplantation outcome in patients with myelodysplastic syndrome: a study from the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Blood. 2008;112(3):895–902. doi: 10.1182/blood-2008-03-143735.

  4. Greenberg PL, Tuechler H, Schanz J, et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood. 2012;120(12):2454–65. doi: 10.1182/blood-2012-03-420489.

  5. Montalban-Bravo G, Garcia-Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and management. Am J Hematol. 2018;93(1):129–47. doi: 10.1002/ajh.24930.

  6. Bejar R, Stevenson KE, Caughey B, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32(25):2691–8. doi: 10.1200/jco.2013.52.3381.

  7. Bains A, Luthra R, Medeiros LJ, et al. FLT3 and NPM1 mutations in myelodysplastic syndromes: Frequency and potential value for predicting progression to acute myeloid leukemia. Am J Clin Pathol. 2011;135(1):62–9. doi: 10.1309/ajcpei9xu8pybcio.

  8. Della Porta MG, Galli A, Bacigalupo A, et al. Clinical Effects of Driver Somatic Mutations on the Outcomes of Patients With Myelodysplastic Syndromes Treated With Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol. 2016;34(30):3627–37. doi: 10.1200/jco.2016.67.3616.

  9. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  10. Bejar R. CHIP, ICUS, CCUS and other four-letter words. 2017;31(9):1869–71. doi: 10.1038/leu.2017.181.

  11. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87. doi: 10.1056/nejmoa1409405.

  12. Young AL, Tong RS, Birmann BM, et al. Clonal hematopoiesis and risk of acute myeloid leukemia. 2019;104(12):2410–7. doi: 10.3324/haematol.2018.215269.

  13. Figueroa ME, Skrabanek L, Li Y, et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. 2009;114(16):3448–58. doi: 10.1182/blood-2009-01-200519.

  14. Reilly B, Tanaka TN, Diep D, et al. DNA methylation identifies genetically and prognostically distinct subtypes of myelodysplastic syndromes. Blood Adv. 2019;3(19):2845–58. doi: 10.1182/bloodadvances.2019000192.

  15. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40. doi: 10.1200/jco.2002.04.117.

  16. Kantarjian H, Issa J-PJ, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. 2006;106(8):1794–803. doi: 10.1002/cncr.21792.

  17. Stahl M, Zeidan AM. Lenalidomide use in myelodysplastic syndromes: Insights into the biologic mechanisms and clinical applications. 2017;123(10):1703–13. doi: 10.1002/cncr.30585.

  18. Duong VH, Lin K, Reljic T, et al. Poor outcome of patients with myelodysplastic syndrome after azacitidine treatment failure. Clin Lymphoma Myel Leuk. 2013;13(6):711–5. doi: 10.1016/j.clml.2013.07.007.

  19. Prebet T, Cluzeau T, Park S, et al. Outcome of patients treated for myelodysplastic syndromes with 5q deletion after failure of lenalidomide therapy. 2017;8(23):81926–35. doi: 10.18632/oncotarget.15200.

  20. Tefferi A, Guglielmelli P, Lasho TL, et al. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J Clin Oncol. 2018;36(17):1769–70. doi: 10.1200/jco.2018.78.9867.

  21. Haase D, Stevenson KE, Neuberg D, et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. 2019;33(7):1747–58. doi: 10.1038/s41375-018-0351-2.

  22. Montalban-Bravo G, Takahashi K, Patel K, et al. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. 2018;9(11):9714–27. doi: 10.18632/oncotarget.23882.

  23. van Gelder M, de Wreede LC, Schetelig J, et al. Monosomal karyotype predicts poor survival after allogeneic stem cell transplantation in chromosome 7 abnormal myelodysplastic syndrome and secondary acute myeloid leukemia. 2013;27(4):879–88. doi: 10.1038/leu.2012.297.

  24. de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. 2017;129(13):1753–62. doi: 10.1182/blood-2016-06-724500.

  25. Itzykson R, Kosmider O, Cluzeau T, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. 2011;25(7):1147–52. doi: 10.1038/leu.2011.71.

  26. Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med. 2016;375(21):2023–36. doi: 10.1056/nejmoa1605949.

Diagnosis and Treatment of Clonal Myeloproliferative Neoplasms with Eosinophilia

IS Nemchenko, NN Tsyba, AG Turkina, EYu Chelysheva, OA Shukhov, AM Kovrigina, TN Obukhova

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Irina Semenovna Nemchenko, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: isn1965@mail.ru

For citation: Nemchenko IS, Tsyba NN, Turkina AG, et al. Diagnosis and Treatment of Clonal Myeloproliferative Neoplasms with Eosinophilia. Clinical oncohematology. 2020;13(2):161–9 (In Russ).

DOI: 10.21320/2500-2139-2020-13-2-161-169


ABSTRACT

Aim. Based on our own materials to characterize the clinical manifestations of hypereosinophilic states distinguishing between reactive eosinophilia (RE), clonal myeloproliferative neoplasms with eosinophilia (MPN-eo), and myeloproliferative variant of hypereosinophilic syndrome (MP-HES); to evaluate treatment results.

Materials & Methods. The trial included 188 patients with primary HES (132 men and 56 women, aged 19–72 years) having been followed-up at the National Research Center for Hematology since 2001. The main entry criteria were blood eosinophilia ≥ 1.5 × 109/L and clinical symptoms resulting sometimes from hypereosinophilia. All patients received complete physical examination, immunomorphological, standard cytogenetic, and molecular genetic testing. Treatment was provided to 73 patients (63 men and 10 women) including those with MPN-eo PDGFRA+ (n = 39), PDGFRB+ (n = 2), FGFR1+ (n = 1), chronic eosinophilic leukemia not otherwise specified (n = 8), systemic mastocytosis (n = 1), and MP-HES (n = 22). Complete hematological response (CHR) was the criterion for treatment efficacy. In the MPN-eo PDGFRA+ and PDGFRB+ groups molecular response (MR) rate was also estimated in cases of imatinib treatment. MR was considered as no expression of the FIP1L1-PDGFRA and ETV6-PDGFRB transcripts in RT-PCR.

Results. The trial yielded the cause of eosinophilia in 117 (62.2 %) out of 188 patients. RE was diagnosed in 60 (32 %) out of 117 patients, various types of clonal MPNs were reported in 57 (30 %) patients. In 71 (38 %) out of 188 patients HES was still present at the first trial stages. Later within this group MP-HES was identified in 22 (30.9 %) out of 71 patients. Among imatinib recipients CHR was achieved in 37 (90 %) out of 41 patients within 1–3 months: in 36 patients with MPN-eo FIP1L1-PDGFRA+ and in 1 patient with MPN-eo ETV6-PDGFRB+. MR was achieved in 88 % of cases. In the absence of molecular markers characteristic of MPN-eo CHR was achieved in 26 % of cases. Among the recipients of treatments other than imatinib nobody achieved CHR.

Conclusion. The diagnosis approach in patients with HES should be complex and individualized. Development and enhancement of molecular genetic diagnostic techniques are regarded as ones of the highest priority areas in modern hematology. The use of imatinib mesylate in MPN-eo therapy commonly results in long-term hematological and molecular remissions. On achieving CHR to imatinib treatment of patients without molecular markers characteristic of MPN-eo early use of this drug (or other tyrosine kinase inhibitors) can be recommended in acute forms of HES.

Keywords: eosinophilia, hypereosinophilic syndrome, myeloproliferative neoplasm, PDGFRA, PDGFRВ, FGFR1, imatinib.

Received: November 15, 2019

Accepted: February 28, 2020

Read in PDF


REFERENCES

  1. Hardy WR, Anderson RE. The hypereosinophilic syndromes. Ann Intern Med. 1968;68(6):1220–9. doi: 10.7326/0003-4819-68-6-1220.

  2. Chusid MJ, Dale DC, West BC, Wolff SM. The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature. Medicine (Baltimore). 1975;54(1):1–27.

  3. Gotlib J, Cools J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia. 2008;22(11):1999–2010. doi: 1038/leu.2008.287.

  4. Abruzzo LV, Jaffe ES, Cotelingam JD, et al. T-cell lymphoblastic lymphoma with eosinophilia associated with subsequent myeloid malignancy. Am J Surg Pathol. 1992;16(3):236–45. doi: 1097/00000478-199203000-00003.

  5. Golub TR, Barker GF, Lovett M, et al. Fusion of PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994;77(2):307–16. doi: 1016/0092-8674(94)90322-0.

  6. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–14. doi: 1056/NEJMoa025217.

  7. Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129(6):704–14. doi: 1182/blood-2016-10-695973.

  8. Capovilla M, Cayuela JM, Bilhou-Nabera C, et al. Synchronous FIP1L1-PDGFRA-positive chronic eosinophilic leukemia and T-cell lymphoblastic lymphoma: a bilineal clonal malignancy. Eur J Haematol. 2008;80(1):81–6. doi: 1111/j.1600-0609.2007.00973.x.

  9. Metzgeroth G, Walz C, Score J, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia. 2007;21(6):1183–8. doi: 1038/sj.leu.2404662.

  10. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: The 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008;22(1):14–22. doi: 10.1038/sj.leu.2404955.

  11. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  12. Bain BJ, Gilliland DG, Horny H-P., et al. Chronic eosinophilic leukaemia, not otherwise specified. In: Swerdlow S, Harris NL, Stein H, et al. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2008. рр. 51–3.

  13. Valent Mastocytosis: a paradigmatic example of a rare disease with complex biology and pathology. Am J Cancer Res. 2013;3(2):159–72.

  14. Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome. Blood. 1994;83(10):2759–79. doi: 10.1182/blood.v83.10.2759.2759.

  15. Bain BJ. Cytogenetic and molecular genetic aspects of eosinophilic leukaemias. Br J Haemat. 2003;122(2):173–9. doi: 10.1046/j.1365-2141.2003.04458.x.

  16. Klion AD, Robyn J, Akin C, et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood. 2004;103(2):473–8. doi: 10.1182/blood-2003-08-2798.

  17. Klion Recent Advances in the Diagnosis and Treatment of Hypereosinophilic Syndrome. Hematology. 2005;2005(1):209–14. doi: 10.1182/asheducation-2005.1.209.

  18. NMPN Study Group. Guidelines for the diagnosis and treatment of eosinophilia. 2nd version, September 2012. Available from: https://ru.scribd.com/document/264225330/Nordic-Eos-Guideline-Revised-Sept-2012 (accessed 9.01.2020).

  19. Andersen CL, Siersma VD, Hasselbalch HC, et al. Association of the blood eosinophil count with hematological malignancies and mortality. Am J Hematol. 2015;90(3):225–9. doi: 10.1002/ajh.23916.

  20. Crane MM, Chang CM, Kobayashi MG, et al. Incidence of myeloproliferative hypereosinophilic syndrome in the Unites States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol. 2010;126(1):179–81. doi: 10.1016/j.jaci.2010.03.035.

  21. Pardanani A, Ketterling RP, Li CY, et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res. 2006;30(8):965–70. doi: 10.1016/j.leukres.2005.11.011.

  22. Jovanovic JV, Score J, Waghorn K, et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood. 2007;109(11):4635–40. doi: 10.1182/blood-2006-10-050054.

  23. Jawhar M, Naumann N, Schwaab J, et al. Imatinib in myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRB in chronic or blast phase. Ann Hematol. 2017;96(9):1463–70. doi: 1007/s00277-017-3067-x.

  24. Zhou J, Papenhausen P, Shao H. Therapy-related acute myeloid leukemia with eosinophilia, basophilia, t(4;14)(q12;q24) and PDGFRA rearrangement: a case report and review of the literature. Int J Clin Exp Pathol. 2015;8(5):5812–20.

  25. Shomali W, Gotlib J. World Health Organization eosinophilic disorders: 2019 update on diagnosis, risk stratification, and management. Am J Hematol. 2019;94(10):149–67. doi: 1002/ajh.25617.

  26. Bain BJ. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1. Haematologica. 2010;95(5):696–8. doi: 3324/haematol.2009.021675.

  27. Legrand F, Renneville A, Macintyre E, et al. The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: new insights based on a survey of 44 cases. Medicine (Baltimore). 2013;92(5):e1–e9. doi: 10.1097/MD.0b013e3182a71eba.

  28. Ogbogu PU, Bochner BS, Butterfield JH, et al. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol. 2009;124(6):1319–25. doi: 10.1016/j.jaci.2009.09.022.

  29. Metzgeroth G, Schwaab J, Gosenca D, et al. Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFR rearrangements in blast phase. 2013;27(11):2254–6. doi: 10.1038/leu.2013.129.

  30. Baccarani M, Cilloni D, Rondoni M, et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRα-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica. 2007;92(9):1173–9. doi: 3324/haematol.11420.

  31. Helbig G, Moskwa A, Hus M, et al. Clinical characteristics of patients with chronic eosinophilic leukaemia (CEL) harbouring FIP1L1-PDGFRA fusion transcript-results of Polish multicentre study. Hematol Oncol. 2010;28(2):93–7. doi: 10.1002/hon.919.

  32. Klion AD. Recent Advances in the Diagnosis and Treatment of Hypereosinophilic Syndromes. Hematology. 2005;2005(1):209–14. doi: 10.1182/asheducation-2005.1.209.

  33. Helbig G, Moskwa A, Hus M, et al. Durable remission after treatment with very low of imatinib for FIP1L1-PDGFRα-positive chronic eosinophilic leukemia. Cancer Chemother Pharmacol. 2011;67(4):967–9. doi: 1007/s00280-011-1582-3.

  34. Pardanani A, D’Souza A, Knudson RA, et al. Long-term follow-up of FIP1L1-PDGFRA-mutated patients with eosinophilia: survival and clinical outcome. Leukemia. 2012;26(11):2439–41. doi:1038/leu.2012.162.

  35. von Bubnoff N, Sandherr M, Schlimok G, et al. Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. 2005;19(2):286–7. doi: 10.1038/sj.leu.2403600.

  36. Ohnishi H, Kandabashi K, Maeda Y, et al. Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T6741 mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol. 2006;134(5):547–9. doi: 10.1111/j.1365-2141.2006.06221.x.

  37. Lierman E, Michaux L, Beullens E, et al. FIP1L1-PDGFRα D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRα T674I eosinophilic leukemia with single agent sorafenib. 2009;23(5):845–51. doi: 10.1038/leu.2009.2.

  38. Bradeen HA, Eide CA, O’Hare T, et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. 2006;108(7):2332–8. doi: 10.1182/blood-2006-02-004580.

  39. Helbig G, Hus M, Halasz M, et al. Imatinib mesylate may induce long-term clinical response in FIP1L1-PDGFRα-negative hypereosinophilic syndrome. Med Oncol. 2012;29 (2):1073–6. doi:1007/s12032-011-9831-1.

  40. Butt NM, Lambert J, Ali S, et al. Guideline for the investigation and management of eosinophilia. Br J Haematol. 2017;176(4):553–72. doi: 10.1111/bjh.14488.

  41. Butterfield JH. Success of short-term, higher-dose imatinib mesylate to induce clinical response in FIP1L1-PDGFRα-negative hypereosinophilic syndrome. Leuk Res. 2009;33(8):1127–9. doi: 10.1016/j.leukres.2008.12.001.

  42. Klion AD, Robyn J, Maric I, et al. Relapse following discontinuation of imatinib mesylate therapy for FIP1L1/PDGFRA-positive chronic eosinophilic leukemia: implications for optimal dosing. Blood. 2007;110(10):3552–6. doi: 10.1182/blood-2007-07-100164.

Molecular Diagnosis of FLT3 Mutations in Acute Myeloid Leukemia Patients

EK Zaikova1,2, EV Belotserkovskaya1,2, DV Zaytsev1, AV Petukhov1,2, OA Fedorova2, DV Motorin1, VV Ivanov1, AYu Zaritskey1, LL Girshova1

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Institute of Citology, 4 Tikhoretskii pr-t, Saint Petersburg, Russian Federation, 194064

For correspondence: Ekaterina Vasil’evna Belotserkovskaya, PhD in Biology, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; e-mail: belotserkovskaya.ev@gmail.com

For citation: Zaikova EK, Belotserkovskaya EV, Zaytsev DV, et al. Molecular Diagnosis of FLT3 Mutations in Acute Myeloid Leukemia Patients. Clinical oncohematology. 2020;13(2):150–60 (In Russ).

DOI: 10.21320/2500-2139-2020-13-2-150-160


ABSTRACT

Background. FLT3 gene is an important prognostic molecular marker in acute myeloid leukemia (AML). However, the detection of FLT3 mutations presents a challenge.

Aim. To compare techniques used for the detection of FLT3 mutations, and to develop a test-system based on polymerase chain reaction (PCR) for quick and reliable determination of FLT3 mutation status.

Materials & Methods. Bone marrow samples obtained from AML patients were subjected to examination. To detect FLT3-ITD и FLT3-TKD mutations PCR was performed with subsequent agarose gel electrophoresis visualization. The results were verified by Sanger sequencing. The data obtained using our test-system were compared with widely applied commercial kit ‘FLT3 Mutation Assay for Gel Detection’ by Invivoscribe.

Results. To determine the FLT3 mutation status a PCR test was developed. This technique was validated on 22 bone marrow samples obtained from AML patients. FLT3-ITD mutation was detected in 4 patients, 3 patients showed FLT3-TKD mutation. In 1 patient both mutations were identified. These results fully corresponded to the molecular genetic analysis of FLT3, performed by ‘FLT3 Mutation Assay for Gel Detection’. The chosen technique was validated using Sanger sequencing data analysis.

Conclusion. The article offers the review of all existing FLT3 mutation screening techniques and describes the experience of developing the PCR test for FLT3-ITD and FLT3-TKD mutation detection. The chosen technique is affordable and easy to use compared with the others. The present study with its applied nature can provide guidance for both doctors and researchers.

Keywords: acute myeloid leukemia, FLT3-ITD and FLT3-TKD mutations.

Received: January 10, 2020

Accepted: March 27, 2020

Read in PDF


REFERENCES

  1. Kiyoi H, Naoe T, Yokota S, et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. 1997;11(9):1447–52. doi: 10.1038/sj.leu.2400756.

  2. Блау О.В. Мутации генов при острых миелоидных лейкозах. Клиническая онкогематология. 2016;9(3):245–56. doi: 10.21320/2500-2139-2016-9-3-245-256.

    [Blau OV. Genetic Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2016;9(3):245–56. doi: 10.21320/2500-2139-2016-9-3-245-256. (In Russ)]

  3. Gu T, Nardone J, Wang Y, et al. Survey of Activated FLT3 Signaling in Leukemia. PLoS ONE. 2011;6(4):e19169. doi: 10.1371/journal.pone.0019169.

  4. Deeb KK, Smonskey MT, Defedericis H-C, et al. Deletion and deletion/insertion mutations in the juxtamembrane domain of the FLT-3 gene in adult acute myeloid leukemia. Leuk Res Rep. 2014;3(2):86–9. doi: 10.1016/j.lrr.2013.09.003.

  5. Sandhofer N, Bauer J, Reiter K, et al. The new and recurrent FLT3 juxtamembrane deletion mutation shows a dominant negative effect on the wild-type FLT3 receptor. Sci Rep. 2016;6(1):28032. doi: 10.1038/srep28032.

  6. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–35. doi: 10.1182/blood.v99.12.4326.

  7. Metzeler K, Herold T, Rothenberg-Thurley M, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128(5):686–98. doi: 10.1182/blood-2016-01-693879.

  8. Schnittger S, Bacher U, Haferlach C, et al. Diversity of the juxtamembrane and TKD1 mutations (Exons 13–15) in the FLT3 gene with regards to mutant load, sequence, length, localization, and correlation with biological data. Genes Chromos Cancer. 2012;51(10):910–24. doi: 10.1002/gcc.21975.

  9. Kottaridis P, Gale R, Frew M, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9. doi: 10.1182/blood.v98.6.1752.

  10. Moreno I, Martin G, Bolufer P, et al. Incidence and prognostic value of FLT3 internal tandem duplication and D835 mutations in acute myeloid leukemia. Haematologica. 2003;88(1):19–24.

  11. Bacher U, Haferlach C, Kern W, et al. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters—an analysis of 3082 patients. Blood. 2008;111(5):2527–37. doi: 10.1182/blood-2007-05-091215.

  12. Moore AS, Faisal A, Gonzalez de Castro D, et al. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia. 2012;26(7):1462–70. doi: 10.1038/leu.2012.52.

  13. Bagrintseva K, Geisenhof S, Kern R, et al. FLT3-ITD-TKD dual mutants associated with AML confer resistance to FLT3 PTK inhibitors and cytotoxic agents by overexpression of Bcl-x(L). Blood. 2005;105(9):3679–85. doi: 10.1182/blood-2004-06-2459.

  14. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.

  15. O’Donnell MR, Tallman MS, Abboud CN, et al. Acute myeloid leukemia, version 3.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2017;15(7):926–57. doi: 10.6004/jnccn.2017.0116.

  16. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–8.

  17. Kim Y, Lee GD, Park J, et al. Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J. 2015;5(8):e336. doi: 10.1038/bcj.2015.61.

  18. Lin PH, Lin CC, Yang HI, et al. Prognostic impact of allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia patients with internal tandem duplication of FLT3. Leuk Res. 2013;37(3):287–92. doi: 10.1016/j.leukres.2012.10.005.

  19. Grunwald MR, Tseng LH, Lin MT, et al. Improved FLT3 internal tandem duplication PCR assay predicts outcome after allogeneic transplant for acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(12):1989–95. doi: 10.1016/j.bbmt.2014.08.015.

  20. Murphy KM, Levis M, Hafez MJ, et al. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn. 2003;5(2):96–102. doi: 10.1016/s1525-1578(10)60458-8.

  21. Stirewalt DL, Willman CL, Radich JP. Quantitative, real-time polymerase chain reactions for FLT3 internal tandem duplications are highly sensitive and specific. Leuk Res. 2001;25(12):1085–8. doi: 10.1016/s0145-2126(01)00087-x.

  22. Beretta C, Gaipa G, Rossi V, et al. Development of a quantitative-PCR method for specific FLT3/ITD monitoring in acute myeloid leukemia. Leukemia. 2004;18(8):1441–4. doi: 10.1038/sj.leu.2403409.

  23. Daver N, Schlenk RF, Russell NH, et al. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312. doi: 10.1038/s41375-018-0357-9.

  24. Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma. 2018;59(10):2273–86. doi: 10.1080/10428194.2017.1399312.

  25. Kamps R, Brandao RD, Bosch BJ, et al. Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int J Mol Sci. 2017;18(2):308. doi: 10.3390/ijms18020308.

  26. Chin EL, da Silva C, Hegde M. Assessment of clinical analytical sensitivity and specificity of next-generation sequencing for detection of simple and complex mutations. BMC Genet. 2013;14(1):6. doi: 10.1186/1471-2156-14-6.

  27. Bibault JE, Figeac M, Helevaut N, et al. Next-generation sequencing of FLT3 internal tandem duplications for minimal residual disease monitoring in acute myeloid leukemia. Oncotarget. 2015;6(26):22812–21. doi: 10.18632/oncotarget.4333.

  28. Spencer DH, Abel HJ, Lockwood CM, et al. Detection of FLT3 Internal Tandem Duplication in Targeted, Short-Read-Length, Next-Generation Sequencing Data. J Mol Diagn. 2013;15(1):81–93. doi: 10.1016/j.jmoldx.2012.08.001.

  29. Au CH, Wa A, Ho DN, et al. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms. Diagn Pathol. 2016;11(1):11. doi: 10.1186/s13000-016-0456-8.

  30. Abdelhamid E, Preudhomme C, Helevaut N, et al. Minimal residual disease monitoring based on FLT3 internal tandem duplication in adult acute myeloid leukemia. Leuk Res. 2012;36(3):316–23. doi: 10.1016/j.leukres.2011.11.002.

  31. Schranz K, Hubmann M, Harin E, et al. Clonal heterogeneity of FLT3-ITD detected by high-throughput amplicon sequencing correlates with adverse prognosis in acute myeloid leukemia. Oncotarget. 2018;9(53):30128–45. doi: 10.18632/oncotarget.25729.

  32. Thiede C, Prior T, Lavorgna S, et al. FLT3 mutation Assay Laboratory Cross Validation: Results from the CALGB 10603/Ratify Trial in Patients with Newly Diagnosed FLT3-Mutated Acute Myeloid Leukemia (AML). Blood. 2018;132(Suppl_1):2800. doi: 10.1182/blood-2018-99-112127.

  33. Сабурова И.Ю., Горбунова А.В., Слободнюк К.Ю. и др. Выявление внутренних тандемных дупликаций и мутации D835Y в гене FLT3 у пациентов с острым миелобластным лейкозом. Ученые записки Санкт-Петербургского государственного медицинского университета имени академика И.П. Павлова. 2010;XVII(3):48–51.

    [Saburova IYu, Gorbunova AV, Slobodnyuk KYu, et al. Detection of FLT3 internal tandem duplications and D835Y mutation in patients with acute myeloid leukemia. Uchenye zapiski Sankt-Peterburgskogo gosudarstvennogo meditsinskogo universiteta imeni akademika I.P. Pavlova. 2010;XVII(3):48–51. (In Russ)]

  34. Петрова Е.В., Мартынкевич И.С., Полушкина Л.Б. и др. Клинические, гематологические и молекулярно-генетические особенности острых миелобластных лейкозов с мутациями в генах FLT3, CKIT, NRAS и NPM1. Гематология и трансфузиология. 2016;61(2):72–80. doi: 10.18821/0234-5730-2016-61-2-72-80.

    [Petrova EV, Martynkevich IS, Polushkina LB, et al. Clinical, hematological and molecular-genetic features of acute myeloid leukemia with mutations in FLT3, CKIT, NRAS and NPM1. Russian journal of hematology and transfusiology. 2016;61(2):72–80. doi: 10.18821/0234-5730-2016-61-2-72-80. (In Russ)]

  35. Гук Л.В., Савицкая Т.В., Домнинский Д.А. и др. Анализ частоты и прогностического значения мутаций генов FLT3, c-KIT и NPM1 у детей с острым миелобластным лейкозом. Онкогематология. 2009;4(4):27–32.

    [Guk LV, Savitskaya TV, Domninskii DA, et al. Analysis of incidence and prognostic value of FLT3, c-KIT and NPM1 genes mutations in children with acute myeloid leukemia. Onkogematologiya. 2009;4(4):27–32. (In Russ)]

  36. Виноградов А.В. Разработка технологии детекции мутаций генов CDKN2A/ARF, FLT3, KIT, NPM1, NRAS, TET2, TP53, WT1 при острых миелоидных лейкозах. Российский онкологический журнал. 2013;4:34–5.

    [Vinogradov AV. Development of the technique for CDKN2A/ARF, FLT3, KIT, NPM1, NRAS, TET2, TP53, WT1 genes mutation detection in acute myeloid leukemia. Rossiiskii onkologicheskii zhurnal. 2013;4:34–5. (In Russ)]

  37. Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93(9):3074–80.

  38. Gari M, Abuzenadah A, Chaudhary A, et al. Detection of FLT3 oncogene mutations in acute myeloid leukemia using conformation sensitive gel electrophoresis. Int J Mol Sci. 2008;9(11):2194–204. doi: 10.3390/ijms9112194.

  39. Sly N, Gaspar K. Midostaurin for the management of FLT3-mutated acute myeloid leukemia and advanced systemic mastocytosis. Am J Health-Syst Pharm. 2019;76(5):268–74. doi: 10.1093/ajhp/zxy050.

  40. Bazarbachi AH, Hamed RA, Malard F, et al. Allogeneic transplant for FLT3-ITD mutated AML: a focus on FLT3 inhibitors before, during, and after transplant. Ther Adv Hematol. 2019;10:1–14. doi: 10.1177/2040620719882666.

  41. Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am Soc Hematol Educ Program. 2013;2013:220–6. doi: 10.1182/asheducation-2013.1.220.

Bendamustine in the Treatment of Relapsed/Refractory Hodgkin’s Lymphoma: Literature Review and Clinical Experience

SS Shklyaev, NA Falaleeva, TI Bogatyreva, AYu Terekhova, MA Danilova

AF Tsyb Medical Radiological Research Centre, branch of the NMRC of Radiology, 4 Koroleva str., Kaluga Region, Obninsk, Russian Federation, 249036

For correspondence: Stanislav Sergeevich Shklyaev, MD, PhD, 4 Koroleva str., Kaluga Region, Obninsk, Russian Federation, 249036; Tel.: +7(484)399-30-31; e-mail: staniss1@yahoo.com

For citation: Shklyaev SS, Falaleeva NA, Bogatyreva TI, et al. Bendamustine in the Treatment of Relapsed/Refractory Hodgkin’s Lymphoma: Literature Review and Clinical Experience. Clinical oncohematology. 2020;13(2):136–49 (In Russ).

DOI: 10.21320/2500-2139-2020-13-2-136-149


ABSTRACT

Aim. To assess the efficacy of bendamustine combined with dexamethasone in the treatment of relapsed/refractory Hodgkin’s lymphoma (HL).

Materials & Methods. The article provides an updated review of literature as well as the data of prospective observational clinical trial in 47 HL patients (17 men and 30 women aged 20–65 years, median age 36 years) with relapses after standard and high-dose chemotherapy with autologous hematopoietic stem cell transplantation. The therapy regimen included 120 mg/m2 of bendamustine IV on Days 1 and 2 and 20 mg of oral dexamethasone from Day 1 to Day 4. Retreatment was administered 21 days after the start of the previous one. Radiotherapy was applied only to the regions of massive relapsed lesions and bone destructions with pain syndrome.

Results. From April 2011 to September 2017 all 47 patients received 149 bendamustine + dexamethasone therapy regimens with the overall response of 57 % (complete response 27 %, partial response 30 %). Disease progression on therapy was reported in 20 (43 %) patients, its incidence was the highest after the first (n = 8) or the second cycle (n = 4). In the group of 27 patients with overall response 19 (70 %) patients showed new relapses. In these cases the treatment-free period was from 8 to 31 months (median 11 months). The repeated administration of 57 bendamustine + dexamethasone therapy regimens in 12 out of 47 patients achieved clinical effect for 4–36 months (median 6 months). After the first failure of bendamustine-based therapy 13 patients were treated with brentuximab vedotin and nivolumab, the new salvage therapy drugs. With median follow-up of 22 months (range 1–69 months) median overall survival (OS) and time to the next progression were 35 and 10 months, respectively, in all patients. Multivariate analysis showed that OS was unfavorably affected only by B-symptoms on bendamustine + dexamethasone administration (= 0.046), and the time to the next progression was shorter in the presence of B-symptoms (= 0.017) and in histological variant “nodular sclerosis type II” (= 0.006).

Conclusion. Bendamustine + dexamethasone therapy is a relatively low-toxic and effective method of life prolongation in HL patients with chemotherapy-refractory tumors and recurrent relapses, provided no B-symptoms occur by the start of antitumor therapy.

Keywords: Hodgkin’s lymphoma, bendamustine, chemotherapy-refractory disease, relapses.

Received: December 15, 2019

Accepted: March 20, 2020

Read in PDF


REFERENCES

  1. Hodgkin T. On some morbid appearances of the absorbent glands and spleen. J Royal Soc Med. 1832;MCT-17(1):68–114. doi: 1177/095952873201700106.

  2. Wilks Sir S. Cases of enlargement of the lymphatic glands and spleen (or Hodgkin’s disease), with remarks. Guy’s Hosp 1865;11:56–67.

  3. Lakhtakia R, Burney I. A Historical Tale of Two Lymphomas: Part I: Hodgkin lymphoma. Sultan Qaboos Univ Med J. 2015;15(2):e201–е206.

  4. Vadakara JB, Andrick B. Current advances in Hodgkin’s lymphoma. Chron Dis Transl Med. 2019;5(1):15–24. doi: 10.1016/j.c2019.02.003.

  5. Net. Lymphoma – Hodgkin: Statistics. Available from: https://www.cancer.net/cancer-types/lymphoma-hodgkin/statistics (accessed 30.12.2019).

  6. Brockelmann PJ, Boll B. Moving things forward in Hodgkin lymphoma. F1000Research. 2018;7:1786. doi: 10.12688/f1000research.16077.1.

  7. Богатырева Т.И., Павлов В.В. Лечение лимфомы Ходжкина. В кн.: Терапевтическая радиология: национальное руководство. Под ред. А.Д. Каприна, Ю.С. Мардынского. М.: ГЭОТАР-Медиа, 2018. С. 525–46.

    [Bogatyreva TI, Pavlov VV. Treatment of Hodgkin’s lymphoma. In: Kaprin AD, Mardynskii YuS, eds. Terapevticheskaya radiologiya: natsionalnoe rukovodstvo. (Therapeutic radiology: national guidelines.) Moscow: GEOTAR-Media Publ.; pp. 525–46. (In Russ)]

  8. Shah GL, Moskowitz CH. Transplant strategies in relapsed/refractory Hodgkin lymphoma. 2018;131(15):1689–97. doi: 10.1182/blood-2017-09-772673.

  9. LaCasce AS. Treating Hodgkin lymphoma in the new millennium: relapsed and refractory disease. Hematol Oncol. 2019;37(Suppl. 1):87–91. doi: 10.1002/hon.2589.

  10. Eichenauer DA, Aleman BMP, Andre M, et al. Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl. 4):iv19–iv29. doi: 10.1093/annonc/mdy080.

  11. Богатырева Т.И., Павлов В.В., Шкляев С.С. Рецидивы лимфомы Ходжкина: возможности продления жизни без высокодозной химиотерапии. Врач. 2012;11:5–8.

    [Bogatyreva TI, Pavlov VV, Shklyaev SS. Relapsed Hodgkin’s lymphoma: life prolongation options without high-dose chemotherapy. Vrach. 2012;11:5–8. (In Russ)]

  12. Bogatyreva T, Terekhova A, Shklyaev S, et al. Long-term treatment outcome of patients with refractory or relapsed Hodgkin’s lymphoma in the anthracycline era: a single-center intention-to-treat analysis. Ann Oncol. 2018;29(Suppl. 8): abstract 1021. doi: 10.1093/annonc/mdy286.016.

  13. Kalaycio M. Bendamustine: a new look at an old drug. Cancer. 2009;115(3):473–79. doi: 10.1002/cncr.24057.

  14. Ozegowski W, Krebs D. III. ω-[Bis-(β-chlorathyl)-amino-benzimidazolyl-(2)]-propion-bzw.-buttersauren als potentielle Cytostatika. J Prakt Chem. 1963;20(3–4):178–86. doi: 10.1002/prac.19630200310.

  15. Ozegowski W, Krebs D. IMET 3393, gamma-(1-methyl-5-bis-(ss-chlrathyl)-amino-benzimidazlolyl(2)-buttersaure-hydrochlorid, ein neues Zytostatikum aus der Reihe der Benzimidazol-Loste. Zbl Pharm. 1971;110:1013–9.

  16. Шкляев С.С., Павлов В.В. Лимфома Ходжкина и «новый старый» бендамустин. Клиническая онкогематология. 2013;6(2):139–47.

    [Shklyaev SS, Pavlov VV. Hodgkin’s lymphoma and a “new old” bendamustine. Klinicheskaya onkogematologiya. 2013;6(2):139–47. (In Russ)]

  17. Anger G, Fink R, Fleischer J, et al. Vergleichsuntersuchungen zwischen Cytostasan und Cyclophosphamid bei der chronischen Lymphadenose, dem Plasmozytom, der Lymphogranulomatose und dem Bronchialkarzinom. Dt Gesundh Wesen. 1975;30:1280–5.

  18. Hoche D, Wutke K, Anger G, et al. Vergleichende Untersuchung zur Wirksamkeit des DBVCy-Protocolls mit dem ABVD-Protokoll beim fortgeschrittenen Hodgkin Lymphom. Arch Geschwulstforsch. 1984;54(4):333–42.

  19. Herold M, Anger G, Hoche D, et al. Vorlaufige Ergebnisse einer zyklisch-alternierenden Chemotherapie (CVPP/DBVCy) bei fortgeschrittenem Morbus Hodgkin. Med Klin. 1987;82(10):345–9.

  20. Moskowitz AJ, Hamlin PA Jr, Gerecitano J, et al. Bendamustine is highly active in heavily pre-treated relapsed and refractory Hodgins lymphoma and serves as a bridge to allogeneic stem cell transplant. Blood. 2009;114(22):720. doi: 10.1182/blood.v114.22.720.720.

  21. Moskowitz AJ, Hamlin PA Jr, Perales MA, et al. Phase II Study of Bendamustine in Relapsed and Refractory Hodgkin Lymphoma. J Clin Oncol. 2013;31(4):456–60. doi: 10.1200/JCO.2012.45.3308.

  22. D’Elia GM, De Anelis F, Breccia M, et al. Efficacy of bendamustine as salvage treatment in a heavily pre-treated Hodgkin lymphoma. Leuk Res. 2010;34(11):e300–e301. doi: 10.1016/j.leukers.2010.06.011.

  23. De Flippi R, Aldinucci D, Galati D, et al. Effect of bendamustine on apoptosis and colony-initiating precursors in Hodgkin lymphoma cells. J Clin Oncol. 2011;29(15 Suppl):e18559. doi: 10.1200/jco.2011.29.15 e18559.

  24. Leoni LM, Bailey B, Reifert J, et al. Bendamustine (Treanda) displays a distinct pattern of cytotoxicity and unique mechanistic features compared with other alkylating agents. Clin Cancer Res. 2008;14(1):309–17. doi: 10.1158/1078-0432.CCR-07-1061.

  25. Leoni LM, Niemeyer CC, Kerfoot C, et al. In vitro and ex vivo activity of SDX-105 (bendamustine) in drug-resistant lymphoma Proc Am Assoc Cancer Res. 2004;45:278, abstract 1215.

  26. Friedberg JW, Cohen P, Chen L, et al. Bendamustine in patients with rituximab-refractory indolent and transformed non-Hodgkin’s lymphoma: results from a phase II multicentere, single-agent study. J Clin Oncol. 2008;26(2):204–10. doi: 10.1200/JCO.2007.12.5070.

  27. Konstantinov SM, Kostovski A, Topashka-Ancheva M, et al. Cytotoxic efficacy of bendamustine in human leukemia and breast cancer cell lines. J Cancer Res Clin Oncol. 2002;128(5):271–8. doi: 10.1007/s00432-002-0331-8.

  28. Leoni LM, Hartley JA. Mechanism of action: the unique pattern of bendamustine-induced cytotoxicity. Semin Hematol. 2011;48(Suppl. 1):S12–23. doi: 10.1053/j.seminhematol.2011.03.003.

  29. Furukawa Y, Hiraoka N, Wada T, et al. Mechanisms of action and clinical effectiveness of the newly approved anti-cancer drug bendamustine. Nihon Yakurigaku Zasshi (Folia Pharmacol Jpn). 2011;138(1):26–32. doi: 10.1254/fpj.138.26.

  30. De Filippi R, Cillo M, Crisci S, et al. Continuous Exposure to Bendamustine (BDM) Results in Stable Upregulation of CD30 and Increased Sensitivity to Brentuximab Vedotin (BV) in Tumor Cells of Hodgkin Lymphoma (HL). 2015;126(23):2479. doi: 10.1182/blood.V126.23.2479.2479.

  31. Cosenza M, Civallero, Marcheselli M, et al. Ricolinostat, a selective HDAC6 inhibitor, shows anti-lymphoma cell activity alone and in combination with bendamustine. Apoptosis. 2017;22(6):827–40. doi: 10.1007/s10495-017-1364-4.

  32. Adams H, Fritzsche FR, Dirnhofer S, et al. Class I histone deacetylases 1, 2 and 3 are highly expressed in classical Hodgkin’s lymphoma. Expert Opin Ther Targets. 2010;14(6):577–84. doi: 10.1517/14728221003796609.

  33. Magyari F, Simon Z, Barna S, et al. Successful administration of rituximab-bendamustine regimen in the relapse of Hodgkin lymphoma after autologous hemopoietic stem cell transplantation. Hematol Oncol. 2012;30(2):98–100. doi: 10.1002/hon.1004.

  34. Jones RJ, Gocke CD, Kasamon YL, et al. Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood. 2009;113(23):5920–6. doi: 10.1182/blood-2008-11-189688.

  35. Rummel MJ, Chow KU, Hoelzer D, et al. In vitro studies with bendamustine: enhanced activity in combination with rituximab. Semin Oncol. 2002;29(4 Suppl. 13):12–4. doi: 10.1053/sonc.2002.34873.

  36. Mian M, Farsad M, Pescosta N, et al. Bendamustine salvage for the treatment of relapsed Hodgkin’s lymphoma after allogeneic bone marrow transplantation. Ann Hematol. 2013;92(1):121–3. doi: 10.1007/s00277-012-1525-z.

  37. Moskowitz A, Perales M, Kewalramani T, et al. Outcomes for patients who fail high dose chemoradiotherapy and autologous stem cell rescue for relapsed and primary refractory Hodgkin lymphoma. Br J Haematol. 2009;146(2):158–63. doi: 10.1111/j.1365-2141.2009.07727.x.

  38. Ghesquieres H, Stamatoullas A, Casasnovas O, et al. Clinical experience of bendamustine in relapsed or refractory Hodgkin Lymphoma: a retrospective analysis of the French compassionate use program in 28 patients. Leuk Lymphoma. 2013;54(11):2399–404. doi: 10.3109/10428194.2013.776165.

  39. Anastasia A, Carlo-Stella C, Corradini P, et al. Bendamustine for Hodgkin lymphoma patients failing autologous or autologous and allogeneic stem cell transplantation: a retrospective study of the Fondazione Italiana Linfomi. Br J Haematol. 2014;166(1):140–2. doi: 10.1111/bjh.12821.

  40. Zinzani PL, Vitolo U, Viviani S, et al. Safety and efficacy of single-agent bendamustine after failure of brentuximab vedotin in patients with relapsed or refractory Hodgkin’s lymphoma: experience with 27 patients. Clin Lymphoma Myeloma Leuk. 2015;15(7):404–8. doi: 10.1016/j.clml.2015.02.023.

  41. Corazzelli G, Angrilli F, D’Arco A, et al. Efficacy and safety of bendamustine for the treatment of patients with recurring Hodgkin lymphoma. Br J Haematol. 2013;160(2):207–15. doi: 10.1111/bjh.12120.

  42. Sala E, Crocchiolo R, Ganolfi S, et al. Bendamustine combined with donor lymphocytes infusion in Hodgkin’s lymphoma relapsing after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(9):1444–7. doi: 10.1016/j.bbmt.2014.05.024.

  43. Howell M, Gibb A, Radford R, et al. Bendamustine can be a bridge to allogeneic transplantation in relapsed Hodgkin lymphoma refractory to brentuximab vedotin. Br J Haematol. 2017;179(5):841–3. doi: 10.1111/bjh.14257.

  44. Santoro A. Bendamustine, Gemcitabine, and Vinorelbine (BeGEV) as Induction Therapy in Relapsed/Refractory Hodgkin’s Lymphoma Patients. NLM Identifier: NCT01884441. [Internet] Available from: https://clinicaltrials.gov/ct2/show/NCT01884441 (accessed 12.2019).

  45. Santoro A, Mazza R, Pulsoni A, et al. Bendamustine in Combination With Gemcitabine and Vinorelbine Is an Effective Regimen As Induction Chemotherapy Before Autologous Stem-Cell Transplantation for Relapsed or Refractory Hodgkin Lymphoma: Final Results of a Multicenter Phase II Study. J Clin Oncol. 2016;34(27):3293–9. doi: 10.1200/JCO.2016.66.4466.

  46. Visani G, Malerba L, Stefani PM, et al. BeEAM (bendamustine, etoposide, cytarabine, melphalan) before autologous stem cell transplantation is safe and effective for resistant/relapsed lymphoma patients. Blood. 2011;118(12):3419–25. doi: 10.1182/blood-2011-04-351924.

  47. Frankiewicz A, Sadus-Wojciechowska M, Najda J, et al. Comparable safety profile of BeEAM (bendamustine, etoposide, cytarabine, melphalan) and BEAM (carmustine, etoposide, cytarabine, melphalan) as conditioning before autologous haematopoietic cell transplantation. Wspolczesna Onkologia. 2018;22(2):113–7. doi: 10.5114/wo.2018.77046.

  48. O’Connor OA, Lue JK, Sawas A, et al. Brentuximab vedotin plus bendamustine in relapsed or refractory Hodgkin’s lymphoma: an international, multicentre, single-arm, phase 1–2 trial. Lancet Oncol. 2018;19(2):257–66. doi: 10.1016/S1470-2045(17)30912-9.

  49. Kalac M, Lue JK, Lichtenstein E, et al. Brentuximab vedotin and bendamustine produce high complete response rates in patients with chemotherapy refractory Hodgkin lymphoma. Br J Haematol. 2018;180(5):757–60. doi: 10.1111/bjh.14449.

  50. LaCasce AS, Bociek RG, Sawas A, et al. Brentuximab vedotin plus bendamustine: a highly active first salvage regimen for relapsed or refractory Hodgkin lymphoma. Blood. 2018;132(1):40–8. doi: 10.1182/blood-2017-11-815183.

  51. Chen RW. Is there a place for the combination of brentuximab vedotin and bendamustine in treatment of patients with relapsed/refractory Hodgkin lymphoma? Ann Transl Med. 2018;6(11):238. doi: 10.21037/atm.2018.05.40.

  52. Gordon LI. Getting to transplant in Hodgkin lymphoma: BVB. Blood. 2018;132(1):1–3. doi: 10.1182/blood-2018-05-848366.

  53. Picardi M, Della Pepa R, Giordano C, et al. Brentuximab vedotin followed by bendamustine supercharge for refractory or relapsed Hodgkin lymphoma. Blood Adv. 2019;3(9):1546–52. doi: 10.1182/bloodadvances.2019000123.

  54. Friedberg JW, Ferero-Torres A, Bordoni RE, et al. Frontline brentuximab vedotin in combination with dacarbazine or bendamustine in patients aged ≥ 60 years with HL. Blood. 2017;130(26):2829–37. doi: 10.1182/blood-2017-06-787200.

  55. Anastasia A, Pulsoni A, Re A, et al. Mobilization of Hematopoietic Stem Cells by a Bendamustine-Containing Regimen in Hodgkin’s Lymphoma. Blood. 2012;120(21):1914. doi: 10.1182/blood.V120.21.1914.1914.

  56. Saleh K, Dany A, Koscielny S, et al. A retrospective, matched paired analysis comparing bendamustine containing BeEAM versus BEAM conditioning regimen: results from a single center experience. Leuk Lymphoma. 2018;59(11):2580–7. doi: 10.1080/10428194.2017.1403019.

  57. Prusila REI, Haapasaari K-M, Marin K, et al. R-Bendamustine in the treatment of nodular lymphocyte-predominant Hodgkin lymphoma. Acta Oncol. 2018;57(9):1265–7. doi: 10.1080/0284186X.2018.1450522.

  58. Yu WY, Geng M, Hao J, et al. Clinical Features and Prognosis Analysis of Hodgkin Lymphoma: A Multicenter Retrospective Study Over a Decade of Patients in China. Clin Lymph Myel Leuk. 2017;17(5):274–82. doi: 10.1016/j.clml.2017.02.005.

  59. Pavlov VV, Falaleeva NA, Bogatyreva TI, et al. Bendamustine in heavily pre-treated Hodgkin lymphoma patients. HemaSphere. 2018;2(S1):47. doi: 1097/01.hs9.0000547962.13629.cb.

  60. A Study of Safety and Efficacy of Nivolumab and Bendamusitne (NB) in Patients with Relapsed/Refractory Hodgkin’s Lymphoma (NB001). NLM Identifier: NCT03343652. [Internet] Available from: https://clinicaltrials.gov/ct2/show/NCT03343652 (accessed 12.2019).

  61. Gemcitabine, Bendamustine, and Nivolumab in Patients with Relapsed or Refractory Classical Hodgkin’s Lymphoma. NLM Identifier: NCT03739619. [Internet] Available from:

    https://clinicaltrials.gov/ct2/show/NCT03739619 (accessed 12.2019).

Pyroptosis as Inflammatory Cell Death

AA Vartanyan, VS Kosorukov

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Amaliya Artashevna Vartanyan, PhD in Biology, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-10-65; e-mail: zhivotov57@mail.ru

For citation: Vartanyan AA, Kosorukov VS. Pyroptosis as Inflammatory Cell Death. Clinical oncohematology. 2020;13(2):129–35 (In Russ).

DOI: 10.21320/2500-2139-2020-13-2-129-135


ABSTRACT

Pyroptosis, caspase-1-dependent inflammatory cell death, is induced by intracellular pathogens or tissue lesions. Procaspase-1 activation, which is essential for the processing of proinflammatory cytokines pro-IL-1β and pro-IL-18, occurs in macromolecular protein complexes, also referred to as inflammasomes. In the gram-negative bacilli-induced infections inflammasome assembly incorporates caspase-4 and caspase-5. Originally identified as a protective mechanism of innate immunity, at present pyroptosis is not limited to the inhibition of intracellular pathogen multiplication. The current review discusses molecular mechanisms of pyroptosis-like cell death and possible pyroptosis involvement in tumor cell death.

Keywords: cell death, pyroptosis, caspases, inflammation, innate immunity.

Received: December 24, 2019

Accepted: March 17, 2020

Read in PDF


REFERENCES

  1. Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167–9. doi: 10.1038/358167a0.

  2. Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol. 2000;38(1):31–40. doi: 10.1046/j.1365-2958.2000.02103.x.

  3. Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–4. doi: 10.1016/s0966-842x(00)01936-3.

  4. Li P, Allen H, Banerjee S, et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell. 1995;80(3):401–11. doi: 10.1016/0092-8674(95)90490-5.

  5. Yuan YY, Xie KX, Wang SL, et al. Inflammatory caspase-related pyroptosis: mechanism, regulation and therapeutic potential for inflammatory bowel disease. Gastroenterology Report. 2018;6(3):167–76. doi: 10.1093/gastro/goy011.

  6. Doitsh G, Cavrois M, Lassen KG, et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell. 2010;143(5):789–801. doi: 10.1016/j.cell.2010.11.001.

  7. Franchi L, Warner N, Viani K, et al. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev. 2009;227(1):106–28. doi: 10.1111/j.1600-065x.2008.00734.x.

  8. Bortoluci KR, Medzhitov R. Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell Mol Life Sci. 2010;67(10):1643–51. doi: 10.1007/s00018-010-0335-5.

  9. Lamkanfi M, Dixit V. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013–22. doi: 10.1016/j.cell.2014.04.007.

  10. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75. doi: 10.1111/imr.12534.

  11. Malireddi RK, Ippagunta S, Lamkanfi M, et al. Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J Immunol. 2010;185(6):3127–30. doi: 10.4049/jimmunol.1001512.

  12. Kovacs SB, Miao EA. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol. 2017;27(9):673–84. doi: 10.1016/j.tcb.2017.05.005.

  13. Feng S, Fox D, Man SM. Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death. J Mol Biol. 2018;430(18):3068–80. doi: 10.1016/j.jmb.2018.07.002.

  14. Prajwal G, Lukens JR, Thirumala-Devi K. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med. 2015;21(3):193–201. doi: 10.1016/j.molmed.2014.11.008.

  15. Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci USA. 2014;111(43):15514–9. doi: 10.1073/pnas.1414859111.

  16. Diamond CE, Khameneh HJ, Brough D, et al. Novel perspectives on non-canonical inflammasome activation. Immunotargets Ther. 2015;4:131–41. doi: 10.2147/ITT.S57976.

  17. Lamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011;187(2):597–602. doi: 10.4049/jimmunol.1100229.

  18. Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease. Nature. 2012;481(7381):278–86. doi: 10.1038/nature10759.

  19. Rashidi M, Simpson DS, Hempel A, et al. The Pyroptotic Cell Death Effector Gasdermin D Is Activated by Gout-Associated Uric Acid Crystals but Is Dispensable for Cell Death and IL-1β J Immunol. 2019;203(3):736–48. doi: 10.4049/jimmunol.1900228.

  20. Sahoo AK, Dandapat J, Dash UC, et al. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J Ethnopharmacol. 2018;215:42–73. doi: 10.1016/j.jep.2017.12.015.

  21. Freeman LC, Ting JP. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. 2016;136(Suppl 1):29–38. doi: 10.1111/jnc.13217.

  22. Corrigan KL, Wall KC, Bartlett JA, et al. Cancer disparities in people with HIV: A systematic review of screening for non-AIDS-defining malignancies. 2019;125(6):843–53. doi: 10.1002/cncr.31838.

  23. Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505(7484):509–14. doi: 10.1038/nature12940.

  24. Monroe KM, Yang Z, Johnson JR, et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science. 2014;343(6169):428–32. doi: 10.1126/science.1243640.

  25. Wannamaker W, Davies R, Namchuk M, et al. VX-765, an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther. 2007;321(2):509–16. doi: 10.1124/jpet.106.111344.

  26. Asahchop EL, Meziane O, Mamik MK, et al. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology. 2017;14(1):47. doi: 10.1186/s12977-017-0370-5.

  27. Mamik MK, Hui E, Branton WG, et al. HIV-1 Viral Protein R Activates NLRP3 Inflammasome in Microglia: Implications for HIV-1 Associated Neuroinflammation. J Neuroimmune Pharmacol. 2017;12(2):233–48. doi: 10.1007/s11481-016-9708-3.

  28. Vandanmagsar B, Youm Y, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179–88. doi: 10.1038/nm.2279.

  29. Nagarajan K, Soundarapandian K, Thorne RF, et al. Activation of Pyroptotic Cell Death Pathways in Cancer: An Alternative Therapeutic Approach. Transl Oncol. 2019;12(7):925–31. doi: 10.1016/j.tranon.2019.04.010.

  30. Luan J, Ju D. Inflammasome: A Double-Edged Sword in Liver Front Immunol. 2018;9:2201–9. doi: 10.3389/fimmu.2018.02201.

  31. Chu Q, Jiang Y, Zhang W, et al. Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget. 2016;7(51):84658–65. doi: 10.18632/oncotarget.12384.

  32. Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol. 2018;50:32–8. doi: 10.1016/j.coi.2017.10.011.

  33. Wang H, Luo Q, Feng X, et al. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer. 2018;18(1):500–12. doi: 10.1186/s12885-018-4403-9.

  34. Elion DL, Jacobson ME, Hicks DJ, et al. Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancer Res. 2018;78(21):6183–95. doi: 10.1158/0008-5472.can-18-0730.

  35. Pizato N, Luzete BC, Kiffer LV, et al. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 2018;8(1):1952–60. doi: 10.1038/s41598-018-20422-0.

  36. Baranovskiy AG, Babayeva ND, Suwa Y, et al. Structural basis for inhibition of DNA replication by aphidicolin. Nucl Acids Res. 2014;42(22):14013–21. doi: 10.1093/nar/gku1209.

  37. Han T, Goralski M, Capota E, et al. The antitumor toxin CD437 is a direct inhibitor of DNA polymerase α. Nat Chem Biol. 2016;12(7):511–5. doi: 10.1038/nchembio.2082.

  38. Gutteridge RE, Ndiaye MA, Liu X, et al. Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol Cancer 2016;15(7):1427–35. doi: 10.1158/1535-7163.mct-15-0897.

  39. Liu X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Transl Oncol. 2015;8(3):185–95. doi: 10.1016/j.tranon.2015.03.010.

  40. Konjevic GM, Vuletic AM, Mirjacic Martinovic KM, et al. The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine. 2019;117:30–40. doi: 10.1016/j.cyto.2019.02.001.

  41. Nakanishi K. Unique Action of Interleukin-18 on T Cells and Other Immune Cells. Front Immunol. 2018;9:763. doi: 10.3389/fimmu.2018.00763.

  42. Cao R, Farnebo J, Kurimoto M, et al. Interleukin-18 acts as an angiogenesis and tumor suppressor FASEB J. 1999;13(15):2195–202. doi: 10.1096/fasebj.13.15.2195.

  43. Li A, Yi M, Qin S, et al. Prospects for combining immune checkpoint blockade with PARP inhibition. J Hematol Oncol. 2019;12(1):98. doi: 10.1186/s13045-019-0784-8.

Aldehyde Dehydrogenase as a Marker of Early Mesenchymal Progenitor Cells in Donor Bone Marrow Stroma

KA Vetoshkin, NV Isaeva, MA Butolina, NV Minaeva, NA Zorina, MN Khorobrykh, YuS Zmeeva

Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

For correspondence: Konstantin Aleksandrovich Vetoshkin, MD, PhD, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(905)870-06-92; e-mail: kostyavetoshkin@yandex.ru

For citation: Vetoshkin KA, Isaeva NV, Butolina MA, et al. Aldehyde Dehydrogenase as a Marker of Early Mesenchymal Progenitor Cells in Donor Bone Marrow Stroma. Clinical oncohematology. 2020;13(2):123–8 (In Russ).

DOI: 10.21320/2500-2139-2020-13-2-123-128


ABSTRACT

Aim. To analyze the growth rate of mesenchymal stromal cell (MSC) culture depending on the aldehyde dehydrogenase-positive (ALDH+) cell count.

Materials & Methods. The study involved bone marrow mesenchymal cell cultures of 10 donors (5 men and 5 women) with median age of 34.5 years (range 14–38 years). Nucleated cells were obtained by density gradient centrifugation. MSCs were cultivated according to the conventional protocol using platelet-rich donor plasma. Stromal cell identification and ALDH+ cell counting were performed by laser flow cytometry according to the criteria of the International Society for Cell Therapy.

Results. The growth rate of MSC cultures and ALDH+ cell counts are maximum at primary and passage No. 1, becoming significantly lower by passage No. 3. The relationship between MSC culture growth rate and ALDH+ cell count was revealed. The older the donor, the lower MSC culture growth rate and ALDH+ cell count in bone marrow stroma.

Conclusion. The data obtained indicate the relationship between bone marrow MSC culture growth rate, donor’s age, and ALDH+ cell count. ALDH-expressing cells proved to confer MSC population renewal. Based on the results acquired, we assume that the studied ALDH marker can serve as an objective criterion for placing mesenchymal cell elements into the category of early progenitor cells.

Keywords: cell culture, mesenchymal cells, aldehyde dehydrogenase, culture growth rate.

Received: November 28, 2019

Accepted: March 1, 2020

Read in PDF


REFERENCES

  1. Осипова Е.Ю., Никитина В.А., Астрелина Т.А. и др. Динамика скорости роста, иммунофенотипа и генетическая стабильность мезенхимальных стволовых клеток костного мозга человека на ранних и поздних пассажах при культивировании ex vivo. Онкогематология. 2009;4(1):44–50.

    [Osipova EYu, Nikitina VA, Astrelina TA, et al. Human bone marrow mesenchymal stem cell growth rate dynamics, immunophenotype and genetic stability on early and late passages at ex vivo culturing. 2009;4(1):44–50. (In Russ)]

  2. Пулин А.А., Сабурина И.Н., Репин В.С. Поверхностные маркеры, характеризующие мультипотентные мезенхимальные стромальные клетки (ММСК) костного мозга человека. Клеточная трансплантология и тканевая инженерия. 2008;3(3):25–30. [Pulin AA, Saburina IN, Repin VS. Surface markers of human bone marrow multipotent mesenchymal stromal cells (MMSC). Kletochnaya transplantologiya i tkanevaya inzheneriya. 2008;3(3):25–30. (In Russ)]

  3. Harichandan A, Sivasubramaniyan K, Buhring H-J. Prospective isolation and characterization of human bone marrow-derived MSCs. Advances in biochemical engineering and biotechnology. 2013;129:1–17. doi: 10.1007/10_2012_147.

  4. Бигильдеев А.Е. Устройство и регуляция отдела стволовых мезенхимных клеток: Дис. … д-ра биол. наук. М., 2017.

    [Bigildeev AE. Ustroistvo i regulyatsiya otdela stvolovykh mezenkhimnykh kletok. (Structure and regulation of mesenchymal stem cells.) [dissertation] Moscow; 2017. (In Russ)]

  5. Шипунова И.Н. Иерархическая структура стромального микроокружения кроветворной ткани в норме и при заболеваниях системы крови: Автореф. дис. … д-ра биол. наук. М., 2018.

    [Shipunova IN. Ierarkhicheskaya struktura stromalnogo mikrookruzheniya krovetvornoi tkani v norme i pri zabolevaniyakh sistemy krovi. (Hierarchical structure of stromal microenvironment of hematopoietic tissue in norm and disorder of blood system.) [dissertation] Moscow; 2018. (In Russ)]

  6. Gordon MY, Goldman JM, Gordon-Smith EC. 4-hydroperoxycyclophosphamide inhibits proliferation by human granulocyte-macrophage colony-forming cells (GM-CFC) but spares more primitive progenitor cells. Leuk Res. 1985;9(8):1017–21. doi: 10.1016/0145-2126(85)90072-4.

  7. Sahovic EA, Colvin M, Hilton J, Ogawa M. Role of aldehyde dehydrogenase in survival of progenitors for murine blast cell colonies after treatment with 4-hydroperoxycyclophosphamide in vitro. Cancer Res. 1988;48(5):1223–6.

  8. Moreb JS, Turner C, Sreerama L, et al. Interleukin-1 and tumor necrosis factor alpha induce class 1 aldehyde dehydrogenase mRNA and protein in bone marrow cells. Leuk Lymphoma. 1995;20(1–2):77–84. doi: 10.3109/10428199509054756.

  9. Gentry T, Foster S, Winstead L, et al. Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy. Cytotherapy. 2007;9(3):259–74. doi: 10.1080/14653240701218516.

  10. Storms RW, Trujillo AP, Springer JB, et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Nat Acad Sci USA. 1999;96(16):9118–23. doi: 10.1073/pnas.96.16.9118.

  11. Fallon P, Gentry T, Balber AE, et al. Mobilized peripheral blood SSCloALDHbrcells have the phenotipic and functional properties of primitive haemotopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol. 2003;122(1):99–108. doi: 10.1046/j.1365-2141.2003.04357.x.

  12. Hess DA, Meyerrose TE, Wirthlin L, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104(6):1648–55. doi: 10.1182/blood-2004-02-0448.

  13. Najar M, Crompot E, van Grunsven LA, et al. Aldehyde dehydrogenase activity in adipose tissue: isolation and gene expression profile of distinct sub-population of mesenchymal stromal cells. Stem Cell Rev Rep. 2018;14(4):599–611. doi: 10.1007/s12015-017-9777-6.

  14. Najar M, Crompot E, van Grunsven LA, et al. Aldehyde dehydrogenase activity of Wharton jelly mesenchymal stromal cells: isolation and characterization. Cytotechnology. 2019;71(1):427–41. doi: 10.1007/s10616-018-0283-8.

  15. Najar M, Crompot E, van Grunsven LA, et al. Foreskin-derived mesenchymal stromal cells with aldehyde dehydrogenase activity: isolation and gene profiling. BMC Cell Biol. 2018;19(1):4. doi: 10.1186/s12860-018-0157-0.

  16. Lange C, Cakiroglu F, Spiess A, et al. Accelerated and Safe Expansion of Human Mesenchymal Stromal Cells in Animal Serum-Free Medium for Transplantation and Regenerative Medicine. J Cell Physiol. 2007;213(1):18–26. doi: 10.1002/jcp.21081.

  17. Astori G, Amati E, Bambi F, et al. Platelet lysate as a substitute for animal serum for ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther. 2016;7(1):93. doi: 10.1186/s13287-016-0352-x.

  18. Sorokina T, Shipounova I, Bigildeev A, et al. Alterations of the bone marrow stromal microenvironment in adult patients with leukemia before and after the treatment. 2016;128(22):2668. doi: 10.1182/blood.v128.22.2668.2668.

  19. Шипунова И.Н., Петинати Н.А., Сац Н.В. и др. Стромальные клетки-предшественники при остром лимфобластном лейкозе. Гематология и трансфузиология. 2014;59(S1):31.

    [Shipunova IN, Petinati NA, Sats NV, et al. Stromal progenitor cells in acute lymphoblastic leukemia. Gematologiya i transfuziologiya. 2014;59(S1):31. (In Russ)]

  20. Супотницкий М.В., Елапов А.А., Меркулов В.А. и др. Основные технологические процессы, используемые при производстве биомедицинских клеточных продуктов. Биопрепараты. 2015;2:36–45.

    [Supotnitskii MV, Elapov AA, Merkulov VA, et al. Common technological processes used in manufacture of biomedical cell culture products. Biopreparaty. 2015;2:36–45. (In Russ)]

  21. Reya T, Mottison SJ, Clarke MF, Weissman IL. Stem cells, cancer and cancer stem cells. Nature. 2001;414(6859):105–11. doi: 10.1038/35102167.

  22. Hess DA, Wirthlin L, Craft TP, et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107(5):2162–9. doi: 10.1182/blood-2005-06-2284.

  23. Corti S, Locatelli F, Papadimitriou D, et al. Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells. 2006;24(4):975–85. doi: 10.1634/stemcells.2005-0217.

  24. Sladek NE. Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol. 2003;17(1):7–23. doi: 10.1002/jbt.10057.

  25. Chute JP, Muramoto GG, Whitesides J, et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Nat Acad Sci USA. 2006;103(31):11707–12. doi: 10.1073/pnas.0603806103.

  26. Muramoto GG, Russell JL, Safi R, et al. Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity. Stem Cells. 2010;28(3):523–34. doi: 10.1002/stem.299.

  27. Sladek Aldehyde dehydrogenase-mediated cellular relative insensitivity to the oxazaphosphorines. Curr Pharm Des. 1999;5(8):607–25.

  28. Caplan The mesengenic process. Clin Plast Surg. 1994;21(3):429–35.

  29. Gnecchi M, Melo LG. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Meth Mol Biol. 2009;482:281–94. doi: 10.1007/978-1-59745-060-7_18.

  30. Wexler SA, Donaldson C, Denning-Kendall P, et al. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003;121(2):368–74. doi: 10.1046/j.1365-2141.2003.04284.x.

Granulocyte-Macrophage Colony-Stimulating Factor and CAR-T Technology for Solid Tumors in Experiment

DV Zaytsev1, EK Zaikova1,2, AS Golovkin1, ER Bulatov3, AKh Valiullina3, RM Mirgayazova3, AA Daks2, AYu Zaritskey1, AV Petukhov1,2

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Institute of Citology, 4 Tikhoretskii pr-t, Saint Petersburg, Russian Federation, 194064

3 Kazan (Privolzhskii) Federal University, 18 Kremlevskaya str., Kazan, Russian Federation, 420008

For correspondence: Daniil Vladislavovich Zaytsev, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(981)727-16-74; e-mail: zaicev_daniil@mail.ru

For citation: Zaytsev DV, Zaikova EK, Golovkin AS, et al. Granulocyte-Macrophage Colony-Stimulating Factor and CAR-T Technology for Solid Tumors in Experiment. Clinical oncohematology. 2020;13(2):115–22 (In Russ).

DOI: 10.21320/2500-2139-2020-13-2-115-122


ABSTRACT

Background. Cytokines are considered as important factors that enhance the efficacy of CAR-T cell therapy. Besides, they are key elements of the pathogenesis of cytokine release syndrome and neurotoxicity in applying the CAR-T technology. However, cytokine effects in the context of CAR-T therapy have not yet been properly studied.

Aim. To quantitatively assess cytokine secretion using multiplex assay with co-incubation of anti-CD19 CAR-T lymphocytes with epithelial HeLa and A431 cell lines expressing CD19 on their surface.

Materials & Methods. T-lymphocytes were transduced with the lentiviral vector containing anti-СD19-CAR gene. CAR expression was tested based on GFP reporter using flow cytometry. To confirm a specific CAR-T cell activation response to tumor antigen, the levels of interleukin-2, interferon-γ, and tumor necrosis factor-α were measured by means of immunoassay. Cytotoxic activity of CAR-T lymphocytes obtained was examined with their direct co-culturing with target cells. The levels of cytokines isolated prior to and after incubation of targets with CAR-T cells were compared using multiplex assay.

Results. The level of some proinflammatory cytokines (interleukin-6, interleukin-1β, interferon-γ) (< 0.01) increased. The difference in the levels of anti-inflammatory cytokines (interleukin-4, interleukin-10) was inconsiderable, and in the HeLa cell line experiment it was insignificant (> 0.05). The concentration of granulocyte-macrophage colony-stimulating factor (GM-CSF) was many times higher after incubation with CAR-T lymphocytes (< 0.01).

Conclusion. The trial revealed multiple enhancement of GM-CSF, one of the key elements of the pathogenesis of cytokine release syndrome and CAR-T-associated neurotoxicity. The results of further studies of GM-CSF can contribute to improving the efficacy of CAR-T therapy with considerably lower toxicity.

Keywords: CAR-T cells, GM-CSF, cytokines, immunotherapy.

Received: January 10, 2020

Accepted: March 28, 2020

Read in PDF


REFERENCES

  1. Stenken JA, Poschenrieder AJ. Bioanalytical Chemistry of Cytokines – a review. Analyt Chim Acta. 2015;853:95–115. doi: 10.1016/j.aca.2014.10.009.

  2. Zhang JM, An J. Cytokines, Inflammation and Pain. Int Anesthesiol Clin. 2007;45(2):27–37. doi: 10.1097/AIA.0b013e318034194e.

  3. Xu XJ, Song DG, Poussin M, et al. Multiparameter comparative analysis reveals differential impacts of various cytokines on CART cell phenotype and function ex vivo and in vivo. Oncotarget. 2016;7(50):82354–68. doi: 10.18632/oncotarget.10510.

  4. DeRenzo C, Gottschalk S. Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors. Front Immunol. 2019;10:218. doi: 10.3389/fimmu.2019.00218.

  5. Shimabukuro-Vornhagen A, Godel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9.

  6. Schmidts A, Maus MV. Making CAR T Cells a Solid Option for Solid Tumors. Front Immunol. 2018;9:2593. doi: 10.3389/fimmu.2018.02593.

  7. Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol. 2019;10:128. doi: 10.3389/fimmu.2019.00128.

  8. Chinnasamy D, Yu Z, Kerkar SP, et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res. 2012;18(6):1672–83. doi: 10.1158/1078-0432.CCR-11-3050.

  9. Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and Preclinical Evaluation of an Anti-CD19 Chimeric Antigen Receptor. J Immunother. 2009;32(7):689–702. doi: 10.1097/cji.0b013e3181ac6138.

  10. Masters JR. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer. 2002;2(4):315–9. doi: 10.1038/nrc775.

  11. Bortolomai I, Canevari S, Facetti I, et al. Tumor initiating cells: Development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle. 2010;9(6):1194–206. doi: 10.4161/cc.9.6.11108.

  12. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Meth. 2014;11(8):783–4. doi: 10.1038/nmeth.3047.

  13. Milone M, Fish J, Carpenito C, et al. Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo. Mol Ther. 2009;17(8):1453–64. doi: 10.1038/mt.2009.83.

  14. Петухов А.В., Маркова В.А., Моторин Д.В. и др. Получение CAR T-лимфоцитов, специфичных к CD19, и оценка их функциональной активности in vitro. Клиническая онкогематология. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9.

    [Petukhov AV, Markova VA, Motorin DV, et al. Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro. Clinical oncohematology. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9. (In Russ)]

  15. Yanez L, Sanchez-Escamilla M, Perales MA. CAR T Cell Toxicity: Current Management and Future Directions. HemaSphere. 2019;3(2):e186. doi: 10.1097/HS9.0000000000000186.

  16. Barrett DM, Teachey DT, Grupp SA. Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr. 2014;26(1):43–9. doi: 10.1097/MOP.0000000000000043.

  17. Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8. doi: 10.1038/s41591-018-0041-7.

  18. Jones G, Ding C. Tocilizumab: A review of its safety and efficacy in rheumatoid arthritis. Clin Med Ins Arthrit Musculoskel Dis. 2010;3:81–9. doi: 10.4137/cmamd.s4864.

  19. Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Mol Ther. 2014;22:s295–s296. doi: 10.1016/s1525-0016(16)35779-3.

  20. Hunter BD, Jacobson CA. CAR T-cell associated neurotoxicity: Mechanisms, clinicopathologic correlates, and future directions. J Nat Cancer Inst. 2019;111(7):646–54. doi: 10.1093/jnci/djz017.

  21. Sachdeva M, Duchateau P, Depil S, et al. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J Biol Chem. 2019;294(14):5430–7. doi: 10.1074/jbc.AC119.007558.

  22. Sterner RM, Sakemura R, Cox M, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019;133(7):697–709. doi: 10.1182/blood-2018-10-881722.

  23. Becher B, Tugues S, Greter M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity. 2016;45(5):963–73. doi: 10.1016/j.immuni.2016.10.026.

  24. Wright HL, Bucknall RC, Moots RJ, et al. Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy. Rheumatology. 2012;51(3):451–9. doi: 10.1093/rheumatology/ker338.

  25. Donatien P, Anand U, Yiangou Y, et al. Granulocyte-macrophage colony-stimulating factor receptor expression in clinical pain disorder tissues and role in neuronal sensitization. Pain Rep. 2018;3(5):e676. doi: 10.1097/PR9.0000000000000676.

  26. Xhangolli I, Dura B, Lee G, et al. Single-cell Analysis of CAR-T Cell Activation Reveals A Mixed TH1/TH2 Response Independent of Differentiation. Genom Proteom Bioinform. 2019;17(2):129–39. doi: 10.1016/j.gpb.2019.03.002.

  27. Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage–derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017;19(7):867–80. doi: 10.1016/j.jcyt.2017.04.001.

Multiple Myeloma

SV Semochkin

NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997; Municipal Clinical Hospital No. 52, 3 Pekhotnaya str., Moscow, Russian Federation, 123182

For correspondence: Prof. Sergei Vyacheslavovich Semochkin, MD, PhD, 3 Pekhotnaya str., Moscow, Russian Federation, 123182; Tel./fax: +7(495)369-00-36; e-mail: semochkin_sv@rsmu.ru

The interview was conducted by Prof. E.A. Osmanov, MD, PhD.

Read in PDF