Clinical Efficacy of Daratumumab in Monotherapy of Relapsed/Refractory Multiple Myeloma

SS Bessmeltsev1, EV Karyagina2, EYu Ilyushkina2, ZhL Stolypina2, RR Miftakhova1, II Kostroma1, TL Shelkovskaya2

1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

2 Municipal Hospital No. 15, 4 Avangardnaya str., Saint Petersburg, Russian Federation, 198205

For correspondence: Prof. Stanislav Semenovich Bessmeltsev, MD, PhD, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel.: +7(812)717-67-80, +7(911)228-18-01; e-mail: bsshem@hotmail.com, bessmeltsev@yandex.ru

For citation: Bessmeltsev SS, Karyagina EV, Ilyushkina EYu, et al. Clinical Efficacy of Daratumumab in Monotherapy of Relapsed/Refractory Multiple Myeloma. Clinical oncohematology. 2020;13(1):25–32. (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-25-32


ABSTRACT

Background. Daratumumab is IgG1-κ humanized anti-CD38 monoclonal antibody. It has a direct impact on tumor and immunomodulatory effect.

Aim. To assess the efficacy of daratumumab monotherapy in patients with progressive, and relapsed/refractory multiple myeloma (MM), as well as to find out the degree of toxicity and safety of this drug.

Materials & Methods. The trial included 10 MM patients (3 men and 7 women) aged 51–74 years (median 57 years). Stage 3 (according to Durie-Salmon system) was determined in all patients, in 2 of them stage 3B with creatinine clearance < 30 mL/min was reported. According to ISS (International Staging System) criteria, stage 2 and stage 3 were identified in 6 and 4 patients, respectively. All the patients had been previously treated with bortezomib and lenalidomide with further double refractoriness in 4 out of 10 patients. Bendamustine and carfilzomib were administered to one patient each, both in combined regimens. The number of previous therapy lines was 3–6 (median 5).

Results. Overall response was 50 % including 2 (20 %) patients with very good partial remission. In 1 (10 %) patient complete remission was achieved. During the follow-up of 6–32 months (median 15 months) median overall survival was not achieved. Median progression-free survival was 17.8 months. Daratumumab is characterized by favorable safety profile. In 20 % of patients infusion-induced reactions with severity grades 1–2 were observed. Among other adverse events the following should be pointed out: weakness (30 %), nausea (10 %), headache (10 %), anorexia (10 %), thrombocytopenia (20 %), and neutropenia (30 %). No serious complications were reported.

Conclusion. Daratumumab treatment is a safe and effective method of anticancer drug therapy in relapsed/refractory MM.

Keywords: daratumumab, multiple myeloma, complete remission, overall response, survival, double refractoriness.

Received: August 22, 2019

Accepted: December 10, 2019

Read in PDF


REFERENCES

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.

    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

  2. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsed after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. 2012;26(1):149–57. doi: 10.1038/leu.2011.196.

  3. Usmani S, Ahmadi T, Ng Y, et al. Analysis of Real-World Data on Overall Survival in Multiple Myeloma Patients With ≥ 3 Prior Lines of Therapy Including a Proteasome Inhibitor (PI) and an Immunomodulatory Drug (IMiD), or Double Refractory to a PI and an IMiD.  2016;21(11):1–7. doi: 10.1634/theoncologist.2016-0104.

  4. Terpos E, Kanellias N, Christoulas D, et al. Pomalidomide: a novel drug to treat relapsed and refractory multiple myeloma. OncoTargets Ther. 2013;6:531–8. doi: 10.2147/OTT.S34498.

  5. Семочкин С.В., Салогуб Г.Н., Бессмельцев С.С., Капланов К.Д. Практические аспекты применения карфилзомиба при множественной миеломе. Клиническая онкогематология. 2019;12(1):21–31. doi: 10.21320/2500-2139-2019-12-1-21-31.

    [Semochkin SV, Salogub GN, Bessmeltsev SS, Kaplanov KD. Practical Aspects of the Use of Carfilzomib in Multiple Myeloma. Clinical oncohematology. 2019;12(1):21–31. doi: 10.21320/2500-2139-2019-12-1-21-31. (In Russ)]

  6. Moreau P, Masszi T, Grzasko N, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374(17):1621–34. doi: 10.1056/nejmoa1516282.

  7. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomized, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/s1470-2045(13)70380-2.

  8. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi: 10.1056/nejmoa1411321.

  9. Бессмельцев С.С. Анти-CD38 моноклональные антитела в лечении рецидивов/рефрактерных форм множественной миеломы. Вестник гематологии. 2018;XIV(3):5–18.

    [Bessmeltsev SS. CD38 antibodies in patients with relapsed/refractory multiple myeloma. Vestnik gematologii. 2018; XIV(3):5–18. (In Russ)]

  10. Deckert J, Wetzel MC, Bartle LM, et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38 hematologic malignancies. Clin Cancer Res.  2014;20(17):4574–83. doi: 10.1158/1078-0432.CCR-14-0695.

  11. de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol.  2011;186(3):1840–8. doi: 10.4049/jimmunol.1003032.

  12. van de Donk WCJ, Richardson P, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. 2018;131(1):13–29. doi: 10.1182/blood-2017-06-740944.

  13. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–19. doi: 10.1056/nejmoa1506348.

  14. Lonial S, Weiss BM, Usmani SZ, et al. Daratumumab monotherapy in patients with treatment refractory multiple myeloma (SIRIUS): an open-label, randomized, phase 2 trial.   2016;387(10027):1551–60. doi: 10.1016/s0140-6736(15)01120-4.

  15. Usmani SZ, Weiss BM, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma.   2016;128(1):37–44. doi: 10.1182/blood-2016-03-705210.

  16. Durie BGM, San Miguel J, Harousseau J-L, et al. International uniform response criteria for multiple myeloma. 2006;20(9):1467–73. doi: 10.1038/sj.leu.2404284.

  17. Головкина Л.Л., Минеева Н.В., Менделеева Л.П. и др. Модификация преаналитического этапа непрямой пробы Кумбса у больных множественной миеломой при лечении даратумумабом. Гематология и трансфузиология. 2018;63(1):44–54. doi: 10.25837/HAT.2018.45..1..004.

    [Golovkina LL, Mineeva NV, Mendeleeva LP, et al. A Modification of the pre-analytical phase of the indirect Coombs test for multiple myeloma patients treated with daratumumab. Russian journal of hematology and transfusiology. 2018;63(1):44–54. doi: 10.25837/HAT.2018.45..1..004. (In Russ)]

  18. Минеева Н.В., Кробинец И.И., Бодрова Н.Н. и др. Алгоритм индивидуального подбора гемокомпонентов и проведения исследования антигенов эритроцитов и антиэритроцитарных антител в сложно диагностируемых случаях. Методическое пособие. СПб.: ВиТ-принт, 2018. 24 с.

    [Mineeva NV, Krobinets II, Bodrova NN, et al. Algoritm individualnogo podbora gemokomponentov i provedeniya issledovaniya antigenov eritrotsitov i antieritrotsitarnykh antitel v slozhno diagnostiruemykh sluchayakh. Metodicheskoe posobie. (Algorithm of individual hemocomponent management and analysis of erythrocyte antigens and anti-erythrocyte antibodies used in difficult for diagnosis cases. Methodological handbook.) Saint Petersburg: ViT-print Publ.; 2018. 24 p. (In Russ)]

Primary Bone Lymphomas: 18F-FDG PET and PET-CT as Methods of Diagnosis and Efficacy Estimation of Antitumor Treatment

AK Smol’yaninova1, ER Moskalets2, GA Yatsyk1, IE Kostina1, AS Bogolyubskaya3, NG Gabeeva1, EG Gemdzhian1, SA Tatarnikova1, DS Badmadzhapova1, EE Zvonkov1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 European Medical Center, 35 Shchepkina str., Moscow, Russian Federation, 129090

3 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Anna Konstantinovna Smol’yaninova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(926)912-31-16; e-mail: annmo8@mail.ru

For citation: Smol’yaninova AK, Moskalets ER, Yatsyk GA, et al. Primary Bone Lymphomas: 18F-FDG PET and PET-CT as Methods of Diagnosis and Efficacy Estimation of Antitumor Treatment. Clinical oncohematology. 2020;13(1):33–49 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-33-49


ABSTRACT

Background. Primary bone lymphoma (PBL) is a rare malignant tumor. Initial examination aimed at detecting all primary lesions is an indispensable prerequisite for the choice of optimal antitumor treatment. Standard methods of diagnosis (X-ray, CT, and MRI) are not always adequate to measure the real tumor mass. Another well-known characteristic feature of PBL is a challenge in evaluating the effect of its treatment because of residual changes in the bones of most patients. However, the data on using 18F-FDG PET, another method of metabolic imaging, in PBL are rather rare in accessible literature.

Aim. To study the specific use of PET with 18F-FDG at initial examination and efficacy estimation of PBL treatment.

Materials & Methods. The trial included 21 PBL patients who received PET with 18F-FDG at initial examination and a month after the end of treatment. The results of 18F-FDG PET imaging were compared with the data obtained by means of structural diagnostic methods (CT and MRI) and the analysis of biopsy samples with pathologic lesions.

Results. Intensive uptake of 18F-FDG (SUVmax 8.6–40.1, mean SUVmax 23.5), according to PET data, was reported in all patients in those tumor lesions which were identified by the structural diagnostic methods and confirmed by biopsies. Besides, each of 21 cases showed pathologic infiltration of adjacent soft tissues with high metabolic activity. In PET-CT with 18F-FDG 13 further tumor localizations were revealed in 8 (38 %) patients. On completing the therapy, according to CT and MRI data, residual changes were observed in all (n = 21, 100 %) patients. The residual metabolic activity in the involved bones was identified in 13 (62 %) patients (SUVmax 2.91–8.7, mean SUVmax 4.2). In 4 of them the residual lesions were subjected to biopsy. None of 4 cases was reported to show tumors. Only in 1 out of 13 patients with residual metabolic changes a tumor relapse was detected. Overall 10-year survival in the groups of patients with and without FDG+ residual changes was 91 % and 100 %, respectively, with insignificant differences (= 0.39).

Conclusion. PET-CT with 18F-FDG is a highly sensitive technique for evaluating the primary lesion volumes in PBL patients. In 100 % of bone and soft tissue lesions an intensive uptake of 18F-FDG was observed. At the same time our study showed persistent metabolic activity on completing antitumor treatment in more than a half of patients, and in most of them it was not caused by tumor. Therefore, in our view, ongoing residual metabolic activity in PBL cannot always be regarded as an indication for continued treatment or consolidation radiotherapy.

Keywords: primary bone lymphoma, survival, positron emission tomography, diagnosis, efficacy estimation of antitumor treatment.

Received: August 2, 2019

Accepted: December 5, 2019

Read in PDF


REFERENCES

  1. Matikas A, Briasoulis A, Tzannou I, et al. Primary bone lymphoma: a retrospective analysis of 22 patients treated in a single tertiary center. Acta Haematol. 2013;130(4):291–6. doi: 10.1159/000351051.

  2. Bacci G, Jaffe N, Emiliani E, et al. Therapy for primary non-Hodgkin’s lymphoma of bone and a comparison of results with Ewing’s sarcoma. Ten year’s experience at the Istituto Ortopedico Rizzoli. Cancer. 1986;57(8):1468–72. doi: 10.1002/1097-0142(19860415)57:8<1468::aid-cncr2820570806>3.0.co;2-0.

  3. Fidias P, Spiro I, Scobczak ML, et al. Long-term results of combined modality therapy in primary bone lymphomas. Int J Radiat Oncol Biol Phys. 1999;45(5):1213–38. doi: 10.1016/s0360-3016(99)00305-3.

  4. Messina C, Ferreri AJ, Govi S, et al. Clinical features, management and prognosis of multifocal primary bone lymphoma: a retrospective study of the international Extranodal Lymphoma Study Group (the IELSG 14 study). Br J Haematol. 2014;164(6):834–40. doi: 10.1111/bjh.12714.

  5. Морозова А.К., Звонков Е.Е., Мамонов В.Е. и др. Первичные лимфатические опухоли костей и мягких тканей: сравнительная оценка результатов лечения. Терапевтический архив. 2012;84(7):42–9.

    [Morozova AK, Zvonkov EE, Mamonov VE, et al. Primary lymphomas of bones and soft tissues: comparative assessment of treatment results. Terapevticheskii arkhiv. 2012;84(7):42–9. (In Russ)]

  6. Gabeeva NG, Zvonkov EE, Morozova AK, et al. Long-term follow-up of primary bone diffuse large B-cell lymphoma treated with m NHL-BFM-90. Blood. 2016;128(22):3025.

  7. Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичная лимфома костей: 10-летние результаты проспективного исследования в одной клинике. Гематология и трансфузиология. 2018;63(S1):181.

    [Smol’yaninova AK, Gabeeva NG, Mamonov VE, et al. Primary bone lymphoma: 10-year results of a prospective single-center trial. Gematologiya i transfuziologiya. 2018;63(S1):181. (In Russ)]

  8. Lewis VO, Primus G, Anastasi J, et al. Oncologic outcomes of primary lymphomas of bone in adults. Clin Orthop Rel Res. 2003;415:90–7. doi: 10.1097/01.blo.0000093901.12372.ad.

  9. Ostrowski ML, Unni KK, Banks PM, et al. Malignant Lymphoma of Bone. Cancer. 1986;58(12):2646–55. doi: 10.1002/1097-0142(19861215)58:12<2646::aid-cncr2820581217>3.0.co;2-u.

  10. Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфомы костей: долгосрочные результаты проспективного одноцентрового исследования. Клиническая онкогематология. 2019;12(3):247–62. doi: 10.21320/2500-2139-2019-12-3-247-262.

    [Smol’yaninova AK, Gabeeva NG, Mamonov VE, et al. Primary Bone Lymphomas: Long-Term Results of a Prospective Single-Center Trial. Clinical oncohematology. 2019;12(3):247–62. doi: 10.21320/2500-2139-2019-12-3-247-262. (In Russ)]

  11. Ueda T, Aozasa K, Ohsawa M, et al. Malignant lymphomas of bone in Japan. Cancer. 1989;64(11):2387–92. doi: 10.1002/1097-0142(19891201)64:11<2387::aid-cncr2820641132>3.0.co;2-1

  12. Meignan M, Barrington S, Itti E, et al. Report on the 4th international workshop on positron emission tomography in lymphoma held in Menton, France, 3–5 October 2012. Leuk Lymphoma. 2013;55(1):31–7. doi: 10.3109/10428194.2013.802784.

  13. Егорова Е.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфатические опухоли костей: описание двух случаев и обзор литературы. Онкогематология. 2008;3(4):5–10.

    [Egorova EK, Gabeeva NG, Mamonov VE, et al. Primary lymphatic tumors of bones: two case reports and a review of l Onkogematologiya. 2008;3(4):5–10. (In Russ)]

  14. Christie DR, Dear K, Le T, et al. Limited chemotherapy and shrinking field radiotherapy for osteolymphoma (primary bone lymphoma): results from the trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 prospective trial. Int J Radiat Oncol Biol Phys. 2011;80(4):1164–70. doi: 10.1016/j.ijrobp.2010.03.036.

  15. Iwaya Y, Tekenaka K, Akamatsu T. Primary Gastric Diffuse Large B-cell Lymphoma with Orbital Involvement: Diagnostic Usefulness of 18-fluorodeoxyglucose Positron Emission Tomography. Intern Med. 2011;50(18):1953–6. doi: 10.2169/internalmedicine.50.5524.

  16. Demircay E, Hornicek J, Mankin HJ, at al. Malignant Lymphoma of Bone: A Review of 119 Patients. Clin Orthop Relat Res. 2013;471(8):2684–90. doi: 10.1007/s11999-013-2991-x.

  17. Fletcher CDM, Unni KK, Mertens F. (eds) Pathology and genetics of tumours of soft tissue and bone. World Health Organization Classification of Tumours. 3rd Edition. Lyon: IARC Press; 2002.

  18. Fletcher CDM. The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology. 2006;48(1):3–12. doi: 10.1111/j.1365-2559.2005.02284.x.

  19. Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. World health organization classification of tumours of soft tissue and bone. 4th edition. Lyon: IARC Press; 2013. 468 p.

  20. Krishnan А, Shirkhoda А, Tehranzadeh Т, et al. Primary Bone Lymphoma: Radiographic–MR Imaging Correlation. RadioGraph. 2003;23(6):1371–87. doi: 10.1148/rg.236025056.

  21. Mulligani ME, Kransdorf MJ. Sequestra in Primary Lymphoma of Bone: Prevalence and Radiologic Features. Am J Roentgenol. 1993;160(6):1245–8. doi: 10.2214/ajr.160.6.8498226.

  22. Canete AN, Bloem HL, Kroon HM. Primary bone tumors of the spine. Radiologia. 2016;58(Suppl 1):68–80. doi: 10.1016/j.rx.2016.01.001.

  23. Mikhaeel NG. Primary bone lymphoma. Clin Oncol. 2012;24(5):366–70. doi: 10.1016/j.clon.2012.02.006.

  24. Hicks DC, Gokan T, O’Keefe RJ, et al. Primary lymphoma of bone: correlation of magnetic resonance imaging features with cytokine production by tumor cells. Cancer. 1995;75(4):973–80. doi: 10.1002/1097-0142(19950215)75:4<973::aid-cncr2820750412>3.0.co;2-8.

  25. Messina C, Christie D, Zucca E, et al. Primary and secondary bone lymphomas. Cancer Treat Rev. 2015;41(3):235–46. doi: 10.1016/j.ctrv.2015.02.001.

  26. Remier RR, Bruce AC, Yong RC, et al. Lymphoma Presenting in Bone. Results of Histopathology, Staging, and Therapy. Ann Inter Med. 1977;87(1):50–5. doi: 10.7326/0003-4819-87-1-50.

  27. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–67. doi: 10.1200/JCO.2013.54.8800.

  28. Jawad MU, Schneiderbauer MM, Min ES, et al. Primary Lymphoma of Bone in Adult Patients. Cancer. 2010;116(4):871–9. doi: 10.1002/cncr.24828.

  29. Schaefer NG, Strobel K, Taverna C, et al. Bone involvement in patients with lymphoma: the role of FDG-PET/CT. Eur J Nucl Med Mol Imag. 2007;34(1):60–7. doi: 10.1007/s00259-006-0238-8.

  30. Ramadan KM, Shenkier T, Sehn LH, et al. 131 patients with primary bone lymphoma: a population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol. 2007;18(1):129–35. doi: 10.1093/annonc/mdl329.

  31. Park YH, Kim S, Choi SJ, et al. Clinical impact of whole-body FDG-PET for evaluation of response and therapeutic decision-making of primary lymphoma of bone. Ann Oncol. 2005;16(8):1401–2. doi: 10.1093/annonc/mdi234.

  32. Park YH, Choi SJ, Ryoo BY, et al. PET imaging with F-18 fluorodeoxyglucose for primary lymphoma of bone. Clin Nucl Med. 2005;30(2):131–4. doi: 10.1097/00003072-200502000-00020.

  33. Singh Т, Satheesh С, Lakshmaiah С, et al. Primary bone lymphoma: A report of two cases and review of the literature. J Cancer Res Ther. 2010;6(3):296–8. doi: 10.4103/0973-1482.73366.

  34. Wang LJ, Wu HB, Wang M, et al. Utility of F-18 FDG PET/CT on the evaluation of primary bone lymphoma. Eur J Radiol. 2015;84(11):2275–9. doi: 10.1016/j.ejrad.2015.09.011.

  35. Baar J, Burkes RL, Gospodarowicz M. Primary non-Hodgkin’s lymphoma of bone. Semin Oncol. 1999;26(3):270–5.

  36. Liu Y. The role of 18F-FDG PET/CT in staging and restaging primary bone lymphoma. Nucl Med Commun. 2017;38(4):319–24. doi: 10.1097/MNM.0000000000000652.

  37. Kim SY, Shin DY, Lee SS. Clinical characteristics and outcomes of primary bone lymphoma in Korea. Korean J Hematol. 2012;47(3):213–8. doi: 10.5045/kjh.2012.47.3.213.

  38. Milks KS, McLean TW, Anthony EY. Imaging of primary pediatric lymphoma of bone. Pediatr Radiol. 2016;46(8):1150–7. doi: 10.1007/s00247-016-3597-8.

  39. Zinzani PL, Carrillo G, Ascani S, et al. Primary bone lymphoma: experience with 52 patients. Haematologica. 2003;88(3):280–5.

  40. Baar J, Burkes R, Bell R. Primary Non-Hodgkin’s Lymphoma of Bone. A clinicopathologic study. Cancer. 1994;73(4):1194–9. doi: 10.1002/1097-0142(19940215)73:4<1194::aid-cncr2820730412>3.0.co;2-r.

  41. Choi J, Raghavan M. Diagnostic imaging and Image-Guided Therapy of Skeletal Metastases. Cancer Control. 2012;19(2):102–12. doi: 10.1177/107327481201900204.

  42. Hwang S. Imaging of lymphoma of musculoskeletal system. Magn Reson Imag Clin N Am. 2010;18(1):75–93. doi: 10.1016/j.mric.2009.09.006.

  43. Rapoport AP, Constine LS, Packman CH, et al. Treatment of Multifocal Lymphoma of Bone With Intensified Promace-Cytabom Chemotherapy and Involved Field Radiotherapy. Am J Hematol. 1998;58(1):1–7. doi: 10.1002/(SICI)1096-8652(199805)58:1<1::AID-AJH1>3.0.CO;2-X.

  44. Seymour JF. Extra-nodal lymphoma in rare localisations: bone, breast and testes. Hematol Oncol. 2013;31(Suppl 1):60–3. doi: 10.1002/hon.2081.

  45. Ng AP, Wirth A, Seymour JF, et al. Early therapeutic response assessment by (18)FDG-positron emission tomography during chemotherapy in patients with diffuse large B-cell lymphoma: Isolated residual positivity involving bone is not usually a predictor of subsequent treatment failure. Leuk Lymphoma. 2007;48(3):596–600. doi: 10.1080/10428190601099965.

  46. Rigacci L, Kovalchuk S, Berti V, et al. The use of Deauville 5-point score could reduce the risk of false-positive fluorodeoxyglucose-positron emission tomography in the posttherapy evaluation of patients with primary bone lymphomas. World J Nucl Med. 2018;17(3):157–65. doi: 10.4103/wjnm.WJNM_42_17.

  47. Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61. doi: 10.1200/JCO.2005.01.891.

  48. Cheson BD, Pfistner B, Juweid ME, et al. International Harmonization Project for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/JCO.2006.09.2403.

  49. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8. doi: 10.1200/JCO.2006.08.2305.

  50. Albano D, Agnello F, Patti C, et al. Whole-body magnetic resonance imaging and FDG-PET/CT for lymphoma staging: Assessment of patient experience. Egypt J Radiol Nucl Med. 2017;48(4):1043–7. doi: 1016/j.ejrnm.2017.06.002.

  51. Wang D, Huo Y, Chen S et al. Whole-body MRI versus 18F-FDG PET/CT for pretherapeutic assessment and staging of lymphoma: a meta-analysis. OncoTarg Ther. 2018;11:3597–608. doi: 10.2147/OTT.S148189.

  52. Galia M, Albano D, Tarella C, et al. Whole body magnetic resonance in indolent lymphomas under watchful waiting: the time is now. Eur Radiol. 2017;28(3):1187–93. doi: 10.1007/s00330-017-5071-x.

  53. Toledano-Massiah S, Luciani A, Itti E, et al. Whole-Body Diffusion-weighted Imaging in Hodgkin Lymphoma and Diffuse Large B-Cell Lymphoma. RadioGraph. 2015;35(3):747–64. doi: 10.1148/rg.2015140145.

  54. Koh D, Collins DJ. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. Am J Roentgenol. 2007;188(6):1622–35. doi: 10.2214/AJR.06.1403.

Characteristics of Hematopoiesis in Follicular Lymphoma Patients

MA Frenkel, AV Mozhenkova, NA Kupryshina, NA Falaleeva, NN Tupitsyn

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Prof. Marina Abramovna Frenkel, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-45-60; e-mail: marinafren@yandex.ru

For citation: Frenkel MA, Mozhenkova AV, Kupryshina NA, et al. Characteristics of Hematopoiesis in Follicular Lymphoma Patients. Clinical oncohematology. 2020;13(1):50–57 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-50-57


ABSTRACT

Aim. To assess hematopoiesis in follicular lymphoma (FL) patients at different disease stages with different morphologic structures of tumor and bone marrow microenvironment.

Materials & Methods. The trial included 152 FL patients treated from 2006 to 2016. In all of them the diagnosis was based on immunohistochemical analysis of extramedullar tumor as well as the analysis of bone marrow aspirates and core biopsy samples. In cases of bone marrow lesions (n = 33) a detailed morpho-immunophenotypic evaluation of tumor cells was carried out by means of flow cytometry, and lymphocyte subset panel evaluation was performed.

Results. Anemia, thrombocytopenia, and monocytosis in blood of FL patients are not associated with bone marrow lesions. In the absence of signs of these lesions anemia was detected in 23 (19 %) patients, thrombocytopenia was identified in 8 (7 %) patients, and 11 (9.1 %) patients showed monocytosis. Among patients with bone marrow lesions 9 (27.2 %) anemia, 11 (33.8 %) thrombocytopenia, and 7 (21 %) monocytosis cases were reported. Depth of cytopenia was determined by the degree of bone marrow tumor infiltration. Based on lymphocyte subset panel evaluation the following types of tumor cells in bone marrow aspirates were characterized: elements with blastic structure of nuclear chromatin, atypical lymphoid cells, and those similar to normal lymphocytes. Immunophenotypic heterogeneity of tumor cells in bone marrow was demonstrated. The trial showed that hemoglobin level, the count of blood thrombocytes and monocytes as well as the count of bone marrow T-cells are not associated with types of tumor cells.

Conclusion. Arrest of hematopoiesis and increasing number of monocytes in blood correlate with the degree of bone marrow tumor infiltration and are not affected by morphoimmunological characteristics of FL tumor cells.

Keywords: follicular lymphoma, centrocyte, centroblast, aspirate, core biopsy sample, immunophenotype.

Received: February 8, 2019

Accepted: December 2, 2019

Read in PDF


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC Press; 2017. рр. 266–76.

  2. Ковригина А.М., Пробатова Н.А. Дифференциальная диагностика неходжкинских В-клеточных лимфом. Онкогематология. 2017;2(2):4–9.

    [Kovrigina AM, Probatova NA. Differential diagnosis of non-Hodgkin’s B-cell lymphomas. 2017;2(2):4–9. (In Russ)]

  3. Тумян Г.С., Леонтьева А.А., Фалалеева Н.А. и др. Фолликулярная лимфома: 10 лет терапии. Клиническая онкогематология. 2012;5(3):204–13.

    [Tumyan GS, Leont’eva AA, Falaleeva NA, et al. Follicular lymphoma: 10 years of therapy. Klinicheskaya onkogematologiya. 2012;5(3):204–13. (In Russ)]

  4. Morra E, Lazzarino M, Castello A, et al. Bone marrow and blood involvement by non-Hodgkin’s lymphoma: A study of clinicopathologic correlations and prognosis significance in relationship to the Working Formulation. Eur J Haemat. 2089;42(5):445–53. doi: 10.1111/j.1600-0609.1989.tb01469.x.

  5. Bain BJ. Bone marrow aspiration. J Clin Pathol. 2001;54(9):657–63. doi: 10.1136/jcp.54.9.657.

  6. Schwonzen M, Pohl C, Steinmetz T, et al. Bone marrow involvement in non-Hodgkin’s lymphoma: increased sensitivity by combination of immunology, cytomorphology and threphine histology. Br J Haematol. 1992;81(3):362–9. doi: 10.1111/j.1365-2141.1992.tb08240.x.

  7. Sah SP, Matutes E, Wotherspoon P, et al. A comparison of flow cytometry, bone marrow biopsy, and bone marrow aspirates in the detection of lymphoid infiltration in B cell disorders. J Clin Pathol. 2003;56(2):129–32. doi: 10.1136/jcp.56.2.129.

  8. Пластинина Л.В., Ковригина А.М., Нестерова А.С. и др. Поражение костного мозга при фолликулярной лимфоме 3-го цитологического типа. Гематология и трансфузиология. 2018;63(S1):12–4.

    [Plastinina LV, Kovrigina AM, Nesterova AS, et al. Bone marrow lesions in grade 3 follicular lymphoma. Gematologiya i transfuziologiya. 2018;63(S1):12–4. (In Russ)]

  9. Френкель М.А., Чигринова Е.В., Купрышина Н.А., Павловская А.И. Диагностическое значение исследования отпечатков трепанобиоптатов костного мозга при периферических неходжкинских лимфомах. Клиническая лабораторная диагностика. 2007;1:44–7.

    [Frenkel MA, Chigrinova EV, Kupryshina NA, Pavlovskaya AI. Diagnostic value of the analysis of bone marrow core biopsy imprints in peripheral non-Hodgkin’s lymphomas. Klinicheskaya laboratornaya diagnostika. 2007;1:44–7. (In Russ)]

  10. Ruthenford SC, Li V, Chion P, et al. Bone marrow biopsies do not impact response assessment for follicular lymphoma patients treated on clinical trials. Br J Haemat. 2017;179(2):242–5. doi: 10.1111/bjh.14839.

  11. Луговская С.А., Почтарь М.Е. Морфология клеток костного мозга в норме и патологии. Тверь: Триада, 2018. 246 с.

    [Lugovskaya SA, Pochtar ME. Morfologiya kletok kostnogo mozga v norme i patologii. (The morphology of bone marrow cells under normal and pathological conditions.) Tver: Triada Publ.; 2018. 246 p. (In Russ)]

  12. Фалалеева Н.А. Фолликулярная лимфома: клиническое и иммунопатогенетическое обоснование рациональной терапии. Дис. … д-ра мед. наук. М., 2017.

    [Falaleeva NA. Follikulyarnaya limfoma: klinicheskoe i immunopatogeneticheskoe obosnovanie ratsionalnoi terapii. (Follicular lymphoma: clinical and immunopathogenetic justification of rational therapy.) [dissertation] Moscow; 2017. (In Russ)]

  13. Gomyo H, Shimoyama K, Minagava K, et al. Morphologic, cytometric and cytogenetic evaluation of bone marrow involvement in B-cell lymphoma. Haematologica. 2003;88(12):1358–65.

  14. De la Motte Rouge T, Schneider M. Anemia in lymphoma. Bull Cancer. 2005;92(5):429–31.

  15. Moullet I, Salles G, Ketterer N, et al. Frequency and significance of anemia in non–Hodgkin’s lymphoma. Ann Oncol. 1998;9(10):1109–15. doi: 10.1023/a:1008498705032.

  16. Park J. Follicular lymphoma in leukemic phase with unusual morphology at diagnoses. Blood Res. 2015;50(4):193–5. doi: 10.5045/br.2015.50.4.193.

  17. Gine E, Montoto S, Bosch F, et al. The Follicular Lymphoma International Prognostic Index (FLIPI) and histological subtype are most important factors to predict histological transformation in follicular lymphoma. Ann Oncol. 2006;17(10):1539–45. doi: 10.1093/annonc/mdl162.

  18. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65. doi: 10.1182/blood-2003-12-4434.

  19. Jacobi N, Rogers TB, Peterson BA. Prognostic factors in follicular lymphoma: a single institution study. Oncol Rep. 2008;20(1):185–93. doi: 10.3892/or.20.1.185.

  20. Vitolo U, Ferreri AJ, Montoto S. Follicular lymphoma. Crit Rev Oncol Hematol. 2008;66(3):248–61. doi: 10.1016/j.critrevonc.2008.01.014.

  21. Kumagai S, Tashima M, Fujikawa J, et al. Ratio of peripheral blood absolute lymphocyte count to absolute monocyte count at diagnosis is associated with progression-free survival in follicular lymphoma. Int J Hematol. 2014;99(6):737–42. doi: 10.1007/s12185-014-1576-0.

  22. Jelicic J, Balint MT, Jovanovic MP, et al. The role of lymphocyte to monocyte ratio, microvessel density and high СD44 tumor cell expression in non Hodgkin lymphomas. Pathol Oncol Res. 2016;22(3):567–77. doi: 10.1007/s12253-015-0032-7.

  23. Marchtselli L, Bari A, Anastasia A, et al. Prognostic role absolute monocyte and absolute lymphocyte counts in patients with advanced-stage follicular lymphoma in the rituximab era: an analysis from the FOLL05 trial of the Fondazione Italiana Linfomi. Br J Haematol. 2015;169(4):544–51. doi: 10.1111/bjh.13332.

Overt and Masked Polycythemia Vera Within the Scope of Ph-Negative Myeloproliferative Diseases

ZhV Tratsevskaya, AM Kovrigina, DI Chebotarev, AL Melikyan, AO Abdullaev, AB Sudarikov

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Prof. Alla Mikhailovna Kovrigina, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

For citation: Tratsevskaya ZhV, Kovrigina AM, Chebotarev DI, et al. Overt and Masked Polycythemia Vera Within the Scope of Ph-negative Myeloproliferative Diseases. Clinical oncohematology. 2020;13(1):58–66 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-58-66


ABSTRACT

Aim. To study the structure of Ph-negative myeloproliferative diseases (Ph– MPD) and to identify morphological markers for diagnosing masked polycythemia vera (PV).

Materials & Methods. Bone marrow core biopsy samples from the database of pathology department of National Research Center for Hematology within the period from January 2014 to June 2017 provided the basis for analyzing the diagnosed Ph– MPD cases. The trial included the bone marrow core biopsy samples of the patients treated and followed-up not only at the National Research Center for Hematology but also at other medical centers in the Russian Federation in the context of clinical, laboratory and molecular data.

Results. In 1611 Ph– MPD patients PV prevailed corresponding to 40.6 % of all cases. In the PV group the masked form was diagnosed in 29 % of patients. Primary myelofibrosis (PMF) was diagnosed in 26.6 % of all patients including 10 % of cases with pre-fibrosis/early stage. The 3d most frequent disorder was essential thrombocythemia (ET) which corresponded to 16 %. JAK2 driver mutation was identified in all 654 PV patients. In 4 cases out of them exon 12 mutation was detected. A similar mutation was found out in PMF (53 %) and ET (60 %). In 36 % of PMF patients and 27 % of ET patients CALR mutation was detected. MPL mutation was identified in 4 % of PMF cases and was not discovered in ET. Triple negative patients were identified in 7 % of PMF and 13 % of ET cases. The designation of “myeloproliferative disease unclassifiable” can be applied to 16.8 % of cases. The trial deals with morphological criteria for diagnosing masked PV during examination of bone marrow core biopsy samples. In 30 % of patients with masked PV (according to the 2017 WHO classification) and splenomegaly (> 14 cm) portal vein thrombosis was identified.

Conclusion. In the Ph– MPD group PV diagnosis prevailed (40.6 %). The histological analysis of bone marrow core biopsy samples of the patients with the masked PV accounting for 29 % of all PV cases, revealed morphological features typical of overt PV. Histological analysis of bone marrow is a reliable method for diagnosing overt and masked PV. Among morphological characteristics of the bone marrow of patients with masked PV and portal vein thrombosis special attention should be paid to the MF-1 grade of reticulin fibrosis (29 % of cases) and loose clusters of megakaryocytes (71.4 %).

Keywords: Ph-negative myeloproliferative disease/neoplasms, masked polycythemia vera, pathomorphology, bone marrow core biopsy.

Received: September 14, 2019

Accepted: December 12, 2019

Read in PDF


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC Press; 2017. 585 p.

  2. Gianelli U, Bossi A, Cortinovis I, et al. Reproducibility of the WHO histological criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. Mod Pathol. 2014;27(6):814–22. doi: 10.1038/modpathol.2013.196.

  3. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.

  4. Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30(2):431–8. doi: 10.1038/leu.2015.277.

  5. Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7. doi: 10.1038/leu.2014.3.

  6. Zamora L, Xicoy B, Cabezon M, et al. Co-existence of JAK2 V617F and CALR mutations in primary myelofibrosis. Leuk Lymphoma. 2015;56(10):2973–4. doi: 10.3109/10428194.2015.1015124.

  7. Lin Y, Liu E, Sun Q, et al. The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-negative myeloproliferative neoplasms. Am J Clin Path. 2015;144(1):165–71. doi: 10.1309/AJCPALP51XDIXDDV.

  8. Ahmed RZ, Rashid M, Ahmed N, et al. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms – Do They Designate a New Subtype? Asian Pacif J Cancer Prevent. 2016;17(3):923–6. doi: 10.7314/apjcp.2016.17.3.923.

  9. Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–70. doi: 10.1016/j.stem.2018.01.011.

  10. Shlush LI. Age-related clonal hematopoiesis. Blood. 2018;131(5):496–504. doi: 10.1182/blood-2017-07-746453.

  11. Steensma DP, Bejar R. Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16. doi: 10.1182/blood-2015-03-631747.

  12. Gianelli U, Iurlo A, Vener C, et al. The Significance of Bone Marrow Biopsy and JAK2V617F Mutation in the Differential Diagnosis Between the “Early” Prepolycythemic Phase of Polycythemia Vera and Essential Thrombocythemia. Am J Clin Pathol. 2008;130(3):336–42. doi: 10.1309/6BQ5K8LHVYAKUAF4.

  13. Thiele J, Kvasnicka HM, Zankovich R, Diehl V. The value of bone marrow histology in differentiating between early stage polycythemia vera and secondary (reactive) polycythemias. Haematologica. 2001;86(4):368–74.

  14. Barbui T, Thiele J, Vannucchi AM, et al. Rethinking the diagnostic criteria of polycythemia vera. Leukemia. 2013;28(6):1191–5. doi: 10.1038/leu.2013.380.

  15. Thiele J, Kvasnicka HM, Diehl V. Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol. 2005;113(4):213–9. doi: 10.1159/000084673.

  16. Barbui T, Thiele J, Carobbio A, et al. Masked polycythemia vera diagnosed according to WHO and BCSH classification. Am J Hematol. 2014;89(2):199–202. doi: 10.1002/ajh.23617.

  17. Kvasnicka HM, Orazi A, Thiele J, et al. European LeukemiaNet study on the reproducibility of bone marrow features in masked polycythemia vera and differentiation from essential thrombocythemia. Am J Hematol. 2017;92(10):1062–7. doi 10.1002/ajh.24837.

  18. Ковригина А.М., Байков В.В. Истинная полицитемия: новая концепция диагностики и клинические формы. Клиническая онкогематология. 2016;9(2):115–22. doi: 10.21320/2500-2139-2016-9-2-115-122.

    [Kovrigina AM, Baikov VV. Polycythemia Vera: New Diagnostic Concept and Its Types. Clinical oncohematology. 2016;9(2):115–22. doi: 10.21320/2500-2139-2016-9-2-115-122. (In Russ)]

  19. Spivak JL, Silver RT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: An alternative proposal. Blood. 2008;112(2):231–9. doi: 10.1182/blood-2007-12-128454.

  20. Silver RT, Chow W, Orazi A, et al. Evaluation of WHO criteria for diagnosis of polycythemia vera: A prospective analysis. Blood. 2013;122(11):1881–6. doi: 10.1182/blood-2013-06-508416.

  21. McMullin MF, Reilly JT, Campbell P, et al. Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. Br J Haematol. 2007;138(6):821–2. doi: 10.1111/j.1365-2141.2007.06741.x.

  22. Murphy S. Diagnostic criteria and prognosis in polycythemia vera and essential thrombocythemia. Semin Hematol. 1999;36(1 Suppl 2):9–13.

  23. Lussana F, Carobbio A, Randi ML, et al. A lower intensity of treatment may underlie the increased risk of thrombosis in young patients with masked polycythaemia Vera. Br J Haematol. 2014;167(4):541–6. doi: 10.1111/bjh.13080.

  24. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;62(1, прил. 1):25–60. doi: 10.18821/0234-5730-2017-62-1-S1-1-60.

    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2016). Gematologiya i transfuziologiya. 2017;62(1 Suppl 1):25–60. doi: 10.18821/0234-5730-2017-62-1-S1-1-60. (In Russ)]

  25. Суборцева И.Н., Колошейнова Т.И., Пустовая Е.И. и др. Истинная полицитемия: обзор литературы и собственные данные. Клиническая онкогематология. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412.

    [Subortseva IN, Kolosheinova TI, Pustovaya EI, et al. Polycythemia Vera: Literature Review and Own Data. Clinical oncohematology. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412. (In Russ)]

  26. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Myeloproliferative neoplasms: Morphology and clinical practice. Am J Hematol. 2016;91(4):430–3. doi: 10.1002/ajh.24288.

  27. Wong WJ, Hasserjian RP, Pinkus GS, et al. JAK2, CALR, MPL and ASXL1 mutational status correlates with distinct histological features in Philadelphia chromosome-negative myeloproliferative neoplasms. Haematologica. 2018;103(2):e63–e68. doi: 10.3324/haematol.2017.178988.

  28. Alvarez-Larran A, Ancochea A, Gracia M, et al. WHO-histological criteria for myeloproliferative neoplasms: reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes. Br J Haematol. 2014;166(6):911–9. doi: 10.1111/bjh.12990.

Gemtuzumab Ozogamicin in the Treatment of Critical Patients with Refractory Acute Myeloid Leukemia (3 Case Reports)

DV Zaitsev, LL Girshova, VV Ivanov, IG Budaeva, DV Motorin, RSh Badaev, KV Bogdanov, YuV Mirolyubova, TS Nikulina, KA Zagorodnikova, NA Zhukova, SV Efremova, TV Chitanava, YuA Alekseeva, AY Zaritskey

VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Daniil Vladislavovich Zaitsev, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(981)727-16-74; e-mail: zaicev_daniil@mail.ru

For citation: Zaitsev DV, Girshova LL, Ivanov VV, et al. Gemtuzumab Ozogamicin in the Treatment of Critical Patients with Refractory Acute Myeloid Leukemia (3 Case Reports). Clinical oncohematology. 2020;13(1):67–74 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-67-74


ABSTRACT

The treatment of refractory acute myeloid leukemia (AML) patients presents considerable challenges. They are often critically ill. The critical conditions of these patients are mainly associated with severe infectious complications resulting in sepsis as well as with the extramedullary lesions with organ dysfunctions. So far, the obtained data demonstrated the successful use of gemtuzumab ozogamicin, the mechanism of which is likely to be based not only on depletion of CD33-positive tumor cells but also on its immunomodulatory effect. The present article focuses on the fast-effect mechanisms of gemtuzumab ozogamicin and deals with clinical experience of successful use of this drug combined with hypomethylating agents in patients with refractory AML whose condition is critical by the time therapy begins. The use of this drug combination results in fast stabilization of health status, recovery of internal organs, and apyrexia with the decreasing systemic inflammatory response within the first days of therapy. All this together with significantly lower blast count in blood and in bone marrow can bring critically ill patients to recovery.

Keywords: acute myeloid leukemia, critically ill patients, gemtuzumab ozogamicin, refractory course.

Received: August 15, 2019

Accepted: December 16, 2019

Read in PDF


REFERENCES

  1. Rabbat A, Chaoui D, Montani D, et al. Prognosis of patients with acute myeloid leukaemia admitted to intensive care. Br J Haematol. 2005;129(3):350–7. doi: 10.1111/j.1365-2141.2005.05459.x.
  2. Thol F, Schlenk R, Heuser M, Ganser A. How I treat refractory and early relapsed acute myeloid leukemia. Blood. 2015;126(3):319–27. doi: 10.1182/blood-2014-10-551911.
  3. Cardenas-Turanzas M, Ravandi-Kashani F, Cortes J, et al. Expectations of Serious Adverse Events at the End-of-Life of Patients with Acute Myeloid Leukemia Who Receive Salvage Therapy. Clin Lymph Myel Leuk. 2013;13(5):579–83. doi: 10.1016/j.clml.2013.03.021.
  4. Patil NK, Bohannon JK, Sherwood ER. Immunotherapy: A promising approach to reverse sepsis-induced immunosuppression. Pharmacol Res. 2016;111:688–702. doi: 1016/j.phrs.2016.07.019.
  5. Demirkazik F, Akin A, Uzun O, et al. CT findings in immunocompromised patients with pulmonary infections. Diagn Intervent Radiol. 2008;14(4):75–82.
  6. Kovalski R, Hansen-Flaschen J, Lodato RF, Pietra GG. Localized leukemic pulmonary infiltrates. Diagnosis by bronchoscopy and resolution with therapy. Chest. 1990;97(3):674–8. dol: 1378/chest.97.3.674.
  7. Potenza L, Luppi M, Morselli M, et al. Leukaemic pulmonary infiltrates in adult acute myeloid leukaemia: a high-resolution computerized tomography study. Br J Haematol. 2003;120(6):1058–61. doi: 10.1046/j.1365-2141.2003.04192.x.
  8. Avni B, Koren-Michowitz M. Myeloid sarcoma: Current Approach and Therapeutic Options. Ther Adv Hematol. 2011;2(5):309–16. doi: 1177/2040620711410774.
  9. Lan T, Lin D, Tien H, et al. Prognostic factors of treatment outcomes in patients with granulocytic sarcoma. Acta Haematol. 2009;122(4):238–46. doi: 1159/000253592.
  10. Byrd J, Weiss R, Arthur D, et al. Extramedullary leukemia adversely affects hematologic complete remission rate and overall survival in patients with t(8;21)(q22;q22): results from Cancer and Leukemia Group B 8461. J Clin Oncol. 1997;15(2):466–75. doi: 10.1200/jco.1997.15.2.466.
  11. Ganzel C, Manola J, Douer D, et al. Extramedullary Disease in Adult Acute Myeloid Leukemia Is Common but Lacks Independent Significance: Analysis of Patients in ECOG-ACRIN Cancer Research Group Trials, 1980–2008. J Clin Oncol. 2016;34(29):3544–53. doi: 10.1200/jco.2016.67.5892.
  12. Lengline E, Raffoux E, Lemiale V, et al. Intensive care unit management of patients with newly diagnosed acute myeloid leukemia with no organ failure. Leuk Lymphoma. 2012;53(7):1352–9. doi: 10.3109/10428194.2011.649752.
  13. Kurimoto M, Matsuoka H, Hanaoka N, et al. Pretreatment of leukemic cells with low-dose decitabine markedly enhances the cytotoxicity of gemtuzumab ozogamicin. 2013;27(1):233–5. doi: 10.1038/leu.2012.178.
  14. Walter RB, Medeiros BC, Gardner KM, et al. Gemtuzumab ozogamicin in combination with vorinostat and azacitidine in older patients with relapsed or refractory acute myeloid leukemia: a phase I/II study. 2014;99(1):54–9. doi: 10.3324/haematol.2013.096545.
  15. Medeiros BC, Tanaka TN, Balaian L, et al. A Phase I/II Trial of the Combination of Azacitidine and Gemtuzumab Ozogamicin for Treatment of Relapsed Acute Myeloid Leukemia. Clin Lymph Myel Leuk. 2018;18(5):346–52. doi: 10.1016/j.clml.2018.02.017.
  16. McNeil MJ, Parisi MT, Hijiya N, et al. Clinical and Radiographic Response of Extramedullary Leukemia in Patients Treated With Gemtuzumab Ozogamicin. J Pediatr Hematol Oncol. 2019;41(3):e174–e176. doi: 10.1097/MPH.0000000000001201.
  17. Amadori S. New agents for the treatment of acute myeloid leukemia: gemtuzumab ozogamicin. Hematol Meet Rep. 2008;2(5):69–71.
  18. Takeshita A. Efficacy and resistance of gemtuzumab ozogamicin for acute myeloid leukemia. Int J Hematol. 2013;97(6):703–16. doi: 10.1007/s12185-013-1365-1.
  19. Aribi A, Kantarjian MH, Estey EH, et al. Combination therapy with arsenic trioxide, all-trans retinoic acid, and gemtuzumab ozogamicin in recurrent acute promyelocytic leukemia. Cancer. 2007;109(7):1355–9. doi: 10.1002/cncr.22524.
  20. Tsimberidou A-M, Estey E, Whitman GJ, et al. Extramedullary relapse in a patient with acute promyelocytic leukemia: successful treatment with arsenic trioxide, all-trans retinoic acid and gemtuzumab ozogamicin therapies. Leuk Res. 2004;28(9):991–4. doi: 1016/j.leukres.2004.01.004.
  21. Owonikoko T, Agha M, Balassanian R, et al. Gemtuzumab therapy for isolated extramedullary AML relapse following allogeneic stem-cell transplant. Nat Clin Pract Oncol. 2007;4(8):491–5. doi: 10.1038/ncponc0899.
  22. Ando T, Mitani N, Matsunaga K, et al. Gemtuzumab ozogamicin therapy for isolated extramedullary AML relapse after allogeneic hematopoietic stem-cell transplantation. J Exper Med. 2010;220(2):121–6. doi: 10.1620/tjem.220.121.
  23. Silverman LR, Fenaux P, Mufti GJ, et al. Continued Azacitidine Therapy Beyond Time of First Response Improves Quality of Response in Patients With Higher-Risk Myelodysplastic Syndromes. 2011;117(12):2697–702. doi: 10.1002/cncr.25774.
  24. Prokop A, Wrasidlo W, Lode H, et al. Induction of apoptosis by enediyne antibiotic calicheamicin θII proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner. Oncogene. 2003;22(57):9107–20. doi: 10.1038/sj.onc.1207196.
  25. Wunderlich M, Stockman C, Devarajan M, et al. A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti-IL-6R treatment. JCI Insight. 2016;1(15):e88181. doi: 10.1172/jci.insight.88181.
  26. Karakike E, Giamarellos-Bourboulis EJ. Macrophage Activation-Like Syndrome: A Distinct Entity Leading to Early Death in Sepsis. Front Immunol. 2019;10:55. doi: 10.3389/fimmu.2019.00055.
  27. Prokocimer M, Molchadsky A, Rotter V. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood. 2017;130(6):699–712. doi: 10.1182/blood-2017-02-763086.
  28. Welch J, Petti A, Miller C, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–36. doi: 1056/NEJMoa1605949.

  29. Stahl M, DeVeaux M, Montesinos P, et al. Hypomethylating agents in relapsed and refractory AML: outcomes and their predictors in a large international patient cohort. Blood Adv. 2018;2(8):923–32. doi: 10.1182/bloodadvances.2018016121.

  30. Balaian L, Ball ED. Cytotoxic activity of gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia correlates with the expression of protein kinase Syk. Leukemia. 2006;20(12):2093–101. doi: 10.1038/sj.leu.2404437.

  31. Nand S, Othus M, Godwin JE, et al. A phase 2 trial of azacitidine and gemtuzumab ozogamicin therapy in older patients with acute myeloid leukemia. 2013;122(20):3432–3439. doi: 10.1182/blood-2013-06-506592.

Crucial Role of BAALC-Expressing Progenitor Cells in Emergence and Development of Post-Transplantation Relapses in Patients with Acute Myeloid Leukemia

NN Mamaev, AI Shakirova, IM Barkhatov, YaV Gudozhnikova, TL Gindina, OV Paina, LS Zubarovskaya, BV Afanas’ev

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Prof. Nikolai Nikolaevich Mamaev, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; e-mail: nikmamaev524@gmail.com

For citation: Mamaev NN, Shakirova AI, Barkhatov IM, et al. Crucial Role of BAALCExpressing Progenitor Cells in Emergence and Development of Post-Transplantation Relapses in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2020;13(1):75–88 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-75-88


ABSTRACT

This article presents data demonstrating frequent BAALC hyperexpression, also in combination with WT1 hyperexpression, in children and adults with acute myeloid leukemia (AML). Treatment included allogeneic hematopoietic stem cell transplantation. The analysis of serial measurements of BAALC and WT1 expression level in 50 AML patients (37 adults and 13 children) showed that the increased BAALC expression is more common in patients with M1, M2, M4, and M5 FAB variants of AML with equal frequency in adults and children. Furthermore, the increased BAALC expression was rather common in combination with the increased WT1 expression, which predicted poorer prognosis. Since BAALC expression level in AML patients is closely related to AML-producing progenitor cells of leukemia hematopoiesis, a serial study of this phenomenon offers insights into the role of these cells in emergence and development of post-transplantation relapses, which is of both theoretical and practical importance.

Keywords: acute myeloid leukemia, BAALC and WT1 genes, synchronous hyperexpression, post-transplantation relapses, BAALCproducing progenitor cells, prognosis.

Received: June 30, 2019

Accepted: December 1, 2019

Read in PDF


REFERENCES

  1. MacLean AL, Lo Celso C, Stumpf MPH. Stem cell population biology: Insights from hematopoiesis. Stem Cells. 2017;35(1):88–8. doi: 10.1002/stem.2508.

  2. Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukemia-initiating cells. Nature. 2006;441(25):475–82. doi: 10.1038/nature04703.

  3. Quek E, Otto GW, Garnett C, et al. Genertically distinct leukemic stem cells in human CD34 acute myeloid leukemia are arrested at a hematopoietic precursor-like stage. J Exp Med. 2016;213(8):1513–35. doi: 10.1084/jem.20151775.

  4. Brenet F, Scandura JM. Cutting the brakes on hematopoietic regeneration by blocking TGFβ to limit chemotherapy-induced myelosuppression. Mol Cell Oncol. 2015;2(3):e978703. doi: 10.4161/23723556.2014.978703.

  5. Riether C, Schurch CM, Ochsenbein AF. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 2015;22(2):187–98. doi: 10.1038/cdd.2014.89.

  6. Laurenti E, Gottgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature. 2018;553(7689):418–26. doi: 10.1038/nature25022.

  7. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201. doi: 10.1200/JCO.2009.22.4865.

  8. Гудожникова Я.В., Мамаев Н.Н., Бархатов И.М. и др. Результаты молекулярного мониторинга в посттрансплантационный период с помощью серийного исследования уровня экспрессии гена WT1 у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2018;11(3):241–51. doi: 10.21320/2500-2139-2018-11-3-241-251.

    [Gudozhnikova YaV, Mamaev NN, Barkhatov IM, et al. Results of Molecular Monitoring in Posttransplant Period by Means of Series Investigation of WT1 Gene Expression in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2018;11(3):241–51. doi: 10.21320/2500-2139-2018-11-3-241-251. (In Russ)]

  9. Won EJ, Kim H-R, Choi S-Y, et al. Direct confirmation of quiescence of CD34+Cd38- leukemia stem cell populations using single cell culture, their molecular signature and clinicopathological implications. BioMed Central Cancer. 2015;15(1):2017. doi: 10.1186/s12885-015-1233-x.

  10. Gerber JM, Smith BD, Ngwang B, et al. A clinically relevant population of leukemic CD34(+)CD38(-) cells in acute myeloid leukemia. Blood. 2012;119(15):3571–7. doi: 10.1182/blood-2011-06-364182.

  11. Gerber JM, Zeidner JF, Morse S, et al. Association of acute myeloid leukemia’s most immature phenotype with risk groups and outcomes. Haematologica. 2016;101(5):607–16. doi: 10.3324/haematol.2015.135194.

  12. Jentzsch M, Bill M, Nicolet D, et al. Prognostic impact of the CD34+/CD38- cell burden in patients with acute myeloid leukemia receiving allogeneic stem cell transplantation. Am J Hematol. 2017;92(4):388–96. doi: 10.1002/ajh.24663.

  13. Baldus CD, Tanner SM, Kusewitt DF, et al. BAALC, a novel marker of human hematopoietic progenitor cells. Exp Hematol. 2003; 31(11):1051–6. doi: 10.1016/j.exphem.2003.08.004.

  14. Rapin N, Bagger FO, Jendholm J, et al. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients. 2014;123(6):894–904. doi: 10.1182/blood-2013-02-485771.

  15. Morita K, Masamoto Y, Kataoka K, et al. BAALC potentiates oncogenic ERK pathway through interactions with MEKK1 and KLF4. Leukemia. 2015;29(11):2248–56. doi: 10.1038/leu.2015.137.

  16. Jentzsch M, Bill M, Grimm J, et al. High BAALC copy numbers in peripheral blood prior to allogeneic transplantation predict early relapse in acute myeloid leukemia patients. Oncotarget. 2017;8(50):87944–54. doi: 10.18632/oncotarget.21322.

  17. Tanner SM, Austin JL, Leone G, et al. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc Natl Acad Sci USA. 2001;98(24):13901–6. doi: 10.1073/pnas.241525498.

  18. Baldus CD, Tanner SM, Ruppert AS, et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood. 2003;102(5):1613–8. doi: 10.1182/blood-2003-02-0359.

  19. Qi X, Shen Y, Cen J, et al. Up-regulation of BAALC gene may be an important alteration in AML-M2 patients with t(8;21) translocation. J Cell Mol Med. 2008;12(6A):2301–4. doi: 10.1111/j.1582-4934.2008.00447.x.

  20. Langer C, Radmacher MD, Ruppert AS, et al. High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study. 2008;111:5371–9. doi: 10.1182/blood-2007-11-124958.

  21. Mizushima Y, Taki T, Shimada A, et al. Prognostic significance of the BAALC isoform pattern and CEBPA mutations in pediatric acute myeloid leukemia with normal karyotype: a study by the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2010;91(5):831–7. doi: 10.1007/s12185-010-0585-x.

  22. Yahya RS, Sofan MA, Abdelmasseih HM, et al. Prognostic implication of BAALC gene expression in adult acute myeloid leukemia. Clin Lab. 2013;59:621–8. doi: 7754/Clin.Lab.2012.120604.

  23. Becker H, Maharry K, Mrozek K, et al. Prognostic gene mutations and distinct gene- and microRNA-expression signatures in acute myeloid leukemia with a sole trisomy 8. Leukemia. 2014;28(8):1754–8. doi: 10.1038/leu.2014.114.

  24. Santamaria C, Chillon MC, Garcia-Sanz R, et al. BAALC is an important predictor of refractoriness to chemotherapy and poor survival in intermediate-risk acute myeloid leukemia (AML). Ann Hematol. 2010;89(5):453–8. doi: 10.1007/s00277-009-0864-x.

  25. Najima Y, Ohashi K, Kawamura M, et al. Molecular monitoring of BAALC expression in patients with CD34-positive acute leukemia. Int J Hematol. 2010;91(4):636–45. doi: 10.1007/s12185-010-0550-8.

  26. Staffas A, Kanduri M, Hovland R, et al. Nordic Society of Pediatric Hematology and Oncology (NOPHO). Presence of FLT3-ITD and high BAALC expression are independent prognostic markers in childhood acute myeloid leukemia. Blood. 2011;118(22):5905–13. doi: 10.1182/blood-2011-05-353185.

  27. Hirsch P, Tang R, Marzac C, et al. Prognostic impact of high ABC transporter activity in 111 adult acute myeloid leukemia patients with normal cytogenetics when compared to FLT3, NPM1, CEBPA and BAALC. Haematologica. 2012;97(2):241–5. doi: 10.3324/haematol.2010.034447.

  28. Haferlach C, Kern W, Schindela S, et al. Gene expression of BAALC, CDKN1B, ERG, and MN1 adds independent prognostic information to cytogenetics and molecular mutations in adult acute myeloid leukemia. Genes Chromosom 2012;51(3):257–65. doi: 10.1002/gcc.20950.

  29. Zhang J, Shi J, Zhang G, et al. BAALC and ERG expression levels at diagnosis have no prognosis impact on acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2018;97(8):1391–7. doi: 10.1007/s00277-018-3331-8.

  30. Zhou JD, Yang L, Zhang YY, et al. Overexpression of BAALC: clinical significance in Chinese de novo acute myeloid leukemia. Med Oncol. 2015;32(1):386. doi: 10.1007/s12032-014-0386-9.

  31. Xiao SJ, Shen JZ, Huang JL, Fu HY. Prognostic significance of the BAALC gene expression in adult patients with acute myeloid leukemia: A meta-analysis. Mol Clin Oncol. 2015;3(4):880–8. doi: 10.3892/mco.2015.562.

  32. Weber S, Haferlach T, Alpermann T, et al. Feasibility of BAALC gene expression for detection of minimal residual disease and risk stratification in normal karyotype acute myeloid leukaemia. Br J Haematol. 2016;175(5):904–16. doi: 10.1111/bjh.14343.

  33. Shakirova A, Barkhatov I, Churkina A, et al. Prognostic significance of BAALC overexpression in patients with AML during the post-transplant period. Cell Ther Transplant. 2018;7(2):54–63. doi: 10.18620/ctt-1866-8836-2018-7-2-54-63.

  34. Pogosova-Agadjanyan E, Moseley A, Othus M, et al. Impact of specimen heterogeneity on biomarkers in repository samples from patients with acute myeloid leukemia: A SWOG report. Biopreserv Biobank. 2018;16(1):42–52. doi: 10.1089/bio.2017.0079.

  35. Eisfeld AK, Marcucci G, Liyanarachchi S, et al. Heritable polymorphism predisposes to high BAALC expression in acute myeloid leukemia. Proc Natl Acad Sci USA. 2012;109(17):6668–73. doi: 10.1073/pnas.1203756109.

  36. Nadimi M, Rahgozar S, Moafi A, et al. Evaluation of rs62527607 [GT] single nucleotide polymorphism located in BAALC gene in children with acute leukemia using mismatch PCR-RFLP. Cancer Genet. 2016;209(7–8):348–53. doi: 1016/j.cancergen.2016.06.005.

  37. Lam K, Zhang DE. RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci. 2012;1(17):1120–39. doi: 10.2741/3977.

  38. Nolte F, Hecht A, Reinwald M, et al. In acute promyelocytic leukemia (APL) low BAALC gene expression identifies a patient group with favorable overall survival and improved relapse free survival. Leuk Res. 2013;37(4);378–82. doi: 10.1016/j.leukres.2012.

  39. Iljima N, Miyamura K, Itou T, et al. Functional expression of FAS (CD95) in acute myeloid leukemia cells in context of CD34 and CD38 expression: possible correlation with sensitivity to chemotherapy. Blood. 1997;90(12):4901–9. doi: 10.1182/blood.v90.12.4901.

  40. Ding Y, Gao H, Zhang Q. The biomarkers of leukemia stem cells in acute myeloid leukemia. Stem Cell Investig. 2017;4(3):19. doi: 10.21037/sci.2017.02.10.

  41. Yoon JH, Kim HJ, Shin SH, et al. BAALC and WT1 expressions from diagnosis to hematopoietic stem cell transplantation: consecutive monitoring in adult patients with core-binding-factor-positive AML. Eur J Haematol. 2013;91(2):112–21. doi: 10.1111/ejh.12142.

  42. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миелодиспластические синдромы с высокой экспрессией гена EVI1: теоретические и клинические аспекты. Клиническая онкогематология. 2012;5(4):361–4.

    [Mamaev NN, Gorbunova AV, Gindina TL, et al. Leukemias and myelodysplastic syndromes with high EVI1 gene expression: theoretical and clinical aspects. Klinicheskaya onkogematologiya. 2012;5(4):361–4. (In Russ)]

  43. Hermkens MCH, van den Heuvel-Eibrink MM, Arentsen-Peters STCJM, et al. The clinical relevance of BAALC and ERG expression levels in pediatric AML. Leukemia. 2013;27(3):735–7. doi: 1038/leu.2012.233.

  44. Minetto P, Guolo F, Clavio M, et al. Combined assessment of WT1 and BAALC gene expression at diagnosis may improve leukemia-free survival prediction in patients with myelodysplastic syndromes. Leuk Res. 2015;39(8):866–73. doi: 10.1016/j.leuk.res.2015.04.011.

  45. Hinai A, Valk P. Review: Aberrant EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2016;172(6):870–8. doi: 10.1111/bjh.13898.

  46. Varn FS, Andrews EH, Cheng C. Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia. Sci Rep. 2015;5(1):16987. doi: 10.1038/srep16987.

  47. Miglino M, Colombo N, Pica G, et al. WT1 overexpression at diagnosis may predict favorable outcome in patients with de novo non-M3 acute myeloid leukemia. Leuk Lymphoma. 2011;52(10):1961–9. doi: 10.3109/10428194.2011.585673.

  48. Zhu YM, Wang PP, Huang JY, et al. Gene mutational pattern and expression level in 560 acute myeloid leukemia patients and their clinical relevance. J Transl Med. 2017;15(1):178. doi: 10.1186/s12967-017-1279-4.

  49. DiNardo CD, Cortes JE. Mutations in AML: prognostic and therapeutic implications. Hematology Am Soc Hematol Educ Program. 2016;2016(1):348–55. doi: 10.1182/asheducation-2016.1.348.

  50. Eisfeld AK, Marcucci G, Maharry K, et al. miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia. Blood. 2012;120(2):249–58. doi: 10.1182/blood-2012-02-408492.

  51. Franzoni A, Passon N, Fabbro D, et al. Histone post-translational modifications associated to BAALC expression in leukemic cells. Biochem Biophys Res 2012;417(2):721–5. doi: 10.1016/j.bbrc.2011.12.013.

Risk Factors for Rehospitalizations after Allogeneic Hematopoietic Stem Cell Transplantation

MYu Drokov, AA Dmitrova, LA Kuzmina, VA Vasil’eva, ED Mikhaltsova, OM Koroleva, EV Usikova, EN Parovichnikova, VG Savchenko

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Mikhail Yur’evich Drokov, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)614-90-42; e-mail: mdrokov@gmail.com

For citation: Drokov MYu, Dmitrova AA, Kuzmina LA, et al. Risk Factors for Rehospitalization after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2020;13(1):89–94 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-89-94


ABSTRACT

Aim. To assess the rehospitalization data of patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT), to determine possible risk factors for rehospitalization, and to work out a strategy of post-transplantation follow-up for this category of patients.

Materials & Methods. From 2009 to 2019 at the National Research Center for Hematology 418 patients received allo-HSCT. The final analysis included 374 patients who were discharged from hospital after allo-HSCT. The reasons for rehospitalizations of patients with allo-HSCT within 30 days after their hospital discharge were subjected to analysis. Independent risk factors for rehospitalizations were identified by the Cox model. Risk density was visually estimated within 365 days after hospital discharge with the purpose of working out the optimal strategy of post-transplantation follow-up for this category of patients.

Results. The probability of rehospitalization within 30 days after hospital discharge was 30.7 % for all patients with allo-HSCT. The data assessment showed that the majority of rehospitalizations (55.7 %) were associated with infectious complications. Acute graft-versus-host disease (GVHD) during the first hospitalization, i.e. immediately after allo-HSCT during the hospital stay, proved to enhance the probability of rehospitalizations within 30 days after hospital discharge by 1.7 times compared with the patients without acute GVHD.

Conclusion. The leading cause of rehospitalizations of patients with allo-HSCT within 30 days after hospital discharge was acute GVHD which occurred before, i.e. during the first hospital stay. The data obtained demonstrate the necessity of close monitoring of a patient’s status within the first 120 days after discharge from the hospital where allo-HSCT was performed.

Keywords: allogeneic hematopoietic stem cell transplantation, rehospitalizations, graft-versus-host disease.

Received: July 16, 2019

Accepted: December 17, 2019

Read in PDF


REFERENCES

  1. Morello E, Malagola M, Bernardi S, et al. The role of allogeneic hematopoietic stem cell transplantation in the four P medicine era. Blood Res. 2018;53(1):3–6. doi: 10.5045/br.2018.53.1.3.

  2. Sureda A, Bader P, Cesaro S, et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant. 2015;50(8):1037–56. doi: 10.1038/bmt.2015.6.

  3. Majhail NS, Farnia SH, Carpenter PA, et al. Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015;21(11):1863–9. doi: 10.1016/j.bbmt.2015.07.032.

  4. Passweg JR, Baldomero H, Basak GW, et al. The EBMT activity survey report 2017: a focus on allogeneic HCT for nonmalignant indications and on the use of non-HCT cell therapies. Bone Marrow Transplant. 2019;54(10):1575–85. doi: 10.1038/s41409-019-0465-9.

  5. Broder MS, Quock TP, Chang E, et al. The Cost of Hematopoietic Stem-Cell Transplantation in the United States. Am Heal Drug Benef. 2017;10(7):366–74.

  6. Моисеев И.С., Галанкин Т.Л., Доценко А.А. и др. Фармакоэкономика различных методов лечения стероид-рефрактерной реакции «трансплантат против хозяина»: анализ результатов лечения в одноцентровом исследовании. Ученые записки Санкт-Петербургского государственного медицинского университета им. И.П. Павлова. 2018;25(1):35–44. doi: 10.24884/1607-4181-2018-25-1-35-44.

    [Moiseev IS, Galankin TL, Dotsenko AA, et al. Pharmacoeconomic analysis of different methods for the treatment of steroid-refractory graft-verus-host disease: single-center study. The Scientific Notes of the I.P. Pavlov St. Petersburg State Medical University. 2018;25(1):35–44. doi: 10.24884/1607-4181-2018-25-1-35-44. (In Russ)]

  7. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among Patients in the Medicare Fee-for-Service Program. N Engl J Med. 2009;360(14):1418–28. doi: 10.1056/NEJMsa0803563.

  8. McIlvennan CK, Eapen ZJ, Allen LA. Hospital readmissions reduction program. Circulation. 2015;131(20):1796–803. doi: 10.1161/CIRCULATIONAHA.114.010270.

  9. Bejanyan N, Bolwell BJ, Lazaryan A, et al. Risk Factors for 30-Day Hospital Readmission following Myeloablative Allogeneic Hematopoietic Cell Transplantation (allo-HCT). Biol Blood Marrow Transplant. 2012;18(6):874–80. doi: 10.1016/J.BBMT.2011.10.032.

  10. Kerbauy MN, Kerbauy LN, Esteves I, et al. Hospital Length of Stay and Impact of Readmission in the First 100 Days of Allogeneic Stem Cell Transplantation: Comparison among Alternative Donor in Pediatric and Adult Population. Biol Blood Marrow Transplant. 2018;24(3):S337–8. doi: 10.1016/j.bbmt.2017.12.401.

  11. Hess KR, Serachitopol DM, Brown BW. Hazard function estimators: a simulation study. Stat Med. 1999;18(22):3075–88. doi: 10.1002/(SICI)1097-0258(19991130)18:22<3075::AID-SIM244>3.0.CO;2–6.

  12. Brissot E, Rialland F, Cahu X, et al. Improvement of overall survival after allogeneic hematopoietic stem cell transplantation for children and adolescents: a three-decade experience of a single institution. Bone Marrow Transplant. 2016;51(2):267–72. doi: 10.1038/bmt.2015.250.

  13. Richardson PG, Grupp SA, Pagliuca A, et al. Defibrotide for the treatment of hepatic veno-occlusive disease/sinusoidal obstruction syndrome with multiorgan failure. Int J Hematol Oncol. 2017;6(3):75–93. doi: 10.2217/ijh-2017-0015.

  14. Richardson PG, Antin JH, Giralt SA, et al. Adults Receiving Defibrotide for the Treatment of Hepatic Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome (VOD/SOS) after Hematopoietic Stem Cell Transplantation (HSCT): Final Results from the Expanded-Access Program (T-IND). Biol Blood Marrow Transplant. 2018;24(3):S300–1. doi: 10.1016/j.bbmt.2017.12.344.

  15. Richardson PG, Triplett BM, Ho VT, et al. Defibrotide sodium for the treatment of hepatic veno-occlusive disease/sinusoidal obstruction syndrome. Expert Rev Clin Pharmacol. 2018;11(2):113–24. doi: 10.1080/17512433.2018.1421943.

  16. Richardson P, Aggarwal S, Topaloglu O, et al. Systematic review of defibrotide studies in the treatment of veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS). Bone Marrow Transplant. 2019;1. doi: 10.1038/s41409-019-0474-8.

  17. McKenna D, Sullivan M, Hill J, et al. Hospital readmission following transplantation: identifying risk factors and designing preventive measures. J Commun Supp Oncol. 2015;13(9):316–22. doi: 10.12788/jcso.0168.

  18. Seto A, Atsuta Y, Kawashima N, et al. Impact of hospital length of stay on the risk of readmission and overall survival after allogeneic stem cell transplantation. Int J Hematol. 2018;108(3):290–7. doi: 10.1007/s12185-018-2477-4.

  19. Spring L, Li S, Soiffer RJ, et al. Risk Factors for Readmission after Allogeneic Hematopoietic Stem Cell Transplantation and Impact on Overall Survival. Biol Blood Marrow Transplant. 2015;21:509–16. doi: 10.1016/j.bbmt.2014.11.682.

  20. Crombie J, Spring L, Li S, et al. Readmissions after Umbilical Cord Blood Transplantation and Impact on Overall Survival. Biol Blood Marrow Transplant. 2017;23(1):113–8. doi: 10.1016/J.BBMT.2016.10.012.

Primary Gastric Lymphomas

AA Danilenko, SV Shakhtarina, NA Falaleeva

AF Tsyb Medical Research Center for Radiology, Division of National Medical Radiology Research Center, 4 Koroleva str., Kaluga Region, Obninsk, Russian Federation, 249036

For correspondence: Anatolii Aleksandrovich Danilenko, MD, PhD, 4 Koroleva str., Kaluga Region, Obninsk, Russian Federation, 249036; Tel.: +7(909)250-18-10; e-mail: danilenkoanatol@mail.ru

For citation: Danilenko AA, Shakhtarina SV, Falaleeva NA. Primary Gastric Lymphomas. Clinical oncohematology. 2020;13(1):95–103 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-95-103


ABSTRACT

Primary gastric lymphomas (PGL) are more common than lymphomas with involvement of other organs and cover a wide spectrum of immunomorphological variants: from indolent marginal zone lymphoma to aggressive diffuse large B-cell lymphoma. PGLs are not characterized with any specific clinical manifestations, which sometimes leads to misdiagnosis. Due to the rareness of the disease many PLG-related issues remain unresolved, this provided the background for the present review.

Keywords: primary gastric lymphomas, diffuse large B-cell lymphoma, MALT lymphoma, Helicobacter pylori.

Received: July 29, 2019

Accepted: December 5, 2019

Read in PDF


REFERENCES

  1. Groves F, Linet M, Travis L, Devesa S. Cancer surveillance series: non-Hodgkin’s lymphoma incidence by histologic subtype in the United States from 1978 through 1995. J Natl Cancer Inst. 2000;92(15):1240–51. doi: 10.1093/jnci/92.15.1240.

  2. Chiu B, Weisenburger D. An update of the epidemiology of non-Hodgkin’s lymphoma. Clin Lymphoma. 2003;4(3):161–8. doi: 10.3816/clm.2003.n.025.

  3. Ghimire P, Wu GY, Zhu L. Primary gastrointestinal lymphoma. World J Gastroenterol. 2011;17(6):697–707. doi: 10.3748/wjg.v17.i6.697.

  4. Al-Akwaa AM, Siddiqui N, Al-Mofleh IA. Primary gastric lymphoma. World J Gastroenterol. 2004;10(1):5–11. doi: 10.3748/wjg.v10.i1.5.

  5. Ohkura Y, Lee S, Kaji D, et al. Spontaneous perforation of primary gastric malignant lymphoma: a case report and review of the literature. World J Surg Oncol. 2015;13(1):35. doi: 10.1186/s12957-015-0458-0.

  6. Ahmed N. 23 years of the discovery of Helicobacter pylori: Is the debate over? Ann Clin Microbiol Antimicrob. 2005;4(1):17. doi: 10.1186/1476-0711-4-17.

  7. Mommersteeg MC, Yu J, Peppelenbosch MP, Fuhler GM. Genetic host factors in Helicobacter pylori-induced carcinogenesis: Emerging new paradigms. Biochim Biophys Acta Rev Cancer. 2018;1869(1):42–52. doi: 10.1016/j.bbcan.2017.11.003.

  8. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338(8776):1175–6. doi: 10.1016/0140-6736(91)92035-z.

  9. Zullo A, Hassan C, Ridola L, et al. Gastric MALT lymphoma: old and new insights. Ann Gastroenterol. 2014;27(1):27–33.

  10. Nakamura S, Sugiyama T, Matsumoto T, et al. Long-term clinical outcome of gastric MALT lymphoma after eradication of Helicobacter pylori: a multicentre cohort follow-up study of 420 patients in Japan. Gut. 2012;61(4):507–13. doi: 10.1136/gutjnl-2011-300495.

  11. Craig VJ, Cogliatti SB, Arnold I, et al. B-cell receptor signaling and CD40 ligand-independent T cell help cooperate in Helicobacter-induced MALT lymphomagenesis. Leukemia. 2010;24(6):1186–96. doi: 10.1038/leu.2010.76.

  12. Hussell T, Isaacson PG, Crabtree JE, Spencer J. Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol. 1996;178(2):122–7. doi: 10.1002/(sici)1096-9896(199602)178:2<122::aid-path486>3.0.co;2-d.

  13. Hussell T, Isaacson PG, Crabtree JE, et al. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet. 1993;342(8871):571–4. doi: 10.1016/0140-6736(93)91408-e.

  14. Sugizaki K, Tari A, Kitadai Y, et al. Anti-Helicobacter pylori therapy in localized gastric mucosa-associated lymphoid tissue lymphoma: A prospective, nationwide, multicenter study in Japan. Helicobacter. 2018;23(2):e12474. doi: 10.1111/hel.12474.

  15. Saito M, Masutani M, Mabe K, et al. Regression of gastric de novo diffuse large B-cell lymphoma following Helicobacter pylori eradication: a case report. Acta Gastroenterol Belg. 2016;79(3):367–9.

  16. Verduzco-Rodriguez L, Ramirez-Perez F, Clendenin RM, Cruz Lara LA. H. pylori-associated gastric lymphoma: Complete remission in an HIV-positive patient treated with HAART and H. pylori eradication therapy. Rev Gastroenterol Mex. 2017;82(1):92–4. doi: 10.1016/j.rgmxen.2016.05.001.

  17. Kuo SH, Yeh KH, Wu MS, et al. Helicobacter pylori eradication therapy is effective in the treatment of early-stage H pylori-positive gastric diffuse large B-cell lymphomas. Blood. 2012;119(21):4838–44. doi: 10.1182/blood-2012-01-404194.

  18. Cui X, Zhou T, Jiang D, et al. Clinical manifestations and endoscopic presentations of gastric lymphoma: a multicenter seven year retrospective survey. Rev Esp Enferm Dig. 2017;109(8):566–71. doi: 10.17235/reed.2017.4882/2017.

  19. Малихова О.А., Поддубный Б.К., Кувшинов Ю.П., Фролова И.П. Роль новейших технологий в эндоскопической диагностике и оценке эффективности лечения лимфом желудка. Современная онкология. 2005;7(3):111–7.

    [Malikhova OA, Poddubnyi BK, Kuvshinov YuP, Frolova IP. The role of novel technologies in endoscopic diagnosis and efficacy evaluation of gastric lymphoma treatment. Sovremennaya onkologiya. 2005;7(3):111–7. (In Russ)]

  20. Малихова О.А., Поддубный Б.К., Поддубная И.В., Концева А.Ю. Неходжкинские лимфомы желудка, современное состояние проблемы. Экспериментальная и клиническая гастроэнтерология. 2010;9:33–7.

    [Malikhova OA, Poddubnyi BK, Poddubnaya IV, Kontseva AYu. Gastric non-Hodgkin’s lymphomas, state of the art. Eksperimental’naya i klinicheskaya gastroenterologiya. 2010;9:33–7. (In Russ)]

  21. Малихова О.А., Поддубная И.В., Черкес Л.В. и др. Эндоскопическая и эндосонографическая диагностика неходжкинских лимфом желудка. Клиническая онкогематология. 2012;5(4):305–15.

    [Malikhova OA, Poddubnaya IV, Cherkes LV, et al. Endoscopic and endosonographic diagnosis of gastric non-Hodgkin’s lymphomas. Klinicheskaya onkogematologiya. 2012;5(4):305–15. (In Russ)]

  22. Vetro C, Chiarenza A, Romano A, et al. Prognostic assessment and treatment of primary gastric lymphomas: how endoscopic ultrasonography can help in tailoring patient management. Clin Lymph Myel Leuk. 2014;14(3):179–85. doi: 10.1016/j.clml.2013.10.010.

  23. Park YH, Kim WS, Bang SM, et al. What is stage II in high-grade primary gastric lymphoma? How to define the range of “localized disease”. Leuk Res. 2007;31(8):1039–43. doi: 10.1016/j.leukres.2006.08.021.

  24. Toyoshima O, Nishizawa T, Sakitani K, et al. Serum anti-Helicobacter pylori antibody titer and its association with gastric nodularity, atrophy, and age: A cross-sectional study. World J Gastroenterol. 2018;24(35):4061–8. doi: 10.3748/wjg.v24.i35.4061.

  25. Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A, et al. Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet. 2001;357(9249):39–40. doi: 10.1016/S0140-6736(00)03571-6.

  26. Levy M, Copie-Bergman C, Gameiro C, et al. Prognostic value of translocation t(11;18) in tumoral response of low-grade gastric lymphoma of mucosa-associated lymphoid tissue type to oral chemotherapy. J Clin Oncol. 2005;23(22):5061–6. doi: 10.1200/JCO.2005.05.660.

  27. Rohatiner A, d’Amore F, Coiffier B, et al. Report on a workshop convened to discuss the pathological and staging classifications of gastrointestinal tract lymphoma. Ann Oncol. 1994;5(5):397–400. doi: 10.1093/oxfordjournals.annonc.a058869.

  28. Koch P, del Valle F, Berdel WE, et al. Primary gastrointestinal non-Hodgkin’s lymphoma: I. Anatomic and histologic distribution, clinical features, and survival data of 371 patients registered in the German Multicenter Study GIT NHL 01/92. J Clin Oncol. 2001;19(18):3861–73. doi: 10.1200/jco.2001.19.18.3861.

  29. Ruskone-Fourmestraux A, Dragosics B, Morgner A, et al. Paris staging system for primary gastrointestinal lymphomas. Gut. 2003;52(6):912–3. doi: 10.1136/gut.52.6.912.

  30. Bartlett DL, Karpeh MS Jr, Filippa DA, Brennan MF. Long-term follow-up after curative surgery for early gastric lymphoma. Ann Surg. 1996;223(1):53–62. doi: 10.1097/00000658-199601000-00008.

  31. Selcukbiricik F, Tural D, Elicin O, et al. Primary Gastric Lymphoma: Conservative treatment modality is not inferior to surgery for early-stage disease. ISRN Oncol. 2012;2012:1–6. doi: 10.5402/2012/951816.

  32. Koch P, del Valle F, Berdel WE, et al. Primary gastrointestinal non-Hodgkin’s lymphoma: II. Combined surgical and conservative or conservative management only in localized gastric lymphoma – results of the prospective German Multicenter Study GIT NHL 01/92. J Clin Oncol. 2001;19(18):3874–83. doi: 10.1200/jco.2001.19.18.3874.

  33. Binn M, Ruskone-Fourmestraux A, Lepage E, et al. Surgical resection plus chemotherapy versus chemotherapy alone: comparison of two strategies to treat diffuse large B-cell gastric lymphoma. Ann Oncol. 2003;14(12):1751–7. doi: 10.1093/annonc/mdg495.

  34. Aviles A, Nambo MJ, Neri N, et al. The role of surgery in primary gastric lymphoma: results of a controlled clinical trial. Ann Surg. 2004;240(1):44–50. doi: 10.1097/01.sla.0000129354.31318.f1.

  35. Aviles A, Nambo MJ, Neri N, et al. Mucosa-associated lymphoid tissue (MALT) lymphoma of the stomach: results of a controlled clinical trial. Med Oncol. 2005;22(1):57–62. doi: 10.1385/mo:22:1:057.

  36. Spectre G, Libster D, Grisariu S, et al. Bleeding, obstruction, and perforation in a series of patients with aggressive gastric lymphoma treated with primary chemo-therapy. Ann Surg Oncol. 2006;13(11):1372–8. doi: 10.1245/s10434-006-9069-x.

  37. Неред С.Н., Шаленков В.А., Стилиди И.С., Поддубная И.В. Хирургическое и консервативное лечение осложненных форм неходжкинских лимфом желудка. Онкология. 2012;1:28–32.

    [Nered SN, Shalenkov VA, Stilidi IS, Poddubnaya IV. Surgical and conservative treatment of complicated forms of gastric non-Hodgkin’s lymphomas. Onkologiya. 2012;1:28–32. (In Russ)]

  38. Kayali S, Aloe R, Bonaguri C, et al. Non-invasive tests for the diagnosis of helicobacter pylori: state of the art. Acta Biomed. 2018;89(Suppl 8):58–64. doi: 10.23750/abm.v89i8-S.7910.

  39. Fuccio L, Laterza L, Zagari RM, et al. Treatment of Helicobacter pylori infection. BMJ. 2008;337:a1454. doi: 10.1136/bmj.a1454.

  40. Zullo A, Hassan C, Andriani A, et al. Eradication Therapy for Helicobacter pylori in Patients With Gastric MALT lymphoma: a pooled data analysis. Am J Gastroenterol. 2009;104(8):1932–7. doi: 10.1038/ajg.2009.314.

  41. Wundisch T, Thiede C, Morgner A, et al. Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication. J Clin Oncol. 2005;23(31):8018–24. doi: 10.1200/JCO.2005.02.3903.

  42. Stathis A, Chini C, Bertoni F, et al. Long-term outcome following Helicobacter pylori eradication in a retrospective study of 105 patients with localized gastric marginal zone B-cell lymphoma of MALT type. Ann Oncol. 2009;20(6):1086–93. doi: 10.1093/annonc/mdn760.

  43. Fallone CA, Chiba N, van Zanten SV, et al. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology. 2016;151(1):51–69.e14. doi: 10.1053/j.gastro.2016.04.006.

  44. Copie-Bergman C, Gaulard P, Lavergne-Slove A, et al. Proposal for a new histological grading system for post-treatment evaluation of gastric MALT lymphoma. Gut. 2003;52(11):1656. doi: 10.1136/gut.52.11.1656.

  45. Debraekeleer A, Remaut H. Future perspective for potential Helicobacter pylori eradication therapies. Fut Microbiol. 2018;13(6):671–87. doi: 10.2217/fmb-2017-0115.

  46. Thung I, Aramin H, Vavinskaya V, et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther. 2016;43(4):514–33. doi: 10.1111/apt.13497.

  47. Hu Y, Zhu Y, Lu NH. Primary antibiotic resistance of Helicobacter pylori in China. Digest Dis Sci. 2017;62(5):1146–54. doi: 10.1007/s10620-017-4536-8.

  48. Malfertheiner P, Megraud F, O’Morain CA, et al. Management of Helicobacter pylori infection – the Maastricht V/Florence Consensus Report. Gut. 2017;66(1):6–30. doi: 10.1136/gutjnl-2016-312288.

  49. Tseng YY, Liou JM, Hsu TL, et al. Development of bacterial transglycosylase inhibitors as new antibiotics: moenomycin A treatment for drug-resistant Helicobacter pylori. Bioorg Med Chem Lett. 2014;24(11):2412–4. doi: 10.1016/j.bmcl.2014.04.041.

  50. Nishizawa T, Suzuki H. Mechanisms of Helicobacter pylori antibiotic resistance and molecular testing. Front Mol Biosci. 2014;1:1–19. doi: 10.3389/fmolb.2014.00019.

  51. Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14. doi: 10.1038/nrgastro.2014.66.

  52. McFarland LV, Huang Y, Wang L, Malfertheiner P. Systematic review and meta-analysis: multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events. United Eur Gastroenterol J. 2016;4(4):546–61. doi: 10.1177/2050640615617358.

  53. Lorca GL, Wadstrom T, Valdez GF, Ljungh A. Lactobacillus acidophilus autolysins inhibit Helicobacter pylori in vitro. Curr Microbiol. 2001;42(1):39–44. doi: 10.1007/s002840010175.

  54. Pinchuk IV, Bressollier P, Verneuil B, et al. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob Agents Chemother. 2001;45(11):3156–61. doi: 10.1128/AAC.45.11.3156-3161.2001.

  55. Chenoll E, Casinos B, Bataller E, et al. Novel probiotic Bifidobacterium bifidum CECT 7366 strain active against the pathogenic bacterium Helicobacter pylori. Appl Environ Microbiol. 2011;77(4):1335–43. doi: 10.1128/AEM.01820-10.

  56. Asano N, Iijima K, Koike T, et al. Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphomas: a review. World J Gastroenterol. 2015;21(26):8014–20. doi: 10.3748/wjg.v21.i26.8014.

  57. Zucca E, Copie-Bergman C, Ricardi U, et al. Gastric marginal zone lymphoma of MALT type: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24(Suppl 6):144–8. doi: 10.1093/annonc/mdt343.

  58. Olszewski AJ, Castillo JJ. Comparative outcomes of oncologic therapy in gastric extranodal marginal zone (MALT) lymphoma: analysis of the SEER-Medicare database. Ann Oncol. 2013;24(5):1352–9. doi: 10.1093/annonc/mds644.

  59. Zucca E, Conconi A, Laszlo D, et al. Addition of rituximab to chlorambucil produces superior event-free survival in the treatment of patients with extranodal marginal-zone B-cell lymphoma: 5-year analysis of the IELSG-19 randomized study. J Clin Oncol. 2013;31(5):565–72. doi: 10.1200/JCO.2011.40.6272.

  60. Zucca E, Conconi A, Martinelli G, et al. Final results of the IELSG-19 randomized trial of mucosa-associated lymphoid tissue lymphoma: improved event-free and progression-free survival with rituximab plus chlorambucil versus either chlorambucil or rituximab monotherapy. J Clin Oncol. 2017;35(17):1905–12. doi: 10.1200/JCO.2016.70.6994.

  61. Streubel B, Ye H, Du MQ, et al. Translocation t(11;18)(q21;q21) is not predictive of response to chemotherapy with 2CdA in patients with gastric MALT lymphoma. Oncology. 2004;66(6):476–80. doi: 10.1159/000079502.

  62. Поддубная И.В., Пробатова Н.А., Ковригина А.М. и др. Первичные MALT-лимфомы желудка различной степени злокачественности: проблемы диагностики и тактики лечения. Современная онкология. 1999;1(1):10–3.

    [Poddubnaya IV, Probatova NA, Kovrigina AM, et al. Primary gastric MALT lymphomas of various tumor grades: diagnosis challenges and treatment tactics. Sovremennaya onkologiya. 1999;1(1):10–3. (In Russ)]

  63. Поддубная И.В. Неходжкинские лимфомы. В кн.: Клиническая онкогематология. Под ред. М.А Волковой. М.: Медицина, 2001. С. 336–75.

    [Poddubnaya IV. Non-Hodgkin’s lymphomas. In: Volkova MA, ed. Klinicheskaya onkogematologiya. (Clinical oncohematology.) Moscow: Meditsina Publ.; 2001. pp. 336–75. (In Russ)]

  64. Поддубная И.В., Османов Е.А., Москаленко О.А. и др. Клинические аспекты MALT-лимфом. Вестник Московского онкологического общества. 2009;10:5–6.

    [Poddubnaya IV, Osmanov EA, Moskalenko OA, et al. Clinical aspects of MALT lymphomas. Vestnik Moskovskogo onkologicheskogo obshchestva. 2009;10:5–6. (In Russ)]

  65. Wirth A, Gospodarowicz M, Aleman BM, et al. Long-term outcome for gastric marginal zone lymphoma treated with radiotherapy: a retrospective, multi-centre, International Extranodal Lymphoma Study Group study. Ann Oncol. 2013;24(5):1344–51. doi: 10.1093/annonc/mds623.

  66. Ruskone-Fourmestraux A, Matysiak-Budnik T, Fabiani B, et al. Exclusive moderate-dose radiotherapy in gastric marginal zone B-cell MALT lymphoma: results of a prospective study with a long term follow-up. Radiother Oncol. 2015;117(1):178–82. doi: 10.1016/j.radonc.2015.08.029.

  67. Paydas S. Helicobacter pylori eradication in gastric diffuse large B cell lymphoma. World J Gastroenterol. 2015;21(13):3773–6. doi: 10.3748/wjg.v21.i13.3773.

  68. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42. doi: 10.1056/nejmoa011795.

  69. Coiffier B, Thieblemont C, Van Den Neste E, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood. 2010;116(12):2040–5. doi: 10.1182/blood-2010-03-276246.

  70. Aviles A, Castaneda C, Cleto S, et al. Rituximab and chemotherapy in primary gastric lymphoma. Cancer Biother Radiopharm. 2009;24(1):25–8. doi: 10.1089/cbr.2008.0507.

  71. Leopardo D, Di Lorenzo G, De Renzo A, et al. Efficacy of rituximab in gastric diffuse large B cell lymphoma patients. World J Gastroenterol. 2010;16(20):2526–30. doi: 10.3748/wjg.v16.i20.2526.

  72. Sohn BS, Kim SM, Yoon DH, et al. The comparison between CHOP and R-CHOP in primary gastric diffuse large B cell lymphoma. Ann Hematol. 2012;91(11):1731–9. doi: 10.1007/s00277-012-1512-4.

  73. Martinelli G, Gigli F, Calabrese L, et al. Early stage gastric diffuse large B-cell lymphomas: results of a randomized trial comparing chemotherapy alone versus chemotherapy + involved field radiotherapy. Leuk Lymphoma. 2009;50(6):925–31. doi: 10.1080/10428190902912478.

  74. Tanaka T, Shimada K, Yamamoto K, et al. Retrospective analysis of primary gastric diffuse large B cell lymphoma in the rituximab era: a multicenter study of 95 patients in Japan. Ann Hematol. 2012;91(3):383–90. doi: 10.1007/s00277-011-1306-0.

  75. Виноградова Ю.Н., Ильин Н.В. Лучевая терапия в комбинированном лечении неходжкинских лимфом. Злокачественные опухоли. 2015;4(спецвыпуск 2):44–8. doi: 10.18027/2224-5057-2015-4s2-44-48.

    [Vinogradova JN, Ilyin NV. Radiation therapy in the combined treatment of non-Hodgkin’s lymphomas. Malignant tumors. 2015;4(special issue 2):44–8. doi: 10.18027/2224-5057-2015-4s2-44-48. (In Russ)]

  76. Паньшин Г.А., Измайлов Т.Р. Роль радиотерапии в лечении первичных неходжкинских лимфом желудка. Трудный пациент. 2018;16(11):54–6. doi: 10.24411/2074-1995-2018-10032.

    [Panshin GA, Izmailov TR. The role of radiotherapy in the treatment of primary non-Hodgkin’s stomach lymphomas. Trudnyi patsient. 2018;16(11):54–6. doi: 10.24411/2074-1995-2018-10032. (In Russ)]

  77. Pfreundschuh M, Christofyllakis K, Altmann B, et al. Radiotherapy to bulky disease PET-negative after immunochemotherapy in elderly DLBCL patients: results of a planned interim analysis of the first 187 patients with bulky disease treated in the OPTIMAL>60 study of the DSHNHL. J Clin Oncol. 2017;35(15 Suppl):7506. doi: 10.1200/jco.2017.35.15_suppl.7506.

  78. Каприн А.Д., Галкин В.Н., Жаворонков Л.П. и др. Синтез фундаментальных и прикладных исследований — основа обеспечения высокого уровня научных результатов и внедрения их в медицинскую практику. Радиация и риск. 2017;26(2):26–40.

    [Kaprin AD, Galkin VN, Zhavoronkov LP, et al. Synthesis of fundamental and applied research is the basis for ensuring a high level of scientific results and their implementation into medical practice. Radiatsiya i risk. 2017;26(2):26–40. (In Russ)]

  79. Каприн А.Д., Мардынский Ю.С., Смирнов В.П. и др. К истории развития лучевой терапии (часть I). Biomedical Photonics. 2019;8(1):52–62. doi: 10.24931/2413-9432-2019-8-1-52-62.

    [Kaprin AD, Mardinskiy YS, Smirnov VP, et al. The history of radiation therapy (part I). Biomedical Photonics. 2019;8(1):52–62. doi: 10.24931/2413-9432-2019-8-1-52-62. (In Russ)]

Comparative Analysis of Cardiovascular Disorders in Patients with Chronic Myeloid Leukemia on Tyrosine Kinase Inhibitor Therapy

LM Makeeva1, EI Emelina1, AV Bykova2, GE Gendlin1, GA Gusarova2, IG Nikitin1, EYu Chelysheva2, OYu Vinogradova1,3,4, IE Lazarev3, EG Arshanskaya3, AG Turkina2

1 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

2 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

3 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

4 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

For correspondence: Prof. Gennadii Efimovich Gendlin, MD, PhD, 1 Ostrovityanova str., Moscow, Russian Federation, 117997; e-mail: rgmugt2@mail.ru

For citation: Makeeva LM, Emelina EI, Bykova AV, et al. Comparative Analysis of Cardiovascular Disorders in Patients with Chronic Myeloid Leukemia on Tyrosine Kinase Inhibitor Therapy. Clinical oncohematology. 2020;13(1):104–111 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-104-111


ABSTRACT

Aim. To analyze adverse cardiovascular events in chronic myeloid leukemia (CML) patients who received various tyrosine kinase inhibitors (TKI).

Materials & Methods. The trial included 97 CML patients with nilotinib, dasatinib or imatinib indications. By the time of examination the patients had undergone TKI therapy for 1–138 months. The three of them were sequentially treated with 2 drugs over the monitoring period. All CML patients were aged 22–79 years (median 53.5 years): 55 women were aged 22–71 years (median 53.5 years) and 42 men were aged 24–79 years (median 53 years).

Results. The comparative analysis demonstrated significantly higher impact of nilotinib on QTc duration compared with other TKIs. The patients who received nilotinib (n = 15) throughout 38 months had QTc of 0.47 s (interquartile range [IQR] 0.46–0.47 s), in imatinib group (n = 17) QTc was 0.43 s (IQR 0.43–0.44 s), and in dasatinib group (n = 4) QTc was 0.43 s (IQR 0.42–0.44 s) (= 0.0008). Among all patients treated with nilotinib there were 62 % (31/50) with QTc > 0.46 s, in imatinib (6/41) and dasatinib (2/18) groups it was detected in 14.6 % and 11.1 % of patients, respectively (= 0.0008). Five patients had QTc > 0.48 s, which is the criterion for discontinuation of treatment or dose reduction. In two patients the identified changes of QTc duration required TKI temporary suspension. After nilotinib dose reduction or discontinuation QTc duration normalized in all cases within 2 weeks. Decreased ankle-brachial index (ABI) < 0.9 without pronounced clinical symptoms was identified in two patients who received nilotinib. Afterwards they showed peripheral occlusive disease of lower extremities, and nilotinib treatment was discontinued. In patients treated with other TKIs no occlusive vascular lesions were observed. A case of chronic heart failure with reduced left ventricular ejection fraction developing on nilotinib therapy was revealed and described.

Conclusion. Despite high specificity for BCR-ABL tyrosine kinase, new TKIs can, although rarely, induce cardiovascular adverse events. Prior to TKI treatment assignment CML patients should be examined with ECG and EchoCG with systolic function evaluation, and the measurement of pulmonary artery pressure as well as ABI. The examination should be repeated in the end of the 1st year TKI treatment if there is no reason for extra examinations. It is recommended to hold 24-hour ECG monitoring with QTc max measurement prior to nilotinib assignment, then once a year within 2 years of nilotinib treatment, and once in 6 months after 3 years of therapy.

Keywords: imatinib, dasatinib, nilotinib, chronic myeloid leukemia, QTc prolongation, sudden cardiac death, peripheral occlusive disease of lower extremities, chronic heart failure, cardiomyopathy, pulmonary arterial hypertension.

Received: September 8, 2019

Accepted: December 21, 2019

Read in PDF


REFERENCES

  1. O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004. doi: 10.1056/NEJMoa022457.

  2. Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54. doi: 10.1038/leu.2016.5.

  3. Aghel N, Delgado DH, Lipton JH. Cardiovascular toxicities of BCR-ABL tyrosine kinase inhibitors in chronic myeloid leukemia: preventive strategies and cardiovascular surveillance. Vasc Health Risk Manage. 2017;13:293–303. doi: 10.2147/VHRM.S108874.

  4. Shah AM, Campbell P, Rocha GQ, et al. Effect of imatinib as add-on therapy on echocardiographic measures of right ventricular function in patients with significant pulmonary arterial hypertension. Eur Heart J. 2015;36(10):623–32. doi: 10.1093/eurheartj/ehu035.

  5. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2016;37(1):67–119. doi: 10.1093/eurheartj/ehv317.

  6. Valent P, Hadzijusufovic E, Hoermann G, et al. Risk factors and mechanisms contributing to TKI-induced vascular events in patients with CML. Leuk Res. 2017;59:47–54. doi: 10.1016/j.leukres.2017.05.008.

  7. Barber MC, Mauro MJ, Moslehi J. Cardiovascular care of patients with chronic myeloid leukemia (CML) on tyrosine kinase inhibitor (TKI) therapy. Hematology Am Soc Hematol Educ Program. 2017;2017(1):110–4. doi: 10.1182/asheducation-2017.1.110.

  8. Ross DM, Arthur C, Burbury K, et al. Chronic myeloid leukaemia and tyrosine kinase inhibitor therapy: assessment and management of cardiovascular risk factors. Intern Med J. 2018;48(Suppl 2):5–13. doi: 10.1111/imj.13716.

  9. Dahlen T, Edgren G, Lambe M, et al. Cardiovascular events associated with use of tyrosine kinase inhibitors in chronic myeloid leukemia: A population-based cohort study. Ann Intern Med. 2016;165(3):161–6. doi: 10.7326/M15-2306.

  10. Chai-Adisaksopha C, Lam W, Hillis C. Major arterial events in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors: a meta-analysis. Leuk Lymphoma. 2016;57(6):1300–10. doi: 10.3109/10428194.2015.1091929.

  11. Aghel N, Lipton JH, Atenafu EG, et al. Cardiovascular Events After Exposure to Nilotinib in Chronic Myeloid Leukemia: Long-term Follow-up. Clin Lymph Myel Leuk. 2017;17(12):870–8. doi: 10.1016/j.clml.2017.07.006.

  12. Pasvolsky O, Leader A, Iakobishvili Z, et al. Tyrosine kinase inhibitor associated vascular toxicity in chronic myeloid leukemia. Cardio-Oncol. 2015;1(1):5. doi: 10.1186/s40959-015-0008-5.

  13. Steegmann JL, Baccarani M, Breccia M, et al. Recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016;30(8):1648–71. doi: 10.1038/leu.2016.104.

  14. Туркина А.Г., Зарицкий А.Ю., Шуваев В.А. и др. Клинические рекомендации по диагностике и лечению хронического миелолейкоза. Клиническая онкогематология. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316.

    [Turkina AG, Zaritskii AYu, Shuvaev VA, et al. Clinical Recommendations for the Diagnosis and Treatment of Chronic Myeloid Leukemia. Clinical oncohematology. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316. (In Russ)]

  15. Porta-Sanchez A, Gilbert C, Spears D, et al. Incidence, Diagnosis, and Management of QT Prolongation Induced by Cancer Therapies: A Systematic Review. J Am Heart Assoc. 2017;6(12):e007724. doi: 10.1161/JAHA.117.007724.

  16. Cheng Y-J, Nie X-Y, Chen X-M, et al. The Role of Macrolide Antibiotics in Increasing Cardiovascular Risk. J Am College Cardiol. 2015;66(20):2173–84. doi: 10.1016/j.jacc.2015.09.029.

  17. Объединенная рабочая группа. Национальные российские рекомендации по применению методики холтеровского мониторирования в клинической практике. Российский кардиологический журнал. 2014;2(106):6–71.

    [The Joint Task Force. National Russian guidelines on application of the methods of Holter monitoring in clinical practice. Rossiiskii kardiologicheskii zhurnal. 2014;2(106):6–71. (In Russ)]

  18. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37(29):2315–81. doi: 10.1093/eurheartj/ehw106.

  19. Guirguis-Blake JM, Evans CV, Redmond N, et al. Screening for Peripheral Artery Disease Using the Ankle-Brachial Index: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2018;320(2):184–96. doi: 10.1001/jama.2018.4250.

  20. O’Neal WT, Singleton MJ, Roberts JD, et al. Association Between QT-Interval Components and Sudden Cardiac Death. Circ Arrhythm Electrophysiol. 2017;10(10):e005485. doi: 10.1161/CIRCEP.117.005485.

  21. PrTASIGNA®. Product monograph. Available from: https://www.novartis.ca/sites/www.novartis.ca/files/tasigna_scrip_e.pdf (accessed 10.12.2019).

  22. Hadzijusufovic E, Albrecht-Schgoer K, Hoermann G, et al. Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia. 2017;31(11):2388–97. doi: 10.1038/leu.2017.245.

  23. Gora-Tybor J, Medras E, Calbecka M, et al. Real-life comparison of severe vascular events and other non-hematological complications in patients with chronic myeloid leukemia undergoing second-line nilotinib or dasatinib treatment. Leuk Lymphoma. 2015;56(8):2309–14. doi: 10.3109/10428194.2014.994205.

  24. Kim TD, Rea D, Schwarz M, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013;27(6):1316–21. doi: 10.1038/leu.2013.70.

  25. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37(39):2999–3058. doi: 10.1093/eurheartj/ehw272.

  26. Kim TD, le Coutre P, Schwarz M, et al. Clinical cardiac safety profile of nilotinib. Haematologica. 2012;97(6):883–9. doi: 13324/haematol.2011.058776.

  27. Xu Z, Cang S, Yang N, Liu D. Cardiotoxicity of tyrosine kinase inhibitors in chronic myelogenous leukemia therapy. Hematol Rev. 2009;1(1):e4. doi: 10.4081/hr.2009.e4.

  28. Gurguis C, de Armas RL, Kantarjian HM. Echocardiographic Findings in Patients (pts) Receiving Tyrosine Kinase Inhibitors (TKIs) for the Treatment of Chronic Myeloid Leukemia (CML). Blood. 2017;130(Suppl 1):2893.

  29. Larsen C.M, Mulvagh S.L. Cardio-oncology: what you need to know now for clinical practice and echocardiography. Echo Res Pract. 2017;4(1):R33–R41. doi: 10.1530/ERP-17-0013.

Challenges in the Treatment of Primary Refractory and Relapsed Diffuse Large B-cell Lymphoma in the Russian Federation. What will the future hold?

УЧАСТНИКИ КОНСУЛЬТАЦИОННОГО СОВЕТА:

  1. Ирина Владимировна Поддубная — д-р мед. наук, профессор, академик РАН, заведующая кафедрой онкологии и паллиативной медицины, проректор по международному сотрудничеству ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» МЗ РФ (РМАНПО МЗ РФ), председатель Российского общества онкогематологов.
  2. Вадим Вадимович Птушкин — д-р мед. наук, профессор кафедры онкологии, гематологии и лучевой терапии РНИМУ им. Н.И. Пирогова, заместитель главного врача по гематологии ГБУЗ «Городская клиническая больница им. С.П. Боткина», главный внештатный гематолог г. Москвы, заведующий отделом инновационных методов лечения подростков и взрослых ГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева», член правления Российского общества онкогематологов.
  3. Гаяне Сергеевна Тумян — д-р мед. наук, ведущий научный сотрудник отделения химиотерапии гемобластозов ФГБУ «НМИЦ онкологии им. Н.Н. Блохина», профессор кафедры онкологии и паллиативной медицины ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» МЗ РФ, член правления Российского общества онкогематологов.
  4. Евгений Александрович Османов — д-р мед. наук, профессор кафедры онкологии 1-го Московского государственного медицинского университета им. И.М. Сеченова, заведующий отделом гематологии и трансплантации костного мозга ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» МЗ РФ, главный консультант экспертного совета «Лаборатории Гемотест», главный редактор журнала «Клиническая онкогематология. Фундаментальные исследования и клиническая практика».
  5. Лали Галимовна Бабичева — канд. мед. наук, доцент кафедры онкологии и паллиативной медицины ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» МЗ РФ, доцент кафедры общей терапии ФДПО РНИМУ им. Н.И. Пирогова.
  6. Елена Александровна Барях — канд. мед. наук, доцент кафедры общей терапии ФДПО РНИМУ им Н.И. Пирогова, заведующая отделением гематологии и химиотерапии ГБУЗ «Городская клиническая больница № 52» ДЗМ.
  7. Камиль Даниялович Капланов — канд. мед. наук, заведующий отделением гематологии ГБУЗ «Волгоградский областной клинический онкологический диспансер», главный специалист-гематолог комитета по здравоохранению Администрации Волгоградской области, ассистент кафедры онкологии с курсом онкологии и гематологии ФУВ Волгоградского государственного медицинского университета.
  8. Сергей Владимирович Волошин — канд. мед. наук, доцент, руководитель клинического отделения химиотерапии гемобластозов, депрессий кроветворения и трансплантации костного мозга ФГБУ РосНИИГТ ФМБА России.
  9. Ольга Сергеевна Самойлова — канд. мед. наук, заведующая отделением гематологии НОКБ им. Н.А. Семашко, главный внештатный специалист гематолог-трансфузиолог Приволжского федерального округа.
  10. Татьяна Ивановна Поспелова — д-р мед. наук, профессор, проректор по научной работе, заведующая кафедрой терапии, гематологии и трансфузиологии Новосибирского государственного медицинского университета, руководитель Городского гематологического центра, главный гематолог и трансфузиолог МЗ РФ по Сибирскому федеральному округу, главный гематолог МЗ НСО.
  11. Сергей Кириллович Кравченко — канд. мед. наук, доцент, заведующий отделением интенсивной высокодозной химиотерапии гемобластозов с круглосуточным и дневным стационарами ФГБУ «НМИЦ гематологии» МЗ РФ.
  12. Алексей Юрьевич Кувшинов — канд. мед. наук, врач-гематолог отделения химиотерапии гемобластозов, депрессий кроветворения и трансплантации костного мозга ФГБУ РосНИИГТ ФМБА России.
  13. Hervé Tilly — д-р мед. наук, профессор, Le Centre Henri-Becquerel de Lutte Contre le Cancer (CLCC), г. Руан, Франция.
  14. Владимир Иванович Воробьев — канд. мед. наук, врач-гематолог гематологического отделения ГБУЗ «Городская клиническая больница им. С.П. Боткина» ДЗМ.

РЕЗОЛЮЦИЯ

Диффузная В-крупноклеточная лимфома (ДВКЛ) является наиболее распространенным вариантом агрессивных лимфопролиферативных заболеваний взрослых. В 2016 г. в США зарегистрировано 27 650 новых случаев ДВКЛ, в Европе ежегодно выявляется 3–4 случая на 100 000 населения [1, 2]. В Российской Федерации на долю ДВКЛ приходится примерно 30–40 % (56 % по данным регистра Российского общества онкогематологов) всех неходжкинских лимфом [3]. Заболеваемость составляет в среднем 4–5 случаев на 100 000 населения [4], в 2017 г. в России было зарегистрировано примерно 3000 новых случаев ДВКЛ [5]. В возрасте до 18 лет частота этого варианта В-клеточной опухоли не превышает 10 %, при этом число больных значительно увеличивается в возрасте после 50 лет.

ДВКЛ объединяет целый спектр опухолей, различающихся по своим клиническим, морфологическим, иммунологическим и молекулярно-биологическим характеристикам. Заболевание отличается чрезвычайным клиническим разнообразием: первичный очаг опухолевого роста может локализоваться как в лимфатических узлах, так и экстранодально (40 %) [4].

Гетерогенность опухоли объясняется разным профилем экспрессии генов (gene expression profiling, GEP), что, несомненно, имеет клиническое значение и связано с прогнозом заболевания. На основании данных исследования были идентифицированы основные молекулярные подгруппы ДВКЛ: лимфома из В-клеток герминативного центра (germinal center В-cell like type, GCB) и лимфома из активированных В-клеток (activated В-cell like type, ABC, non-GCB) [6].

Основой лечения ДВКЛ независимо от морфологического варианта, иммуногистохимического профиля и клинического подтипа опухоли остаются схема CHOP и различные ее модификации. Главным достижением последних десятилетий, существенно улучшившим непосредственные и отдаленные результаты лечения пациентов, стало добавление к схеме CHOP моноклональных (анти-СD20) антител — ритуксимаба [6].

В то же время в зависимости от числа неблагоприятных прогностических факторов согласно международному прогностическому индексу (IPI) у 20–50 % больных ДВКЛ развиваются рефрактерность к режиму R-CHOP или рецидивы после достижения полного ответа на терапию [7]. Таким образом, возможности иммунохимиотерапии R-CHOP признаются неудовлетворительными, а использование опций, предполагающих увеличение дозоинтенсивности лечения или включение трансплантации аутологичных гемопоэтических стволовых клеток (аутоТГСК) в первую линию, не подкреплено результатами контролируемых исследований [8]. Попытки улучшить режим R-CHOP в широкой популяции ДВКЛ до настоящего времени не увенчались успехом [9–11].

После первого рецидива ДВКЛ лечение пациентов строится в зависимости от того, можно ли пациенту провести аутоТГСК или нет. В реальной клинической практике нашей страны высокодозная химиотерапия (ВДХТ) с аутоТГСК на этапе консолидации выполняется лишь у небольшого числа пациентов в возрастной группе до 60 лет. Принятие решения о выборе терапии второй линии у пожилых больных осложняется большим числом сопутствующих заболеваний, которые ограничивают применение программ, имеющих значимую миело- и экстрамедуллярную токсичность [8]. В целом рецидивирующие/рефрактерные варианты ДВКЛ имеют ограниченные опции лечения и плохой прогноз с медианой общей выживаемости около 6 мес. [7].

Согласно результатам зарубежных наблюдений, только 30–40 % пациентов отвечают на терапию «спасения» (salvage) с последующим использованием ВДХТ и аутоТГСК [12]. Даже среди пациентов, которые ответили на терапию «спасения» с дальнейшей аутоТГСК, примерно у 50 % в конечном итоге будет диагностирован рецидив заболевания. В итоге большинство пациентов с рефрактерной ДВКЛ не имеют эффективных вариантов лечения [13].

Таким образом, в настоящее время остаются серьезные нерешенные проблемы в терапии ДВКЛ: недостаточная эффективность первой линии лечения у 30–50 % пациентов, в т. ч. первичная резистентность опухоли у 10–15 % и ранние рецидивы у 20–25 %. Инновационные предложения эффективных лечебных воздействий, способных кардинально изменить течение болезни как в первой линии, так и при рецидиве, отсутствуют.

Особое место среди препаратов, исследуемых в терапии рецидивирующей/рефрактерной ДВКЛ, занимает первый в своем классе конъюгат моноклонального антитела к CD79b и химиотерапевтического агента — полатузумаб ведотин. В исследовании II фазы GO29365 сравнивалась терапия полатузумабом ведотином в комбинации с бендамустином и ритуксимабом (BR) с режимом BR у 80 пациентов с рецидивирующей/рефрактерной ДВКЛ. По результатам исследования терапия с полатузумабом ведотином более чем в 2 раза улучшила показатели ответа, выживаемости без прогрессирования (ВБП) и общей выживаемости (ОВ), при этом преимущество терапии полатузумабом наблюдалось во всех подгруппах вне зависимости от количества предыдущих линий лечения, рефрактерности и молекулярных подгрупп (ABC, GCB). Показатель полного ответа у пациентов с рецидивирующей/рефрактерной ДВКЛ в группе полатузумаба ведотина составил 40 % (18 % в группе сравнения), медиана ОВ — 12,4 мес. (4,7 мес. в группе сравнения) [13], медиана длительности ответа — 10,3 мес. (4,1 мес. в группе сравнения). Показатель 2-летней ВБП у 31,4 % пациентов говорит о долгосрочном контроле над заболеванием в группе полатузумаба ведотина. На период наблюдения 45,9 мес. в полной ремиссии остается 22 % пациентов, получавших терапию с полатузумабом [14]. Преимущество в эффективности сочеталось с прогнозируемым и легко управляемым профилем безопасности терапии полатузумабом ведотином.

Полатузумаб ведотин получил статус «прорыв в терапии» (breakthrough therapy designation, BTD) в Управлении по контролю за качеством пищевых продуктов и лекарственных средств США (FDA) и статус «приоритетные лекарственные средства» (priority medicines, PRIME) в Европейском агентстве по лекарственным средствам (EMA) при лечении пациентов с рецидивирующей/рефрактерной ДВКЛ [15]. Первая в мире регистрация полатузумаба ведотина для терапии рецидивирующей/рефрактерной ДВКЛ произошла в июне 2019 г. в США [15].

Учитывая высокую потребность в новых эффективных опциях терапии ДВКЛ и результаты исследования GO29365, своевременное включение полатузумаба ведотина в Российские клинические рекомендации и дальнейшее внедрение препарата в стандартную терапию у пациентов с рецидивирующей/рефрактерной ДВКЛ позволят улучшить результаты лечения и прогноз у этой категории пациентов.

Read in PDF


REFERENCES

  1. Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA: Cancer J Clin. 2016;66(6):443–59.

  2. Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii78–vii82.

  3. Доронин В.А., Стефанов Д.Н., Никитин Е.А. и др. Раковые регистры. Часть 4. Российский регистр «Лимфопролиферативные заболевания». Современная онкология. 2012;4:15–6.

  4. Поддубная И.В. Онкогематология (современные аспекты): Руководство для врачей. М.: Media Medica, 2005. 88 с.

  5. Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.) Злокачественные новообразования в России в 2017 г. (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена, 2018.

  6. Суборцева И.Н. Клинико-биологические особенности первичной экстранодальной диффузной В-крупноклеточной лимфомы. Дис. … канд. мед. наук. М., 2012.

  7. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8.

  8. Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Результаты анализа регионального регистра пациентов с диффузной В-крупноклеточной лимфомой: факторы риска и проблемы иммунохимиотерапии. Клиническая онкогематология. 2019;12(2):154–64.

  9. Younes A, Sehn LH, Johnson P, et al. Randomized Phase III Trial of Ibrutinib and Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Non-Germinal Center B-Cell Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2019;37(15):1285–95.

  10. Vitolo U, Trneny M, Belada D, et al. Obinutuzumab or Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Previously Untreated Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2017;35(31):3529–37.

  11. Vitolo U, Witzig TE, Gascoyne RD, et al. ROBUST: First report of phase III randomized study of lenalidomide/R-CHOP vs placebo/R-CHOP in previously untreated ABC-type diffuse large B-cell lymphoma. Hematol Oncol. 2019;37(Suppl 2):36–7.

  12. Nagle SJ, Woo K, Schuster SJ, et al. Outcomes of patients with relapsed/refractory diffuse large B-cell lymphoma with progression of lymphoma after autologous stem cell transplantation in the rituximab era. Am J Hematol. 2013;88(10):890–4.

  13. Sehn L, et al. Phase II: Polatuzumab Vedotin + BR for R/R DLBCL. 2018;132: Abstract 1683.

  14. Sehn LH, Flowers C, McMillan A, et al. Estimation of long-term survival with polatuzumab vedotin plus bendamustine and rituximab for patients with relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL). Hematol Oncol. 2019;37:257–8.

  15. https://www.roche.com/media/releases/med-cor-2019-06-11b.htm