Quality of Life Changes in Patients with Chronic Immune Thrombocytopenia in the Process of Romiplostim Therapy, its Efficacy and Safety in the Real-World Setting: Results of a Multi-Center Observational Study

TI Ionova1,2, OYu Vinogradova3,4,5, TV Shelekhova6, DG Sherstnev6, AV Proidakov7, EV Lyyurova7, MM Pankrashkina3, LA Mukha3, EE Markova3, NV Novitskaya3, TI Pospelova8, TN Babaeva8, NB Bulieva9, GB Kuchma10, EA Andreevskaya11, EE Zinina12, MV Frolova13, KB Trizna14, IL Shestopalova15, TV Shneider16, SA Volkova17, SG Zakharov18, II Mulina19, IE Solov’eva19, AA Myasnikov20, AA Kuchin20, LB Khvorostenko21, NM Porfirieva1, TP Nikitina1,2, VV Ptushkin3,4,5, SV Gritsaev22

1 Multinational Center for Quality of Life Research, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014

2 NI Pirogov Clinic for High Medical Technology, Saint Petersburg State University, 154 Fontanki nab., Saint Petersburg, Russian Federation, 198103

3 Moscow Municipal Center of Hematology, SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

4 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova ul., Moscow, Russian Federation, 117997

5 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela ul., Moscow, Russian Federation, 117997

6 VI Razumovskii Saratov State Medical University, 112 Bol’shaya Kazach’ya ul., Saratov, Russian Federation, 410012

7 Komi Republican Oncology Dispensary, 46 Nyuvchimskoe sh., Syktyvkar, Republic of Komi, Russian Federation, 167904

8 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

9 I Kant Baltic Federal University, 14 Aleksandra Nevskogo ul., Kaliningrad, Russian Federation, 236041

10 Orenburg State Medical University, 6 Sovetskaya ul., Orenburg, Russian Federation, 460000

11 Krai Clinical Hospital No. 1, 7 Kokhanskogo ul., Chita, Russian Federation, 672038

12 Clinical and Diagnostic Center (Hematology), Surgut District Clinical Hospital, 14 Energetikov ul., Surgut, Russian Federation, 628408

13 Vologda Regional Clinical Hospital, 17 Lechebnaya ul., Vologda, Russian Federation, 160002

14 Tomsk Regional Clinical Hospital, 96 I. Chernykh ul., Tomsk, Russian Federation, 634063

15 SI Sergeev Krai Clinical Hospital No. 1, 9 Krasnodarskaya ul., Khabarovsk, Russian Federation, 680009

16 Leningrad Regional Clinical Hospital, 45 korp. 1 lit. A Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

17 Privolzhsky Research Medical University, 10/1 Minina i Pozharskogo pl., Nizhny Novgorod, Russian Federation, 603005

18 MF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina ul., Moscow, Russian Federation, 129110

19 Republican Hospital No. 1, National Medical Center, 4 Sergelyakhskoe sh., Yakutsk, Republic of Sakha (Yakutiya), Russian Federation, 677008

20 VA Baranov Republican Clinical Hospital, 3 Pirogova ul., Petrozavodsk, Republic of Karelia, Russian Federation, 185002

21 Regional Clinical Hospital No. 1, 55 Kotovskogo ul., Tyumen, Russian Federation, 625023

22 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

For correspondence: Tatyana Pavlovna Nikitina, MD, PhD, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014; Tel.: +7(962)710-17-12; e-mail: tnikitina_74@mail.ru

For citation: Ionova TI, Vinogradova OYu, Shelekhova TV, et al. Quality of Life Changes in Patients with Chronic Immune Thrombocytopenia in the Process of Romiplostim Therapy, its Efficacy and Safety in the Real-World Setting: Results of a Multi-Center Observational Study. Clinical oncohematology. 2023;16(2):154–65. (In Russ).

DOI: 10.21320/2500-2139-2023-16-2-154-165


ABSTRACT

Aim. To study the quality of life in patients with chronic immune thrombocytopenia (ITP) in the process of romiplostim therapy and to assess the efficacy and safety of this drug in real-world setting.

Materials & Methods. The study enrolled adult patients with the confirmed chronic ITP diagnosis and indications for romiplostim therapy. Clinical parameters, RAND SF-36 and FACT-Th6 quality of life as well as FACIT-Fatigue scores were evaluated prior to romiplostim administration vs. 3, 6, and 12 months after the treatment onset. Patient satisfaction checklist was also administered at all study points after the start of therapy. The clinical efficacy of romiplostim was analyzed along with assessing response and time to response. To study the quality of life and fatigue changes, the Generalized Estimating Equation (GEE) method was used during the observation period. Significant fatigue changes were determined and compared in terms of the perception differences from patient’s and physician’s perspective.

Results. The study enrolled 60 chronic ITP patients treated with romiplostim in the real-world setting (mean age 51.9 years, 70 % women). The median thrombocyte count prior to romiplostim therapy was 18.5 × 109/L (interquartile range 10.8–22.3 × 109/л). On the enrollment date, 90 % of patients showed hemorrhagic syndrome. Overall response to romiplostim therapy was 98.3 % (complete response was achieved in 93.3 % of patients). After 6 months of therapy, 89.5 % of patients preserved response. After 3 months of therapy, hemorrhagic syndrome was eliminated in 81 % of patients, after 6 months the same was achieved in 93 % of patients. The median time to response was 4.4 weeks (95% confidence interval 3.6–5.3 weeks). Adverse events of grades 1/2 associated with romiplostim were reported in 6.7 % of patients. On romiplostim therapy, pronounced positive changes in quality of life were shown by all scales of the general questionnaire SF-36 and the targeted questionnaire FACT-Th6 (< 0.001). The clearest improvements were observed in role-physical and role-emotional functioning. Already after 3 months of therapy, a considerable fatigue reduction was observed and sustained for the next 6 and 12 months of romiplostim administration (< 0.001). During the therapy, the proportion of patients with fatigue impacting various aspects of functioning became considerably smaller. The vast majority of patients (85 %) were satisfied with the treatment. Discrepancies between patients’ and physicians’ evaluations of fatigue were also identified during the treatment.

Conclusion. The results of the present multi-center observational study demonstrate high efficacy and safety of romiplostim for chronic ITP patients in the real-world setting. Romiplostim therapy yields considerable quality of life improvement and fatigue reduction. To optimize the patient monitoring system and patient-centered ITP treatment in the real-world setting, it is advisable to use the standardized questionnaires assessing quality of life and fatigue.

Keywords: chronic immune thrombocytopenia, quality of life, romiplostim, efficacy, safety, data in the real-world setting.

Received: October 21, 2022

Accepted: March 1, 2023

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Меликян А.Л., Пустовал Е.И., Цветаева Н.В. и др. Национальные клинические рекомендации по диагностике и лечению идиопатической тромбоцитопенической пурпуры (первичной иммунной тромбоцитопении) у взрослых (редакция 2018 г.) [электронный документ]. Доступно по: https://npngo.ru/uploads/media_document/283/5eb37419-9276-4e9a-b075-0e26a788f623.pdf. Ссылка активна на 20.10.2022.
    [Melikyan AL, Pustoval EI, Tsvetaeva NV, et al. National clinical guidelines on diagnosis and treatment of idiopathic thrombocytopenic purpura (primary immune thrombocytopenia) in adults (edition 2018). (Internet) Available from: https://npngo.ru/uploads/media_document/283/5eb37419-9276-4e9a-b075-0e26a788f623.pdf. Accessed 10.2022. (In Russ)]
  2. Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: Report from an international working group. Blood. 2009;113(11):2386–93. doi: 10.1182/blood-2008-07-162503.
  3. Vianelli N, Auteri G, Buccisano F, et al. Refractory primary immune thrombocytopenia (ITP): current clinical challenges and therapeutic perspectives. Ann Hematol. 2022;101:963–78. doi: 10.1007/s00277-022-04786-y.
  4. Trotter P, Hill QA. Immune thrombocytopenia: improving quality of life and patient outcomes. Patient Relat Outcome Meas. 2018;9:369–84. doi: 10.2147/PROM.S140932.
  5. Efficace F, Mandelli F, Fazi P, et al. Health-related quality of life and burden of fatigue in patients with primary immune thrombocytopenia by phase of disease. Am J Hematol. 2016;91(10):995–1001. doi: 10.1002/ajh.24463.
  6. Tarniceriu CC, Rudeanu SA, Delianu C, et al. Quality of Life Today in Patients with Chronic Immune Thrombocytopenic Purpura. Res Pract Thromb Haemost. 2020;4(Suppl 1): Abstract PB1479.
  7. Cooper N, Kruse A, Kruse C, et al. Immune thrombocytopenia (ITP) World Impact Survey(I-WISh): Impact of ITP on health-related quality of life. Am J Hematol. 2021;96(2):199–207. doi: 10.1002/ajh.26036.
  8. Kruse C, Kruse A, DiRaimo J. Immune thrombocytopenia: the patient’s perspective. Ann Blood. 2021;6:9. doi: 10.21037/aob-20-57.
  9. Newton JL, Reese JA, Watson SI, et al. Fatigue in adult patients with primary immune thrombocytopenia. Eur J Haematol. 2011;86(5):420–9. doi: 10.1111/j.1600-0609.2011.01587.x.
  10. Hill OA, Newland AC. Fatigue in immune thrombocytop Br J Haematol. 2015;170(2):141–9. doi: 10.1111/bjh.13385.
  11. Yang R, Yao H, Lin L, et al. Health-Related Quality of Life and Burden of Fatigue in Chinese Patients with Immune Thrombocytopenia: A Cross-Sectional Study. Indian J Hematol Blood Transfus. 2020;36(1):104–11. doi: 10.1007/s12288-019-01124-7.
  12. Neunert CE, Cooper N. Evidence-based management of immune thrombocytopenia: ASH guideline update. Hematology Am Soc Hematol Educ Program. 2018;2018(1):568–75. doi: 10.1182/asheducation-2018.1.568.
  13. Neunert C, Terrell DR, Arnold DM, et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019;3(23):3829–66. doi: 10.1182/bloodadvances.2019000966.
  14. Matzdorff A, Meyer O, Ostermann H, et al. Immune Thrombocytopenia – Current Diagnostics and Therapy: Recommendations of a Joint Working Group of DGHO, OGHO, SGH, GPOH, and DGTI. Oncol Res Treat. 2018;41(Suppl 5):1–30. doi: 10.1159/000492187.
  15. European Medicines Agency. Reflection paper on the regulatory guidance for the use of health-related quality of life (HRQL) measures in the evaluation of medicinal products. (Internet) Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003637.pdf. (accessed 20.10.2022).
  16. S. Department of Health and Human Services FDA Center for Drug Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Biologics Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Devices and Radiological Health. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance. Health Qual Life Outcomes. 2006;4:79. doi: 10.1186/1477-7525-4-79.
  17. Kuter DJ, Bussel JB, Lyons RM, et al. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: A double-blind randomised controlled trial. Lancet. 2008;371(9610):395–403. doi: 10.1016/S0140-6736(08)60203-2.
  18. Bussel JB, Kuter DJ, Pullarkat V, et al. Safety and efficacy of long-term treatment with romiplostim in thrombocytopenic patients with chronic ITP. Blood. 2009;113(10):2161–71. doi: 10.1182/blood-2008-04-150078.
  19. Kuter DJ, Rummel M, Boccia R, et al. Romiplostim or standard of care in patients with immune thrombocytopenia. N Engl J Med. 2010;363(20):1889–99. doi: 10.1056/NEJMoa1002625.
  20. Cooper N, Terrinoni I, Newland A. The efficacy and safety of romiplostim in adult patients with chronic immune thrombocytopenia. Ther Adv Hematol. 2012;3(5):291–8. doi: 10.1177/2040620712453596.
  21. George JN, Mathias SD, Go RS, et al. Improved quality of life for romiplostim-treated patients with chronic immune thrombocytopenic purpura: results from two randomized, placebo-controlled trials. Br J Haematol. 2008;144(3):409–15. doi: 10.1111/j.1365-2141.2008.07464.x.
  22. Kuter DJ, Mathias SD, Rummel M, et al. Health-related quality of life in nonsplenectomized immune thrombocytopenia patients receiving romiplostim or medical standard of care. Am J Hematol. 2012;87(5):558–61. doi: 10.1002/ajh.23163.
  23. Sanz MA, Aledort L, Mathias SD, et al. Analysis of EQ-5D scores from two phase 3 clinical trials of romiplostim in the treatment of immune thrombocytopenia (ITP). Value Health. 2011;14(1):90–6. doi: 10.1016/j.jval.2010.10.017.
  24. Rovo A, Cantoni N, Samii K, et al. Real-world impact of primary immune thrombocytopenia and treatment with thrombopoietin receptor agonists on quality of life based on patient-reported experience: Results from a questionnaire conducted in Switzerland, Austria, and Belgium. PLoS ONE. 2022;17(4):e0267342. doi: 10.1371/journal.pone.0267342.
  25. Caocci G, Efficace F, Mulas O, et al. Health-related quality of life profile of patients with immune thrombocytopenia in the real life is impaired by splenectomy. Ann Hematol. 2022;101(4):749–54. doi: 10.1007/s00277-021-04750-2.
  26. Hays RD, Sherbourne CD, Mazel RM. User’s Manual for Medical Outcomes Study (MOS) Core measures of health-related quality of life, Santa Monica, Calif.: RAND Corporation, MR-162-RC, 1995. (Internet) Available from: https://www.rand.org/pubs/monograph_reports/MR162.html (accessed 20.10.2022).
  27. Snyder CF, Mathias SD, Cella D, et al. Health-related quality of life of immune thrombocytopenic purpura patients: results from a web-based survey. Curr Med Res Opin. 2008;24(10):2767–76. doi: 10.1185/03007990802377461.
  28. Cella D, Beaumont JL, Webster KA, et al. Measuring the concerns of cancer patients with low platelet counts: the Functional Assessment of Cancer TherapyThrombocytopenia (FACT-Th) questionnaire. Support Care Cancer. 2006;14(12):1220–31. doi: 10.1007/s00520-006-0102-1.
  29. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage. 1997;13(2):63–74. doi: 10.1016/s0885-3924(96)00274-6.
  30. Cella D, Johansson P, Ueda Y, et al. Clinically Important Difference for the FACIT-Fatigue Scale in Paroxysmal Nocturnal Hemoglobinuria: A Derivation from International PNH Registry Patient Data. Blood. 2021;138(1):1952. doi: 10.1182/blood-2021-153127.
  31. Atkinson MJ, Sinha A, Hass SL, et al. Validation of a general measure of treatment satisfaction, the Treatment Satisfaction Questionnaire for Medication (TSQM), using a national panel study of chronic disease. Health Qual Life Outcomes. 2004;2:12. doi: 10.1186/1477-7525-2-12.
  32. Common Terminology Criteria for Adverse Evens (CTCAE 4) Version 4.0. (Internet) Available from: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_8.5х11.pdf (accessed 20.10.2022).
  33. Mouelhi Y, Jouve E, Castelli C, et al. How is the minimal clinically important difference established in health-related quality of life instruments? Review of anchors and methods. Health Qual Life Outcomes. 2020;18(1):136. doi: 10.1186/s12955-020-01344-w.
  34. Зотова И.И., Грицаев С.В., Шилова Е.Р. и др. Агонисты рецептора тромбопоэтина в лечении идиопатической тромбоцитопенической пурпуры (первичной иммунной тромбоцитопении): эффективность и безопасность в повседневной клинической практике. Клиническая онкогематология. 2017;10(1):93–100. doi: 10.21320/2500-2139-2017-10-1-93-100.
    [Zotova II, Gritsaev SV, Shilova ER, et al. Thrombopoietin Receptor Agonists in Treatment of Idiopathic Thrompocytopenic Purpura (Primary Immune Thrombocytopenia): Efficacy and Safety in Everyday Clinical Practice. Clinical oncohematology. 2017;10(1):93–100. doi: 10.21320/2500-2139-2017-10-1-93-100. (In Russ)]
  35. Птушкин В.В., Виноградова О.Ю., Панкрашкина М.М. и др. Агонисты рецептора тромбопоэтина в лечении хронической резистентной первичной иммунной тромбоцитопении: эффективность и безопасность в повседневной клинической практике. Терапевтический архив. 2018;90(7):70–6. doi: 10.26442/terarkh201890770-76.
    [Ptushkin VV, Vinogradova OYu, Pankrashkina MM, et al. Thrombopoietin Receptor Agonists in the Treatment of Chronic Resistant Primary Immune Thrombocytopenia: Efficacy and Safety Data in Real Clinical Practice. Terapevticheskii arkhiv. 2018;90(7):70–6. doi: 10.26442/terarkh201890770-76. (In Russ)]
  36. Контиевский И.Н., Голенков А.К. Эффективность агонистов тромбопоэтиновых рецепторов: ромиплостим, элтромбопаг у больных с рецидивирующей первичной иммунной тромбоцитопенией. Вестник гематологии. 2019;15(4):8–13.
    [Kontievskii IN, Golenkov AK. Efficacy of thrombopoetin receptor agonists romiplostim, eltrombopag in patients with relapsed primary immune thrombocytopenia. Vestnik gematologii. 2019;15(4):8–13. (In Russ)]
  37. Kuter DJ, Bussel JB, Newland A, et al. Long-term treatment with romiplostim in patients with chronic immune thrombocytopenia: safety and efficacy. Br J Haematol. 2013;161(3):411–23. doi: 10.1111/bjh.12260.
  38. Forsythe A, Schneider J, Pham T, et al. Real-world evidence on clinical outcomes in immune thrombocytopenia treated with thrombopoietin receptor agonists. J Comp Eff Res. 2020;9(7):447–57. doi: 10.2217/cer-2019-0177.

Approaches to the Treatment of Patients with Myelofibrosis and Polycythemia Vera with Constitutional Symptoms in Real-World Clinical Practice in the Russian Federation: Intermediate Results of a Multi-Center Observational Prospective Clinical Study

AL Melikyan1, IN Subortseva1, SM Kulikov1, YuA Chabaeva1, EA Gilyazitdinova1, KP Novoselov2, EA Knyazeva2, AS Egorova2, IS Stepochkin2, EV Koroleva3, TM Sycheva4, VP Belgesova4, AYu Putintseva5, OM Senderova6, IV Vasil’eva7, EYu Komartseva8, AA Kaplina8, VI Bakhtina9, MA Mikhalev9, YuB Chernykh10, EN Parovichnikova1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 Novgorod Regional Clinical Hospital, 14 Pavla Levitta ul., Velikiy Novgorod, Russian Federation, 173008

3 Regional Clinical Hospital, 105 Peterburgskoe sh., Tver, Russian Federation, 170036

4 Aleksandro-Mariinskaya Astrakhan Regional Clinical Hospital, 2 Tatishcheva ul., Astrakhan, Russian Federation, 414056

5 AN Kabanov Municipal Clinical Hospital No. 1, 7 Pereleta ul., Omsk, Russian Federation, 644112

6 Irkutsk Regional Clinical Hospital, 100 Yubileinyi mikroraion, Irkutsk, Russian Federation, 664049

7 Central Municipal Hospital No. 7, 33 Vilonova ul., Ekaterinburg, Russian Federation, 620137

8 Rostov Regional Clinical Hospital, Zapadnyi zhiloi massiv, 170 Blagodatnaya ul., Rostov-on-Don, Russian Federation, 344015

9 VF Voino-Yasenetskii Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka ul., Krasnoyarsk, Russian Federation, 660022

10 MF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina ul., Moscow, Russian Federation, 129110

For correspondence: Anait Levonovna Melikyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: anoblood@mail.ru

For citation: Melikyan AL, Subortseva IN, Kulikov SM, et al. Approaches to the Treatment of Patients with Myelofibrosis and Polycythemia Vera with Constitutional Symptoms in Real-World Clinical Practice in the Russian Federation: Intermediate Results of a Multi-Center Observational Prospective Clinical Study. Clinical oncohematology. 2023;16(2):146–53. (In Russ).

DOI: 10.21320/2500-2139-2023-16-2-146-153


ABSTRACT

Aim. To describe the methods of drug therapy implemented for the disease control in patients with polycythemia vera (PV) and myelofibrosis (MF) as well as to analyze manifestations and severity of the disease symptoms in real-world clinical practice.

Materials & Methods. The analysis focused on the data of 1229 patients. In 629 (51.18 %) patients, PV was diagnosed, MF was identified in 521 (42.39 %) patients. The diagnosis of 79 (6.43 %) patients was not reported. Early stage of primary MF (PMF) was detected in 182 (34.93 %) patients, PMF fibrosis stage was identified in 251 (48.18 %) patients, post-polycythemic MF was registered in 61 (11.71 %) patients, and 13 (2.5 %) patients showed post-thrombocythemic MF. In 14 (2.69 %) patients, MF type was not reported. By the time of diagnosis, the median age of PV patients was 56 years (range 17–86 years), and that of MF patients was 55 years (range 16–83 years) (= 0.022). The proportion of women among PV patients was 57 %, among MF patients it was 65 % (= 0.0065).

Results. The assessment of thrombotic complication risk in PV showed that 51.01 % (n = 302) of patients belong to the low-risk, 39.86 % (n = 236) belong to the intermediate-risk, and only 9.12 % (n = 54) of patients belong to the high-risk groups. Distribution of MF patients between risk groups demonstrates favorable prognosis for most patients. The group of low and intermediate-1 risks includes 56.43 % (n = 294) patients according to the prognostic scoring system IPSS and 68.52 % (n = 357) according to the prognostic scoring system DIPSS. In the vast majority of cases, patients received hydroxycarbamide therapy: 81.81 % (n = 832) in the total cohort, 83.33 % (n = 465) in the PV group, and 79.96 % (n = 367) in the MF group. Interferon-α was administered to 19.71 % (n = 110) of PV patients and 29.85 % (n = 137) of MF patients. Ruxolitinib was assigned to 3.14 % (n = 19) of PV patients and 21.35 % (n = 98) of MF patients.

Conclusion. Regular monitoring of the PV and MF course and treatment efficacy can provide recommendations for adequate change of therapy in case of the failure of previous treatment. It should be emphasized that the timely switch to the second-line therapy results in reduced disability and mortality among PV and MF patients with myeloproliferative neoplasms.

Keywords: polycythemia vera, myelofibrosis, hydroxycarbamide, interferon-α, ruxolitinib.

Received: November 7, 2022

Accepted: March 9, 2023

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  2. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;62(1-S1):25–60.
    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical guidelines on diagnosis and treatment of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, and primary myelofibrosis) (2016 edition). Gematologiya i transfuziologiya. 2017;62(1-S1):25–60. (In Russ)]
  3. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.) Гематология и трансфузиология. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2018). Gematologia i transfuziologia. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001. (In Russ)]
  4. Меликян А.Л., Суборцева И.Н., Шуваев В.А. и др. Современный взгляд на диагностику и лечение классических Ph-негативных миелопролиферативных заболеваний. Клиническая онкогематология. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137.
    [Melikyan AL, Subortseva IN, Shuvaev VA, et al. Current View on Diagnosis and Treatment of Classical Ph-Negative Myeloproliferative Neoplasms. Clinical oncohematology. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137. (In Russ)]
  5. Ионова Т.И., Андреевская Е.А., Бабич Е.Н. и др. Актуальные аспекты качества жизни у пациентов с классическими Ph-негативными миелопролиферативными новообразованиями в Российской Федерации: обсуждение результатов национальной наблюдательной программы МПН-КЖ-2020. Клиническая онкогематология. 2021;15(2):176–97. doi: 10.21320/2500-2139-2022-15-2-176-197.
    [Ionova TI, Andreevskaya EA, Babich EN, et al. Current Quality-of-Life Aspects in Patients with Classical Ph-Negative Myeloproliferative Neoplasms in the Russian Federation: Overview of the Outcomes of the National Observational Program MPN-QoL-2020. Clinical oncohematology. 2022;15(2):176–97. doi: 10.21320/2500-2139-2022-15-2-176-197. (In Russ)]
  6. Langlais BT, Mazza GL, Kosiorek HE, et al. Validation of a Modified Version of the Myeloproliferative Neoplasm Symptom Assessment Form Total Symptom Score. J Hematol. 2021;10(5):207–11. doi: 10.14740/jh914.
  7. Rungjirajittranon T, Owattanapanich W, Ungprasert P, Ruchutrakool T. A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms. BMC Cancer. 2019;19(1):184. doi: 10.1186/s12885-019-5387-9.
  8. Меликян А.Л., Суборцева И.Н., Суханова Г.А. Тромбогеморрагические осложнения у больных Ph-негативными миелопролиферативными заболеваниями. Кровь. 2014;2:21–5.
    [Melikyan AL, Subortseva IN, Sukhanova GA. Thrombo-hemorrhagic complications in patients with Ph-negative myeloproliferative diseases. Krov’. 2014;2:21–5. (In Russ)]
  9. Танашян М.М., Кузнецова П.И., Суборцева И.Н. и др. Хроническая и острая цереброваскулярная патология при Ph-негативных миелопролиферативных заболеваниях. Гематология и трансфузиология. 2016;61(3):146–50. doi: 10.18821/0234-5730-2016-61-3-146-150.
    [Tanashyan MM, Kuznetsova PI, Subortseva IN, et al. Chronic and acute cerebrovascular pathology in patients with Ph-negative myeloproliferative diseases. Gematologiya i transfuziologiya. 2016;61(3):146–50. doi: 10.18821/0234-5730-2016-61-3-146-150. (In Russ)]
  10. Танашян М.М., Кузнецова П.И., Суборцева И.Н., Меликян А.Л. Клинические особенности цереброваскулярной патологии при Ph-негативных миелопролиферативных заболеваниях. Клиническая фармакология и терапия. 2016;25(5):54–7.
    [Tanashyan MM, Kuznetsova PI, Subortseva IN, Melikyan AL. Clinical characteristics of cerebrovascular pathology in Ph-negative myeloproliferative diseases. Klinicheskaya farmakologiya i terapiya. 2016;25(5):54–7. (In Russ)]
  11. Sukhanova GA, Melikyan AL, Vakhrusheva MV, et al. Treatment of portal thrombosis in patients with myeloproliferative neoplasms: a single-institution experience. Blood. 2014;124(21):5098.
  12. Суханова Г.А., Вахрушева М.В., Колосова Л.Ю. и др. Опыт лечения портальных тромбозов препаратом «Антитромбин III» у пациентов с хроническими миелопролиферативными заболеваниями. Тромбоз, гемостаз и реология. 2014;2(58):44–52.
    [Sukhanova GA, Vakhrusheva MV, Kolosova LYu, et al. Experience of treating portal thromboses with Antithrombin III in patients with chronic myeloproliferative neoplasms. Tromboz, gemostaz i reologiya. 2014;2(58):44–52. (In Russ)]
  13. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  14. Passamonti F, Cervantes F, Vannucchi AM, et al. Dynamic International Prognostic Scoring System (DIPSS) predicts progression to acute myeloid leukemia in primary myelofibrosis. Blood. 2010;116(15):2857–8. doi: 10.1182/blood-2010-06-293415.
  15. Gangat N, Caramazza D, Vaidya R, et al. DIPSS Plus: A Refined Dynamic International Prognostic Scoring System for Primary Myelofibrosis That Incorporates Prognostic Information From Karyotype, Platelet Count, and Transfusion Status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/JCO.2010.32.2446.
  16. Меликян А.Л., Суборцева И.Н., Галстян Г.М. Протокол дифференцированного посиндромного лечения больных первичным миелофиброзом. В кн.: Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. А.В. Абрамовой, А.О. Абдуллаева и др. М.: Практика, 2018. Т. 2. С. 777–802.
    [Melikyan AL, Subortseva IN, Galstyan GM. Protocol of differentiated syndromic treatment of patients with primary myelofibrosis. In: Abramova AV, Abdullaev AO, et al., eds. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika Publ.; 2018. Vol. 2. pр. 777–802. (In Russ)]
  17. Меликян А.Л., Суборцева И.Н. Протокол дифференцированной терапии молодых больных истинной полицитемией и эссенциальной тромбоцитемией. В кн.: Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. А.В. Абрамовой, А.О. Абдуллаева и др. М.: Практика, 2018. Т. 2. С. 825–44.
    [Melikyan AL, Subortseva IN. Protocol of differentiated therapy of young patients with polycythemia vera and essential thrombocytemia. In: Abramova AV, Abdullaev AO, et al., eds. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika Publ.; 2018. Vol. 2. pр. 825–44. (In Russ)]
  18. Ломаиа Е.Г., Сиордия Н.Т., Сендерова О.М. и др. Ранний ответ и отдаленные результаты терапии миелофиброза руксолитинибом: многоцентровое ретроспективное исследование в 10 центрах Российской Федерации. Клиническая онкогематология. 2020;13(3):335–45. doi: 10.21320/2500-2139-2020-13-3-335-345.
    [Lomaia EG, Siordiya NT, Senderova OM, et al. Early Response and Long-Term Outcomes of Ruxolitinib Therapy in Myelofibrosis: Multicenter Retrospective Study in 10 Centers of the Russian Federation. Clinical oncohematology. 2020;13(3):335–45. doi: 10.21320/2500-2139-2020-13-3-335-345. (In Russ)]
  19. Marchioli R, Finazzi G, Landolfi R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32. doi: 10.1200/JCO.2005.07.062.
  20. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2009;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  21. Verstovsek S, Mesa RA, Gotlib I, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012;366(9):799–807. doi: 10.1056/NEJMoa1110557.
  22. Vannucchi AM, Kantarjian HM, Kiladjian J-J, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100(9):1139–45. doi: 10.3324/haematol.2014.119545.
  23. Verstovsek S, Mesa RA, Gotlib J, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55. doi: 10.1186/s13045-017-0417.
  24. Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative Neoplasm (MPN) Symptom Assessment Form Total Symptom Score: Prospective International Assessment of an Abbreviated Symptom Burden Scoring System Among Patients With MPNs. J Сlin Oncol. 2012;30(33):4098–103. doi: 10.1200/jco.2012.42.3863.
  25. Ионова Т.И., Виноградова О.Ю., Ефремова Е.В. и др. Разработка и результаты апробации русской версии опросника MPN10 для оценки симптомов у пациентов с миелопролиферативными новообразованиями с учетом международных рекомендаций. Клиническая онкогематология. 2020;13(2):176–84. doi: 10.21320/2500-2139-2020-13-2-176-184.
    [Ionova TI, Vinogradova OYu, Efremova EV, et al. Development and Validation Results of the Russian MPN10 Form for Symptom Assessment in Patients with Myeloproliferative Neoplasms in Compliance with International Recommendations. Clinical oncohematology. 2020;13(2):176–84. doi: 10.21320/2500-2139-2020-13-2-176-184. (In Russ)]

T-Helper Subpopulations in Acute Leukemia Patients After Allogeneic Hematopoietic Stem Cell Transplantation

YuO Davydova, NM Kapranov, KA Nikiforova, OS Karavaeva, DV Kamelskikh, MYu Drokov, LA Kuzmina, TV Gaponova, IV Galtseva, EN Parovichnikova

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Yuliya Olegovna Davydova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(499)612-62-21; e-mail: davydova.y@blood.ru

For citation: Davydova YuO, Kapranov NM, Nikiforova KA, et al. T-Helper Subpopulations in Acute Leukemia Patients After Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2023;16(2):137–45. (In Russ).

DOI: 10.21320/2500-2139-2023-16-2-137-145


ABSTRACT

Aim. To identify the characteristics of T-helper subpopulations in healthy donors and to compare them with those reported in acute leukemia patients 6 months after allogeneic hematopoietic stem cell transplantation (allo-HSCT).

Materials & Methods. The study enrolled 41 blood donors and 49 patients after-HSCT. The median age of donors was 36 years (range 20–60 years), 29 of them were men and 12 were women. The median age of patients was 37 years (range 19–62 years), 18 of them were men and 31 were women. Acute myeloid leukemia was diagnosed in 27 (55 %) patients and acute lymphoblastic leukemia/lymphoma in 22 (45 %) patients. Myeloablative conditioning was administered to 4 (8 %) patients and reduced intensity conditioning to 45 (92 %) patients. T-helper subpopulations were studied in the blood of healthy donors vs. acute leukemia patients after allo-HSCT. The flow cytometry analysis was conducted to simultaneously assess the expression of markers CD3, CD4, CD8, CD25, CD45RA, CD197, CD28, CCR4, CCR6, CCR10, CXCR3, and CXCR5 in T-cells.

Results. The study demonstrated that the count of T-helpers at different stages of differentiation (regulatory, naive T-cells, memory cells, and effector cells) comprehensively distinguishes healthy donors from patients. Moreover, the functional structure of each of these populations differ in donors vs. patients even on Month +6 after allo-HSCT. Donors appeared to have more polarized cells among the central memory T-helpers. The proportion of T-helpers type 1 among the effector cells was higher is patients.

Conclusion. The results of the study indicate that the Т-cell parameter set can be analyzed to assess immunity and to describe its disorders in different pathologies or after drug chemotherapy.

Keywords: flow cytometry, Т-cells, Т-helpers, blood donors, lymphocyte subpopulations.

Received: October 26, 2022

Accepted: March 10, 2023

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Lugli E, Pinti M, Nasi M, et al. Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytom Part A. 2007;71(5):334–44. doi: 10.1002/CYTO.A.20387.
  2. Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front Immunol. 2020;10:3100. doi: 10.3389/FIMMU.2019.03100/BIBTEX.
  3. Mahnke YD, Brodie TM, Sallusto F, et al. The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur J Immunol. 2013;43(11):2797–809. doi: 10.1002/eji.201343751.
  4. Hammarlund E, Lewis MW, Hansen SG, et al. Duration of antiviral immunity after smallpox vaccination. Nat Med. 2003;9(9):1131–7. doi: 10.1038/NM917.
  5. Dawes R, Petrova S, Liu Z, et al. Combinations of CD45 Isoforms Are Crucial for Immune Function and Disease. J Immunol. 2006;176(6):3417. doi: 10.4049/JIMMUNOL.176.6.3417.
  6. Gattinoni L, Lugli E, Ji Y, et al. A human memory T-cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290. doi: 10.1038/NM.2446.
  7. Lugli E, Dominguez MH, Gattinoni L, et al. Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest. 2013;123(2):594. doi: 10.1172/JCI66327.
  8. Romero P, Zippelius A, Kurth I, et al. Four Functionally Distinct Populations of Human Effector-Memory CD8+ T Lymphocytes. J Immunol. 2007;178(7):4112–9. doi: 10.4049/JIMMUNOL.178.7.4112.
  9. Bonecchi R, Bianchi G, Bordignon PP, et al. Differential Expression of Chemokine Receptors and Chemotactic Responsiveness of Type 1 T Helper Cells (Th1s) and Th2s. J Exp Med. 1998;187(1):129–34. doi: 10.1084/JEM.187.1.129.
  10. Duhen T, Geiger R, Jarrossay D, et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10(8):857–63. doi: 10.1038/ni.1767.
  11. Rivino L, Messi M, Jarrossay D, et al. Chemokine Receptor Expression Identifies Pre–T Helper (Th)1, Pre–Th2, and Nonpolarized Cells among Human CD4+ Central Memory T Cells. J Exp Med. 2004;200(6):725–35. doi: 10.1084/JEM.20040774.
  12. Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat Immunol. 2007;8(6):639–46. doi: 10.1038/ni1467.
  13. Zhang N, Pan HF, Ye DQ. Th22 in inflammatory and autoimmune disease: prospects for therapeutic intervention. Mol Cell Biochem. 2011;353(1):41–6. doi: 10.1007/S11010-011-0772-Y.
  14. Bunjun R, Omondi FMA, Makatsa MS, et al. Th22 Cells Are a Major Contributor to the Mycobacterial CD4+ T Cell Response and Are Depleted During HIV Infection. J Immunol. 2021;207(5):1239–49. doi: 10.4049/JIMMUNOL.1900984.
  15. Beilhack A, Schulz S, Baker J, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood. 2005;106(3):1113–22. doi: 10.1182/blood-2005-02-0509.
  16. Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, Serody JS. Leukocyte migration and graft-versus-host disease. Blood. 2005;105(11):4191–9. doi: 10.1182/blood-2004-12-4726.
  17. Попова Н.Н, Савченко В.Г. Реконституция Т-клеточного звена иммунной системы у больных после трансплантации аллогенных гемопоэтических стволовых клеток. Гематология и трансфузиология. 2020;65(1):24–38. doi: 10.35754/0234-5730-2020-65-1-24-38.
    [Popova NN, Savchenko VG. Reconstitution of T-cell-mediated immunity in patients after allogeneic stem cell transplantation. Russian journal of hematology and transfusiology. 2020;65(1):24–38. doi: 10.35754/0234-5730-2020-65-1-24-38. (In Russ)]
  18. Ringhoffer S, Rojewski M, Dohner H, et al. T-cell reconstitution after allogeneic stem cell transplantation: assessment by measurement of the sjTREC/βTREC ratio and thymic naive T cells. Haematologica. 2013;98(10):1600–8. doi: 10.3324/haematol.2012.072264.
  19. Pei X, Zhao X, Wang Y, et al. Comparison of reference values for immune recovery between event-free patients receiving haploidentical allografts and those receiving human leukocyte antigen-matched sibling donor allografts. Front Med. 2017;12(2):153–63. doi: 10.1007/S11684-017-0548-1.
  20. Благов С.Л., Шелихова Л.Н., Осипова Е.Ю. и др. Применение инфузий T-клеток памяти с целью профилактики вирусных инфекций у пациентов с гемобластозами, перенесших аллогенную трансплантацию гемопоэтических стволовых клеток с деплецией альфа/бета Т-лимфоцитов. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018;17(2):9–20.
    [Blagov SL, Shelikhova LN, Osipova EYu, et al. Low dose donor memory T-cell infusion after TCR alpha/beta depleted stem cell transplantation for patients with malignant disorders. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2018;17(2):9–20. (In Russ)]
  21. Mahnke YD, Beddall MH, Roederer M. OMIP-017: Human CD4+ Helper T-cell Subsets Including Follicular Helper Cells. Cytometry A. 2013;83(5):439. doi: 10.1002/CYTO.A.22269.
  22. Spadea M, Saglio F, Tripodi SI, et al. Multivariate Analysis of Immune Reconstitution and Relapse Risk Scoring in Children Receiving Allogeneic Stem Cell Transplantation for Acute Leukemias. Transplant Direct. 2021;7(11):e774. doi: 10.1097/TXD.0000000000001226.
  23. Mackall CL, Fleisher TA, Brown MR, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med. 1995;332(3):143–9. doi: 10.1056/NEJM199501193320303.
  24. Hakim FT, Memon SA, Cepeda R, et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest. 2005;115(4):930–9. doi: 10.1172/JCI22492.
  25. Van Den Brink MRM, Velardi E, Perales MA. Immune reconstitution following stem cell transplantation. Hematol Am Soc Hematol Educ Progr. 2015;2015(1):215–9. doi: 10.1182/asheducation-2015.1.215.
  26. Dean HF, Cazaly A, Hurlock C, et al. Defects in lymphocyte subsets and serological memory persist a median of 10 years after high-dose therapy and autologous progenitor cell rescue for malignant lymphoma. Bone Marrow Transplant. 2012;47(12):1545–51. doi: 10.1038/bmt.2012.73.
  27. Chung B, Barbara-Burnham L, Barsky L, Weinberg K. Radiosensitivity of thymic interleukin-7 production and thymopoiesis after bone marrow transplantation. Blood. 2001;98(5):1601–6. doi: 10.1182/blood.V98.5.1601.
  28. Mackall CL, Fleisher TA, Brown MR, et al. Distinctions Between CD8+ and CD4+ T-Cell Regenerative Pathways Result in Prolonged T-Cell Subset Imbalance After Intensive Chemotherapy. Blood. 1997;89(10):3700–7. doi: 10.1182/blood.V89.10.3700.
  29. Poulin JF, Sylvestre M, Champagne P, et al. Evidence for adequate thymic function but impaired naive T-cell survival following allogeneic hematopoietic stem cell transplantation in the absence of chronic graft-versus-host disease. Blood. 2003;102(13):4600–7. doi: 10.1182/blood-2003-05-1428.
  30. Wang YT, Kong Y, Song Y, et al. Increased Type 1 Immune Response in the Bone Marrow Immune Microenvironment of Patients with Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2016;22(8):1376–82. doi: 10.1016/J.BBMT.2016.04.016.
  31. Monteiro JP, Bonomo A. Linking immunity and hematopoiesis by bone marrow T cell activity. Brazilian J Med Biol Res. 2005;38(10):1475–86. doi: 10.1590/S0100-879X2005001000004.
  32. Monteiro JP, Benjamin A, Costa ES, et al. Normal hematopoiesis is maintained by activated bone marrow CD4+ T cells. Blood. 2005;105(4):1484–91. doi: 10.1182/blood-2004-07-2856.
  33. Bonomo A, Monteiro AC, Goncalves-Silva T, et al. A T cell view of the bone marrow. Front Immunol. 2016;7:184. doi: 10.3389/FIMMU.2016.00184/BIBTEX.
  34. Yang YG, Dey BR, Sergio JJ, et al. Donor-derived interferon gamma is required for inhibition of acute graft-versus-host disease by interleukin 12. J Clin Invest. 1998;102(12):2126–35. doi: 10.1172/JCI4992.
  35. Engelhardt BG, Paczesny S, Jung DK, et al. Early Th1 immunity promotes immune tolerance and may impair graft-versus-leukemia effect after allogeneic hematopoietic cell transplantation. Haematologica. 2016;101(5):e204–e208. doi: 10.3324/haematol.2015.139501.
  36. Brok HPM, Vossen JM, Heidt PJ. Interferon-γ-mediated prevention of graft-versus-host disease: Development of immune competent and allo-tolerant T cells in chimeric mice. Bone Marrow Transplant. 1997;19(6):601–6. doi: 10.1038/SJ.BMT.1700707.
  37. Carlson MJ, West ML, Coghill JM, et al. In vitro–differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood. 2009;113(6):1365–74. doi: 10.1182/blood-2008-06-162420.
  38. Crane IJ, Forrester JV. Th1 and Th2 Lymphocytes in Autoimmune Disease. Crit Rev Immunol. 2005;25(2):75–102. doi: 10.1615/critrevimmunol.V25.I2.10.

The Role of Autologous Hematopoietic Stem Cell Transplantation in the Therapy of Systemic AL Amyloidosis

OV Pirogova1, OV Kudyasheva1, AG Smirnova1, VV Porunova1, SV Tolstova1, KR Kalimulina1, MV Chernous1, YuYu Vlasova1, IS Moiseev1, VA Dobronravov2, AD Kulagin1

1 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

2 Scientific Research Institute of Nephrology; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

For correspondence: Olga Vladislavovna Pirogova, MD, PhD, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022; Tel.: +7(921)441-90-16; e-mail: bmt.myeloma@gmail.com, dr.pirogova@gmail.com

For citation: Pirogova OV, Kudyasheva OV, Smirnova AG, et al. The Role of Autologous Hematopoietic Stem Cell Transplantation in the Therapy of Systemic AL Amyloidosis. Clinical oncohematology. 2023;16(2):128–36. (In Russ).

DOI: 10.21320/2500-2139-2023-16-2-128-136


ABSTRACT

Aim. To assess the outcomes of autologous hematopoietic stem cell transplantation (auto-HSCT) in systemic AL Amyloidosis patients treated at the R.M. Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation.

Materials & Methods. In the period from 2005 to 2022, auto-HSCT was performed in 33 patients with systemic AL Amyloidosis. In 7 of them, auto-HSCT was not preceded by the induction therapy “upfront”. From 2012 all patients received induction therapy prior to transplantation. The median age of patients was 54 years (range 38–68 years); among them there were 17 women and 16 men.

Results. The 3-year follow-up period showed hematological response rate of 76 % (95% confidence interval [95% CI] 50–90 %), heart response rate of 27 % (95% CI 6–55 %), renal response rate of 76 % (95% CI 41–93 %), and hepatic response rate of 26 % (95% CI 8–50 %). The 5-year overall (OS) and progression-free (PFS) survivals were 71 % (95% CI 49–85 %) and 53 % (95% CI 32–71 %), respectively. The OS parameters in the group with delayed auto-HSCT, i.e., after induction therapy, were better than in the “upfront” group: 82 % (95% CI 60–93 %) vs. 43 % (95% CI 10–73 %) (= 0.03). The OS parameters were affected by health status (= 0.03), reduced left ventricular ejection fraction < 60 % (= 0.006), stage of heart disease (= 0.016), and stage III kidney disease (= 0.007). The PFS parameters depended on ECOG performance status (= 0.004) and stage of heart disease (= 0.041).

Conclusion. The presented data confirm the results of the studies emphasizing the importance of induction therapy prior to auto-HSCT in the treatment of systemic AL Amyloidosis. More stringent parameters of renal function, left ventricular ejection fraction, and ECOG performance status can be used as criteria for auto-HSCT eligibility. Reduced melphalan doses, as conditioning regimen, can be administered to patients with pronounced comorbidity.

Keywords: systemic AL Amyloidosis, autologous hematopoietic stem cell transplantation, melphalan, bortezomib.

Received: October 24, 2022

Accepted: March 15, 2023

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Quock TP, Yan T, Chang E, Guthrie S, et al. Epidemiology of AL amyloidosis: a real-world study using US claims data. Blood Adv. 2018;2(10):1046–53. doi: 10.1182/bloodadvances.2018016402.
  2. Wechalekar AD, Cibeira MT, Gibbs SD, et al. Guidelines for non-transplant chemotherapy for treatment of systemic AL amyloidosis: EHA-ISA working group. Amyloid. 2022:1–15. doi: 10.1080/13506129.2022.2093635.
  3. Cohen OC, Wechalekar AD. Systemic amyloidosis: moving into the spotlight. Leukemia. 2020;34(5):1215–28. doi: 10.1038/s41375-020-0802-4.
  4. Vaxman I, Gertz MA. Recent Advances in the Diagnosis, Risk Stratification, and Management of Systemic Light-Chain Amyloidosis. Acta Haematol. 2019;141(2):93–106. doi: 10.1159/000495455.
  5. Comenzo RL, Vosburgh E, Simms RW, et al. Dose-intensive melphalan with blood stem cell support for the treatment of AL amyloidosis: one-year follow-up in five patients. Blood. 1996;88(7):2801–6. doi: 10.1182/blood.V88.7.2801.bloodjournal8872801.
  6. Gustine J, Staron A, Szalat R, et al. Predictors of hematologic response and survival with stem cell transplantation in AL amyloidosis: A 25-year longitudinal study. Am J Hematol. 2022;97(9):1189–99. doi: 10.1002/ajh.26641.
  7. Sanchorawala V, Sun FG, Quillen K, et al. Long-term outcome of patients with AL amyloidosis treated with high-dose melphalan and stem cell transplantation: 20-year experience. Blood. 2015;126(20):2345–7. doi: 10.1182/blood-2015-08-662726.
  8. Szalat R, Sarosiek S, Havasi A, et al. Organ responses after high dose melphalan and stem cell transplantation in AL amyloidosis. Leukemia 2021;35(3):916–9. doi: 10.1038/s41375-020-1006-7.
  9. Sidiqi MH, Aljama MA, Buadi F, et al. Stem Cell Transplantation for Light Chain Amyloidosis: Decreased Early Mortality Over Time. J Clin Oncol. 2018;36(13):1323–9. doi: 10.1200/JCO.2017.76.9554.
  10. Kaufman G, Dispenzieri A, Gertz MA, et al. Kinetics of organ response and survival following normalization of the serum free light chain ratio in AL amyloidosis. Am J Hematol. 2015;90(3):181–6. doi: 10.1002/ajh.23898.
  11. Abdallah N, Sidana S, Dispenzieri A, et al. Outcomes with Early vs. Deferred Stem Cell Transplantation in Light Chain Amyloidosis. Bone Marrow Transplant. 2020;55(7):1297–304. doi: 10.1038/s41409-020-0964-8.
  12. Sharpley FA, Petrie A, Mahmood S, et al. A 24-year experience of autologous stem cell transplantation for light chain amyloidosis patients in the United Kingdom. Br J Haematol. 2019;187(5):642–52. doi: 10.1111/bjh.16143.
  13. D’Souza A, Dispenzieri A, Wirk B, et al. Improved Outcomes After Autologous Hematopoietic Cell Transplantation for Light Chain Amyloidosis: A Center for International Blood and Marrow Transplant Research Study. J Clin Oncol. 2015;33(32):3741–9. doi: 10.1200/JCO.2015.62.401.
  14. Sanchorawala V, Boccadoro M, Gertz M. Guidelines for high dose chemotherapy and stem cell transplantation for systemic AL amyloidosis: EHA-ISA working group guidelines. 2022;29(1):1–7. doi: 10.1080/13506129.2021.2002841.
  15. Comenzo R, Reece D, Palladini G, et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia. 2012;26(11):2317–25. doi: 10.1038/leu.2012.100.
  16. Kumar S. Callander N, Adekola K, et al. NCCN Clinical Practice Guidelines in Oncology Version 1.2023. September 1, 2022. (Internet) Available from: https://www.nccn.org/professionals/physician_gls/pdf/amyloidosis.pdf (accessed 29.12.2022).
  17. Skinner M, Sanchorawala V, Seldin DC, et al. High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: an 8-year study. Ann Intern Med. 2004;140(2):85–93. doi: 10.1038/sj.bmt.1704346.
  18. Sanchorawala V, Wright DG, Seldin DC, et al. High-dose intravenous melphalan and autologous stem cell transplantation as initial therapy or following two cycles of oral chemotherapy for the treatment of AL amyloidosis: results of a prospective randomized trial. Bone Marrow Transplant. 2004;33(4):381–8. doi: 10.1038/sj.bmt.1704346.
  19. Huang X, Wang Q, Chen W, et al. Induction therapy with bortezomib and dexamethasone followed by autologous stem cell transplantation versus autologous stem cell transplantation alone in the treatment of renal AL amyloidosis: a randomized controlled trial. BMC Med. 2014;12:2. doi: 10.1186/1741-7015-12-2.
  20. Scott EC, Heitner SB, Dibb W, et al. Induction bortezomib in AL amyloidosis followed by high dose melphalan and autologous stem cell transplantation: a single institution retrospective study. Clin Lymphoma Myeloma 2014;14(5):424–30. doi: 10.3324/haematol.2018.213900.
  21. Palladini G, Sachchithanantham S, Milani P, et al. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood. 2015;126(5):612–5. doi: 10.1182/blood-2015-01-620302.
  22. Mikhael JR, Schuster S, Jimenez-Zepeda V, et al. Cyclophosphamide-bortezomib-dexamethasone (CyBorD) produces rapid and complete hematologic response in patients with AL amyloidosis. Blood. 2012;119(19):4391–4. doi: 10.1182/blood-2011-11-390930.
  23. Hwa YL, Kumar SK, Gertz MA, et al. Induction therapy pre-autologous stem cell transplantation in immunoglobulin light chain amyloidosis: a retrospective evaluation. Am J Hematol. 2016;91(10):984–8. doi: 10.1002/ajh.24453.
  24. Sanchorawala V, Shelton AC, Brauneis D, et al. Treatment of AL Amyloidosis with Two Cycles of Induction Therapy with Bortezomib and Dexamethasone Followed by Bortezomib-High Dose Melphalan Conditioning and Autologous Stem Cell Transplantation. Blood. 2012;120(21):2019. doi: 10.1182/blood.V120.21.2019.2019.
  25. Palladini G, Dispenzieri A, Gertz MA. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30(36):4541–9. doi: 10.1200/JCO.2011.37.7614.
  26. Кудяшева О.В., Пирогова О.В., Порунова В.В. и др. Сравнение бортезомиб-содержащих режимов с другими подходами к терапии для лечения впервые выявленных пациентов с системным амилоидозом легких цепей, не кандидатов на выполнение аутологичной трансплантации костного мозга. Cell Ther Transplant. 2021;10(3–4):38–45. doi: 10.18620/ctt-1866-8836-2021-10-3-4-38-45.
    [Kudyasheva OV, Pirogova OV, Porunova VV. Comparison of bortesomib-based induction regimens with other treatment modalities in patients with newly diagnosed systemic light chain amyloidosis ineligible for autologous stem cell transplantation. Cell Ther Transplant. 2021;10(3–4):38–45. doi: 10.18620/ctt-1866-8836-2021-10-3-4-38-45. (In Russ)]
  27. Смирнова А.Г., Бондаренко С.Н., Кисина А.А. и др. Современные методы лечения AL-амилоидоза: обзор литературы и собственные данные. Клиническая онкогематология. 2013;6(3):303–11.
    [Smirnova AG, Bondarenko SN, Kisina AA, et al. Current therapies for AL amyloidosis: literature review and own data. Klinicheskaya onkogematologiya. 2013;6(3):303–11. (In Russ)]

KIR-Genetic Factors and Response to Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukemia

EV Kuzmich1, IE Pavlova1, LN Bubnova1,2, SS Bessmeltsev1

1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

2 IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

For correspondence: Elena Vital’evna Kuzmich, PhD in Biology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024; Tel.: +7(921)912-52-07; e-mail: yelenakuzmich@gmail.com

For citation: Kuzmich EV, Pavlova IE, Bubnova LN, Bessmeltsev SS. KIR-Genetic Factors and Response to Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukemia. Clinical oncohematology. 2023;16(2):119–27. (In Russ).

DOI: 10.21320/2500-2139-2023-16-2-119-127


ABSTRACT

The development of tyrosine kinase inhibitors (TKIs) and their introduction into clinical practice considerably improved the prognosis for chronic myeloid leukemia (CML) patients. About 50 % of patients with achieved deep molecular response are eligible for safe TKI discontinuation. Despite these advances, no reliable biomarkers are known to predict a response and sustaining treatment-free remission after TKI withdrawal. As TKIs do not destroy leukemic stem cells, which can be responsible for relapse, critical importance in CML is attached to natural killers (NK-cells) having antitumor activity. Functional activity of NK-cells is evaluated by expression level and repertoire of killer cell immunoglobulin-like receptors (KIR). Current studies demonstrate that a patient’s KIR genotype affects the probability of achieving early and deep molecular responses to first- and second-generation TKIs, progression-free and overall survivals, and sustaining treatment-free remission. On that ground, KIR-genetic factors can be regarded as promising predictors of response to TKI therapy in CML. Early clinical studies, which dealt with monoclonal antibodies blocking the inhibitory KIR in order to increase NK-cell activity, revealed an acceptable safety profile and efficacy in some hematological diseases (such as acute myeloid leukemia, multiple myeloma, Т-cell lymphoma) if used in combination with cytostatic drugs or antitumor monoclonal antibodies. KIR genotype determination can contribute to the development of effective therapies of this malignant hematological tumor.

Keywords: genes of killer cell immunoglobulin-like receptors, tyrosine kinase inhibitors, treatment-free remission, chronic myeloid leukemia.

Received: November 8, 2022

Accepted: March 1, 2023

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Афанасьев Б.В., Абдуллаев А.О., Аль-Ради Л.С. и др. Хронический миелолейкоз. Клинические рекомендации, возрастная группа взрослые. М.: Ассоциация онкологов России, 2020. 87 с.
    [Afanasyev BV, Abdullaev AO, Al-Radi LS, et al. Khronicheskii mieloleikoz. Klinicheskie rekomendatsii, vozrastnaya gruppa vzroslye. (Chronic myeloid leukemia. Clinical guidelines for adult patients.) Moscow: Assotsiatsiya onkologov Rossii Publ.; 2020. 87 p. (In Russ)]
  2. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703–19. doi: 10.1038/s41375-022-01613-1.
  3. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am J Hematol. 2022;97(9):1236–56. doi: 10.1002/ajh.26642.
  4. Абдулкадыров К.М., Бессмельцев С.С., Рукавицын О.А. Лечение хронического миелолейкоза. СПб.: ЛЕКА, 1999. 152 с.
    [Abdulkadyrov KM, Bessmeltsev SS, Rukavitsyn OA. Lechenie khronicheskogo mieloleikoza. (Treatment of chronic myeloid ) Saint Petersburg: LEKA Publ.; 1999. 152 p. (In Russ)]
  5. Chopade P, Akard LP. Improving Outcomes in Chronic Myeloid Leukemia Over Time in the Era of Tyrosine Kinase Inhibitors. Clin Lymphoma Myeloma Leuk. 2018;18(11):710–23. doi: 1016/j.clml.2018.06.029.
  6. Морозова Е.В., Власова Ю.Ю., БарабанщиковаМ.В. и др. Хронический миелоидный лейкоз: роль трансплантации аллогенных гемопоэтических стволовых клеток в эру ингибиторов тирозинкиназ. Клиническая онкогематология. 2020;13(2):193–8. doi: 10.21320/2500-2139-2020-13-2-193-198.
    [Morozova EV, Vlasova YuYu, Barabanshchikova MV, et al. Chronic Myeloid Leukemia: Role of Allogeneic Hematopoietic Stem Cell Transplantation in the Era of Tyrosine Kinase Inhibitors. Clinical oncohematology. 2020;13(2):193–8. doi: 10.21320/2500-2139-2020-13-2-193-198. (In Russ)]
  7. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. doi: 10.1016/S1470-2045(10)70233-3.
  8. Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19(6):747–57. doi: 10.1016/S1470-2045(18)30192-X.
  9. Closa L, Xicoy B, Zamora L, et al. Natural killer cell receptors and ligand variants modulate response to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. HLA. 2022;99(2):93–104. doi: 10.1111/tan.14515.
  10. Абакушина Е.В., Кузьмина Е.Г., Коваленко Е.И. Основные свойства и функции NK-клеток человека. Иммунология. 2012;33(4):220–5.
    [Abakushina EV, Kuzmina EG, Kovalenko EI. The main characteristics and functions of human NK-cells. Immunologiya. 2012;33(4):220–5. (In Russ)]
  11. Falco M, Moretta L, Moretta A, Bottino C. KIR and KIR ligand polymorphism: a new area for clinical applications? Tissue Antigens. 2013;82(6):363–73. doi: 10.1111/tan.12262.
  12. Chiorean EG, Dylla SJ, Olsen K, et al. BCR/ABL alters the function of NK cells and the acquisition of killer immunoglobulin-like receptors (KIRs). Blood. 2003;101(9):3527–33. doi: 10.1182/blood-2002-04-1172.
  13. Соколова Ю.В., Бубнова Л.Н., Бессмельцев С.С. Строение и функции иммуноглобулиноподобных рецепторов киллерных клеток в норме и патологии. 2010;11:635–57.
    [Sokolova YuV, Bubnova LN, Bessmeltsev SS. Structure and functions of killer cell immunoglobulin-like receptors in normality and pathology. Medline. 2010;11:635–57. (In Russ)]
  14. Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes. Immunity. 2001;15(3):363–74. doi: 10.1016/s1074-7613(01)00197-2.
  15. Marsh SGE, Parham P, Dupont B, et al. Killer-cell immunoglobulin-like receptors (KIR) nomenclature report, 2002. Immunogenetics. 2003;55(4):220–6. doi: 10.1007/s00251-003-0571-z.
  16. IPD-KIR Database. (Internet) Available from: https://www.ebi.ac.uk/ipd/kir/about/ (accessed 22.12.2022).
  17. Lanier LL. NK cell receptors. Annu Rev Immunol. 1998;16(1):359–93. doi: 10.1146/annurev.immunol.16.1.359.
  18. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol. 2002;20:217–51. doi: 10.1146/annurev.immunol.20.092501.134942.
  19. Stern M, Ruggeri L, Capanni M, et al. Human leukocyte antigens A23, A24, and A32 but not A25 are ligands for KIR3DL1. Blood. 2008;112(3):708–10. doi: 10.1182/blood-2008-02-137521.
  20. Rajagopalan S, Long EO. KIR2DL4 (CD158d): an activation receptor for HLA-G. Front Immunol. 2012;3:258. doi: 10.3389/fimmu.2012.00258.
  21. Garcia-Beltran WF, Holzemer A, Martrus G, et al. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol. 2016;17(9):1067–74. doi: 10.1038/ni.3513.
  22. Pierson BA, Miller JS. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood. 1996;88(6):2279–87.
  23. Nakajima H, Zhao R, Lund TC, et al. The BCR/ABL transgene causes abnormal NK cell differentiation and can be found in circulating NK cells of advanced phase chronic myelogenous leukemia patients. J Immunol. 2002;168(2):643–50. doi: 10.4049/jimmunol.168.2.643.
  24. Mizoguchi I, Yoshimoto T, Katagiri S, et al. Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib. Cancer Sci. 2013;104(9):1146–53. doi: 10.1111/cas.12216.
  25. Imagawa J, Tanaka H, Okada M, et al. DADI Trial Group. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): A multicentre phase 2 Lancet Haematol. 2015;2(12):528–35. doi: 10.1016/S2352-3026(15)00196-9.
  26. Marin D, Gabriel IH, Ahmad S, et al. KIR2DS1 genotype predicts for complete cytogenetic response and survival in newly diagnosed chronic myeloid leukemia patients treated with imatinib. Leukemia. 2012;26(2):296–302. doi: 10.1038/leu.2011.180.
  27. Kreutzman A, Juvonen V, Kairisto V, et al. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood. 2010;116(5):772–82. doi: 10.1182/blood-2009-12-256800.
  28. Ali S, Sergeant R, O’Brien SG, et al. Dasatinib may overcome the negative prognostic impact of KIR2DS1 in newly diagnosed patients with chronic myeloid leukemia. Blood. 2012;120(3):697–8. doi: 10.1182/blood-2012-04-421016.
  29. Kreutzman A, Jaatinen T, Greco D, et al. Killer-cell immunoglobulin-like receptor gene profile predicts good molecular response to dasatinib therapy in chronic myeloid leukemia. Exp Hematol. 2012;40(11):906–13. doi: 10.1016/j.exphem.2012.07.007.
  30. Ghio M, Contini P, Negrini S, et al. Soluble HLA-I-mediated secretion of TGF-beta1 by human NK cells and consequent down-regulation of anti-tumor cytolytic activity. Eur J Immunol. 2009;39(12):3459–68. doi: 10.1002/eji.200939728.
  31. Yeung DT, Tang C, Vidovic L, et al. KIR2DL5B genotype predicts outcomes in CML patients treated with response‐directed sequential imatinib/nilotinib strategy. Blood. 2015;126(25):2720–23. doi: 10.1182/blood-2015-07-655589.
  32. Dumas PY, Berard E, Breal K, et al. Killer immunoglobulin‐like receptor genotypes and chronic myeloid leukemia outcomes after imatinib cessation for treatment‐free remission. Cancer Med. 2019;8(11):4976–85. doi: 10.1002/cam4.2371.
  33. La Nasa G, Caocci G, Littera R, et al. Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp Hematol. 2013;41(5):424– doi: 10.1016/j.exphem.2013.01.008.
  34. Caocci G, Martino B, Greco M, et al. Killer immunoglobulin-like receptors can predict TKI treatment-free remission in chronic myeloid leukemia patients. Exp Hematol. 2015;43(12):1015–8. doi: 10.1016/j.exphem.2015.08.004.
  35. Ureshino H, Shindo T, Kojima H, et al. Allelic Polymorphisms of KIRs and HLAs Predict Favorable Responses to Tyrosine Kinase Inhibitors in CML. Cancer Immunol Res. 2018;6(6):745– doi: 10.1158/2326-6066.CIR-17-0462.
  36. Verheyden S, Bernier M, Demanet C. Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia. 2004;18(12):2002–7. doi: 10.1038/sj.leu.2403525.
  37. Middleton D, Diler AS, Meenagh A, et al. Killer immunoglobulin-like receptors (KIR2DL2 and/or KIR2DS2) in presence of their ligand (HLA-C1 group) protect against chronic myeloid leukemia. Tissue Antigens. 2009;73(6):553–60. doi: 10.1111/j.1399-0039.2009.01235x.
  38. Naugler C, Liwski R. Human leukocyte antigen class I alleles and the risk of chronic myelogenous leukemia: a meta-analysis. Leuk Lymphoma. 2010;51(7):1288–92. doi: 10.3109/10428191003802340.
  39. Michor F, Hughes TP, Iwasa Y, et al. Dynamics of chronic myeloid leukaemia. Nature. 2005;435(7046):1267–70. doi: 10.1038/nature03669.
  40. Zhang B, Li M, McDonald T, et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-Cadherin and Wnt-b-catenin signaling. Blood. 2013;121(10):1824– doi: 10.1182/blood-2012-02-412890.
  41. Li Y, Sun R. Tumor immunotherapy: New aspects of natural killer cells. Chin J Cancer Res. 2018;30(2):173–96. doi: 10.21147/j.issn.1000-9604.2018.02.02.
  42. Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol. 2020;11: doi: 10.3389/fimmu.2020.00167.
  43. Campiotti L, Suter MB, Guasti L, et al. Imatinib discontinuation in chronic myeloid leukaemia patients with undetectable BCR-ABL transcript level: a systematic review and a meta-analysis. Eur J Cancer. 2017;77:48– doi: 10.1016/j.ejca.2017.02.028.

 

 

Morpho-Immunohistochemical Characteristics of Different Mycosis Fungoides Stages: A Literature Review

AA Sherstnev, AM Kovrigina

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Andrei Alekseevich Sherstnev, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: sherstnevandrejj@mail.ru

For citation: Sherstnev AA, Kovrigina AM. Morpho-Immunohistochemical Characteristics of Different Mycosis Fungoides Stages: A Literature Review. Clinical oncohematology. 2023;16(2):109–18. (In Russ).

DOI: 10.21320/2500-2139-2023-16-2-109-118


ABSTRACT

Mycosis fungoides (MF) is the most ubiquitous type of cutaneous T-cell lymphoma. MF pathogenesis has not been well studied up to now. Differential diagnosis of the disease, especially at early stages, is complicated and poses a considerable challenge. The present review covers current views on MF pathogenesis and methods of its diagnosis.

Keywords: mycosis fungoides, naive T-cells, T-helper cells, reactive microenvironment.

Received: September 21, 2022

Accepted: March 3, 2023

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Кохан М.М. Т-клеточные злокачественные лимфомы кожи: клинические и иммунологические аспекты диагностики, стадийного течения и терапии: Автореф. … д-ра мед. наук. М., 2002.
    [Kokhan MM. T-kletochnye zlokachestvennye limfomy kozhi: klinicheskie i immunologicheskie aspekty diagnostiki, stadiinogo techeniya i terapii. (Cutaneous T-cell malignant lymphomas: clinical and immunological aspects of diagnosis, stage course, and therapy.) [dissertation] Moscow; 2002. (In Russ)]
  2. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85. doi: 10.1182/blood-2004-09-3502.
  3. Korgavkar K, Xiong M, Weinstock М. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol. 2013;149(11):1295–9. doi: 10.1001/jamadermatol.2013.5526.
  4. Imam MH, Shenoy PJ, Flowers CR, et al. Incidence and survival patterns of cutaneous T-cell lymphomas in the United States. Leuk Lymphoma. 2013;54(4):752–9. doi: 10.3109/10428194.2012.729831.
  5. Tan RH, Butterworth CM, McLaughlin H, et al. Mycosis fungoides—a disease of antigen persistence. Br J Dermatol. 1974;91(6):607–16. doi: 1111/j.1365-2133.1974.tb12449.x.
  6. Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–71. doi: 10.1182/blood-2009-11-251926.
  7. Berger CL, Hanlon D, Kanada D, et al. The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. 2002;99(8):2929–39. doi: 10.1182/blood.V99.8.2929.
  8. Wang L, Ni X, Covington K, et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet. 2015;47(12):1426–34. doi: 10.1038/ng.3444.
  9. Krejsgaard T, Willerslev-Olsen A, Lindahl LM, et al. Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood. 2014;124(5):761–70. doi: 10.1182/blood-2014-01-551184.
  10. Gelfand JM, Shin DB, Neimann AL, et al. The risk of lymphoma in patients with psoriasis. J Invest Dermatol. 2006;126(10):2194–201. doi: 10.1038/sj.jid.5700410.
  11. Legendre L, Barnetche T, Mazereeuw-Hautier J, et al. Risk of lymphoma in patients with atopic dermatitis and the role of topical treatment: a systematic review and meta-analysis. J Am Acad Dermatol. 2015;72(6):992–1002. doi: 10.1016/j.jaad.2015.02.1116.
  12. Mirvish JJ, Pomerantz RG, Falo Jr LD, et al. Role of infectious agents in cutaneous T-cell lymphoma: facts and controversies. Clin Dermatol. 2013;31(4):423–31. doi: 10.1016/j.clindermatol.2013.01.009.
  13. Mirvish ED, Pomerantz RG, Geskin LJ. Infectious agents in cutaneous T-cell lymphoma. J Am Acad Dermatol. 2011;64(2):423–31. doi: 10.1016/j.jaad.2009.11.692.
  14. Белоусова И.Э., Самцов А.В. Федеральные клинические рекомендации по ведению больных лимфомами кожи. М., 2015. С. 13–25.
    [Belousova IE, Samtsov AV. Federalnye klinicheskie rekomendatsii po vedeniyu bolnykh limfomami kozhi. (Federal clinical guidelines for management of patients with cutaneous lymphomas.) Moscow; 2015. pp. 13–25. (In Russ)]
  15. Larocca C, Kupper T. Mycosis fungoides and sezary syndrome: an update. Hematol Oncol Clin. 2019;33(1):103–20. doi: 10.1016/j.hoc.2018.09.001.
  16. Agar NS, Wedgeworth E, Crichton S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol. 2010;28(31):4730–9. doi: 10.1200/jco.2009.27.7665.
  17. Sun G, Berthelot C, Li Y, Glass DA. Poor prognosis in non-Caucasian patients with early-onset mycosis fungoides. J Am Acad Dermatol. 2009;60(2):231–5. doi: 10.1016/j.jaad.2008.09.063.
  18. Talpur R, Singh L, Daulat S, et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sezary syndrome from 1982 to 2009. Clin Cancer Res. 2012;18(18):5051–60. doi: 10.1158/1078-0432.ccr-12-0604.
  19. Молочков А.В., Ковригина А.М., Кильдюшевский А.В., Караулов А.В. Лимфома кожи. М.: БИНОМ, 2012. 183 с.
    [Molochkov AV, Kovrigina AM, Kildyushevskii AV, Karaulov AV. Limfoma kozhi. (Cutaneous lymphoma.) Moscow: BINOM Publ.; 2012. 183 p. (In Russ)]
  20. Братцева Е.В., Ротанов С.В. Современные подходы к диагностике грибовидного микоза. Вестник дерматологии и венерологии. 2010;6:16–22.
    [Brattseva EV, Rotanov SV. Current approaches to the diagnosis of mycosis fungoides. Vestnik dermatologii i venerologii. 2010;6:16–22. (In Russ)]
  21. Guitart J, Kennedy J, Ronan S, et al. Histologic criteria for the diagnosis of mycosis fungoides: proposal for a grading system to standardize pathology reporting. J Cutan Pathol. 2001;28(4):174–83. doi: 10.1034/j.1600-0560.2001.028004174.x.
  22. Goteri G, Filosa A, Mannello B, et al. Density of neoplastic lymphoid infiltrate, CD8+ T cells, and CD1a+ dendritic cells in mycosis fungoides. J Clin Pathol. 2003;56(6):453–8. doi: 10.1136/jcp.56.6.453.
  23. Willemze R, Cerroni L, Kempf W, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019:133(16):1703–14. doi: 10.1182/blood.2019002852.
  24. Белоусова И.Э., Казаков Д.В., Криволапов Ю.А. Современные подходы к диагностике и лечению первичных лимфом кожи на основе новой ВОЗ-EORTC классификации. Т-клеточные лимфомы кожи. Архив патологии. 2007;69(5):11–7.
    [Belousova IE, Kazakov DV, Krivolapov YuA. Current approaches to the diagnosis and treatment of primary cutaneous lymphomas based on the new WHO-EORTC classification. Cutaneous T-cell lymphomas. Arkhiv patologii. 2007;69(5):11–7. (In Russ)]
  25. Поддубная И.В., Птушкин В.В., Белоусова И.Э. и др. Новые возможности системной терапии CD30+ первичных кожных Т-клеточных лимфом: резолюция. Современная онкология. 2020;22(2):79–81.
    [Poddubnaya IV, Ptushkin VV, Belousova IE, et al. New prospects for systemic treatment of primary cutaneous CD30+ T-cell lymphomas: resolution. Sovremennaya onkologiya. 2020;22(2):79–81. (In Russ)]
  26. Clark RA, Chong B, Mirchandani N, et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 2006;176(7):4431–9. doi: 10.4049/jimmunol.176.7.4431.
  27. Clark RA. Skin-resident T cells: the ups and downs of on site immunity. J Invest Dermatol. 2010;130(2):362–70. doi: 10.1038/jid.2009.247.
  28. Clark RA. Resident memory T cells in human health and disease. Sci Transl Med. 2015;7(269):269rv1. doi: 10.1126/scitranslmed.3010641.
  29. Watanabe R, Gehad A, Yang C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med. 2015;7(279):279ra39. doi: 10.1126/scitranslmed.3010302.
  30. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers. 2016;8(3):36. doi: 10.3390/cancers8030036.
  31. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63. doi: 10.1146/annurev.immunol.22.012703.104702.
  32. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science. 1996;272(5258):60–7. doi: 10.1126/science.272.5260.
  33. Wherry EJ, Teichgraber V, Becker TC, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol. 2003;4(3):225–34. doi: 10.1038/ni889.
  34. Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med. 2012;209(7):1241–53. doi: 10.1084/jem.20120994.
  35. Deenick EK, Cindy SM, Brink R, et al. Regulation of T follicular helper cell formation and function by antigen presenting cells. Curr Opin Immunol. 2011;23(1):111–8. doi: 10.1016/j.coi.2010.10.007.
  36. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2009;28:445–89. doi: 10.1146/annurev-immunol-030409-101212.
  37. Finotto S, Neurath MF, Glickman JN, et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science. 2002;295(5553):336–8. doi: 10.1126/science.1065544.
  38. Bettelli E, Sullivan B, Szabo SJ, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med. 2004;200(1):79–87. doi: 10.1084/jem.20031819.
  39. Vowels BR, Lessin SR, Cassin M, et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J Invest Dermatol. 1994;103(5):669–73. doi: 10.1111/1523-1747.ep12398454.
  40. Miyagaki T, Sugaya M. Immunological milieu in mycosis fungoides and Sezary syndrome. J Dermatol. 2014;41(1):11–8. doi: 10.1111/1346-8138.12305.
  41. Hsi AC, Lee SJ, Rosman IS, et al. Expression of helper T cell master regulators in inflammatory dermatoses and primary cutaneous T-cell lymphomas: diagnostic implications. J Am Acad Dermatol. 2015;72(1):159–67. doi: 10.1016/j.jaad.2014.09.022.
  42. Sugaya M, Tokura Y, Hamada T, et al. Phase II study of iv interferon‐gamma in Japanese patients with mycosis fungoides. J Dermatol. 2014;41(1):50–6. doi: 10.1111/1346-8138.12341.
  43. Gu X, Wang Y, Zhang G, Li W, Tu P. Aberrant expression of BCL11B in mycosis fungoides and its potential role in interferon‐induced apoptosis. J Dermatol. 2013;40(8):596–605. doi: 10.1111/1346-8138.12160.
  44. Kataoka Y. Thymus and activation‐regulated chemokine as a clinical biomarker in atopic dermatitis. J Dermatol. 2014;41(3):221–9. doi: 10.1111/1346-8138.12440.
  45. Sugaya M, Morimura S, Suga H, Kawaguchi M. CCR 4 is expressed on infiltrating cells in lesional skin of early mycosis fungoides and atopic dermatitis. J Dermatol. 2015;42(6):613–5. doi: 10.1111/1346-8138.12852.
  46. Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545–52. doi: 10.1084/jem.192.11.1545.
  47. Hardtke S, Ohl L, Forster R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood. 2005;106(6):1924–31. doi: 10.1182/blood-2004-11-4494.
  48. Krejsgaard T, Odum N, Geisler C, et al. Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia. 2012;26(3):424–32. doi: 10.1038/leu.2011.237.
  49. Vonderheid EC, Pavlov I, Delgado JC, et al. Prognostic factors and risk stratification in early mycosis fungoides. Leuk Lymphoma. 2014;55(1):44–50. doi: 10.3109/10428194.2013.790541.
  50. Ungewickell A, Bhaduri A, Rios E, et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet. 2015;47(9):1056–60. doi: 10.1038/ng.3370.
  51. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4. doi: 10.1126/scitranslmed.aad7118.
  52. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61. doi: 10.1016/j.ccell.2015.03.001.
  53. Cetinozman F, Jansen PM, Vermeer MH, Willemze R. Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol. 2012;148(12):1379–85. doi: 10.1001/archdermatol.2012.2089.
  54. Kantekure K, Yang Y, Raghunath P, et al. Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma (CTCL)/mycosis fungoides (MF). Am J Dermatopathol. 2012;34(1):126. doi: 10.1097/dad.0b013e31821c35cb.
  55. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16(6):356–71. doi: 10.1038/s41571-019-0175-7.
  56. Clark RA. Regulation gone wrong: a subset of Sezary patients have malignant regulatory T cells. J Invest Dermatol. 2009;129(12):2747–50. doi: 10.1038/jid.2009.290.
  57. Gholami MD, Kardar GA, Saeedi Y, et al. Exhaustion of T lymphocytes in the tumor microenvironment: significance and effective mechanisms. Cell Immunol. 2017;322:1–14. doi: 10.1016/j.cellimm.2017.10.002.
  58. Murray D, McMurray JL, Eldershaw S, et al. Progression of mycosis fungoides occurs through divergence of tumor immunophenotype by differential expression of HLA-DR. Blood Adv. 2019:3(4):519–30. doi: 10.1182/bloodadvances.2018025114.
  59. Vermeer MH, van Doorn R, Dukers D, et al. CD8+ T cells in cutaneous T-cell lymphoma: expression of cytotoxic proteins, Fas ligand, and killing inhibitory receptors and their relationship with clinical behavior. J Clin Oncol. 2001;19(23):4322–9. doi: 10.1200/jco.2001.19.23.4322.
  60. Goteri G, Filosa A, Mannello B, et al. Density of neoplastic lymphoid infiltrate, CD8+ T cells, and CD1a+ dendritic cells in mycosis fungoides. J Clin Pathol. 2003;56(6):453–8. doi: 10.1136/jcp.56.6.453.
  61. Hoppe RT, Medeiros LJ, Warnke RA, Wood GS. CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol. 1995;32(3):448–53. doi: 10.1016/0190-9622(95)90067-5.
  62. Gjerdrum LM, Woetmann A, Odum N, et al. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia. 2007;21(12):2512–8. doi: 10.1038/sj.leu.2404913.
  63. Berger CL, Hanlon D, Kanada D, et al. The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. Blood. 2002;99(8):2929–39. doi: 10.1182/blood.v99.8.2929.
  64. Wong HK, Wilson AJ, Gibson HM, et al. Increased expression of CTLA-4 in malignant T cells from patients with mycosis fungoides–cutaneous T-cell lymphoma. J Invest Dermatol. 2006;126(1):212–9. doi: 10.1038/sj.jid.5700029.
  65. Querfeld C, Curran SA, Leung S, et al. T cells in CTCL have an exhausted phenotype while cutaneous dendritic cells display a normally activated mature phenotype. Blood. 2014;124(21):1695. doi: 10.1182/blood.v124.21.1695.1695.
  66. Sugaya M, Miyagaki T, Ohmatsu H, et al. Association of the numbers of CD163+ cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. J Dermatol Sci. 2012;68(1):45–51. doi: 10.1016/j.jdermsci.2012.07.007.
  67. Wu X, Schulte BC, Zhou Y, et al. Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo. J Invest Dermatol. 2014;134(11):2814–22. doi: 10.1038/jid.2014.206.
  68. Jullie ML, Carlotti M, Vivot A Jr, et al. CD20 antigen may be expressed by reactive or lymphomatous cells of transformed mycosis fungoides: diagnostic and prognostic impact Am J Surg Pathol. 2013;37(12):1845–54. doi: 10.1097/pas.0000000000000091.
  69. Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185(9):4977–82. doi: 10.4049/jimmunol.1001323.
  70. Theurich S, Schlaak M, Steguweit H, et al. Targeting tumor-infiltrating B cells in cutaneous T-cell lymphoma. J Clin Oncol. 2016;34(12):e110–e116. doi: 10.1200/jco.2013.50.9471.
  71. Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011–9. doi: 10.1038/ng.3356.
  72. Park J, Yang J, Wenzel AT, et al. Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p. Q575E). Blood. 2017;130(12):1430–40. doi: 10.1182/blood-2017-02-768234.
  73. Gonzalez BR, Zain J, Rosen ST, Querfeld C. Tumor microenvironment in mycosis fungoides and Sezary syndrome. Curr Opin Oncol. 2016;28(1):88–96. doi: 10.1097/CCO.0000000000000243
  74. Axelrod PI, Lorber B, Vonderheid EC. Infections complicating mycosis fungoides and Sezary syndrome. 1992;267(10):1354–8. doi: 10.1001/jama.267.10.1354.
  75. Netchiporouk E, Litvinov IV, Moreau L, et al. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle. 2014;13(21):3331–5. doi: 10.4161/15384101.2014.965061.
  76. Kirsch IR, Watanabe R, O’Malley JT, et al. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Science Transl Med. 2015;7(308):308ra158. doi: 10.1126/scitranslmed.aaa9122.
  77. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016. С. 85–91.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2016. 85–91. (In Russ)]
  78. Сидорова Ю.В. Т-клеточная клональность в диагностике лимфопролиферативных заболеваний: Дис.… канд. мед. наук. М., 2004.
    [Sidorova YuV. T-kletochnaya klonalnost v diagnostike limfoproliferativnykh zabolevanii. (T-cell clonality in the diagnosis of lymphoproliferative) [dissertation] Moscow; 2004. (In Russ)]
  79. Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–22. doi: 10.1182/blood-2008-02-142653.
  80. Scarisbrick JJ, Prince HM, Vermeer MH, et al. Cutaneous Lymphoma International Consortium study of outcome in advanced stages of mycosis fungoides and Sezary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol. 2015;33(32):3766. doi: 10.1200/JCO.2015.61.7142.
  81. de Masson A, O’Malley JT, Elco CP, et al. High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides. Sci Transl Med. 2018;10(440):eaar5894. doi: 10.1126/scitranslmed.aar5894.
  82. Trautinger F, Eder J, Assaf C, et al. European Organisation for Research and Treatment of Cancer consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome–Update 2017. Eur J Cancer. 2017;77:57–74. doi: 10.1016/j.ejca.2017.02.027.
  83. Олисова О.Ю., Сыдиков А.А., Чупров И.Н. и др. Эритродермическая форма грибовидного микоза: алгоритм диагностики и лечения. Клиническая онкогематология. 2018;11(4):295–302. doi: 10.21320/2500-2139-2018-11-4-295-302.
    [Olisova OYu, Sydikov AA, Chuprov IN, et al. Erythrodermic Mycosis Fungoides: The Algorithm of Diagnosis and Treatment. Clinical oncohematology. 2018;11(4):295–302. doi: 10.21320/2500-2139-2018-11-4-295-302. (In Russ)]
  84. Zinzani PL, Venturini F, Stefoni V, et al. Gemcitabine as single agent in pretreated T-cell lymphoma patients: evaluation of the long-term outcome. Ann Oncol. 2010;21(4):860–3. doi: 10.1093/annonc/mdp508.
  85. Hanel W, Briski R, Ross CW, et al. A retrospective comparative outcome analysis following systemic therapy in mycosis fungoides and Sezary syndrome. Am J Hematol. 2016;91(12):E491–E495. doi: 10.1002/ajh.24564.
  86. Damsky WE, Choi J. Genetics of cutaneous T cell lymphoma: from bench to bedside. Curr Treat Options Oncol. 2016;17(7):1–14. doi: 10.1007/s11864-016-0410-8.
  87. Weng WK, Armstrong R, Arai S, et al. Non-myeloablative allogeneic transplantation resulting in clinical and molecular remission with low Non-Relapse Mortality (NRM) in patients with advanced stage Mycosis Fungoides (MF) and Sezary Syndrome (SS). Blood. 2014;124(21):2544. doi: 10.1182/blood.v124.21.2544.2544.

Characteristic Features of the Novel Coronavirus Infection COVID-19 in Oncohematological Patients

NA Romanenko, ER Shilova, LV Stelmashenko, EI Kaitandzhan, AV Kuleshova, NP Stizhak, VN Chebotkevich, SV Sidorkevich, SV Gritsaev, SS Bessmeltsev

Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

For correspondence: Nikolai Aleksandrovich Romanenko, MD, PhD, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024; Tel.: +7(812)717-58-57; e-mail: rom-nik@yandex.ru

For citation: Romanenko NA, Shilova ER, Stelmashenko LV, et al. Characteristic Features of the Novel Coronavirus Infection COVID-19 in Oncohematological Patients. Clinical oncohematology. 2023;16(1):101–8. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-101-108


ABSTRACT

Background. The novel coronavirus infection SARS-CoV-2 (COVID-19) is one of high-threat respiratory diseases, characterized by multiple organ disorders with primary respiratory failure and population mortality of 2–5 %. However, the mortality of oncohematological patients treated with chemotherapy is considerably higher.

Aim. To analyze the COVID-19 treatment outcomes in hematological malignancy patients who received drug chemotherapy.

Materials & Methods. The clinical course of COVID-19 was analyzed in 32 hematological malignancy patients aged 31–81 years (median 62 years). The disease onset was the date of the first positive COVID-19 PCR test. These patients were transferred to an infectious hospital specialized in the therapy of the novel coronavirus infection. Pneumonia was confirmed by standard radiography and CT. Blood oxygen saturation, body temperature, ECG, and respiratory rate were monitored. Moderate and severe COVID-19 was observed in 17 (53.1 %) of 32 patients. The condition of 15 (46.9 %) patients was described as good. For comparison, a control group was collected from 32- to 79-year-old (median 63 years) patients (n = 28) having hematological malignancies but no COVID-19.

Results. Nine (28.1 %) of 32 patients under analysis died upon increasing respiratory and multiple organ insufficiency on Day 3–17 (mean 8,6 ± 4,6 days) from the first positive COVID-19 PCR test. Death was predominantly reported in multiple myeloma patients (n = 5) as well as in a patient with Waldenstrom’s macroglobulinemia. In the control group (n = 28) with similar hematological tumors but without COVID-19, three (10.7 %) patients died throughout the 12-month follow-up period. The present paper contains a case report illustrating the clinical features of coronavirus infection in a patient with Waldenstrom’s macroglobulinemia, a monoclonal gammopathy with primary bone marrow lesions.

Conclusion. COVID-19 is a life-threatening viral disease with high mortality in patients with hematological malignancies, especially those with plasma cell dyscrasias.

Keywords: novel coronavirus infection, multiple myeloma, pneumonia, thrombosis, blood oxygen saturation, Waldenstrom’s macroglobulinemia.

Received: July 6, 2022

Accepted: December 3, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции COVID-19. Версия 15 (22.02.2022), 245 с. [электронный документ]. Доступно по: www.ВМР_COVID-19_V15.pdf. Ссылка активна на 23.05.2022.
    [Interim methodological guidelines. Prophylaxis, diagnosis, and treatment of new coronavirus infection COVID-19. Version 15 (22.02.2022), 245 p. (Internet) Available from: www.ВМР_COVID-19_V15.pdf. Accessed 23.05.2022. (In Russ)]
  2. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207. doi: 10.1056/NEJMoa2001316.
  3. Баклаушев В.П., Кулемзин С.В., Горчаков А.А. и др. COVID-19. Этиология, патогенез, диагностика и лечение. Клиническая практика. 2020;11(1):7–20. doi: 10.17816/clinpract
    [Baklaushev VP, Kulemzin SV, Gorchakov АА, et al. COVID-19. Etiology, Pathogenesis, Diagnosis and Treatment. Journal of clinical practice. 2020;11(1):7–20. doi: 10.17816/clinpract26339. (In Russ)]
  4. Болевич C.Б., Болевич С.С. Комплексный механизм развития СOVID-19. Сеченовский вестник. 2020;11(2):50–61. doi: 10.47093/2218-7332.2020.11.2.50-61.
    [Bolevich SB, Bolevich SS. Complex mechanism of COVID-19 development. Sechenov medical journal. 2020;11(2):50–61. doi: 10.47093/2218-7332.2020.11.2.50-61. (In Russ)]
  5. Поддубная И.В., Тумян Г.С., Трофимова О.П. и др. Особенности ведения онкогематологических пациентов в условиях пандемии СОVID-19. Современная онкология. 2020;22(3):45–58. doi: 10.26442/18151434.2020.3.200152.
    [Poddubnaya IV, Tumian GS, Trofimova OP, et al. Features of management of oncohematological patients in the context of the COVID-19 pandemic. Journal of modern oncology. 2020;22(3):45–58. doi: 10.26442/18151434.2020.3.200152. (In Russ)]
  6. Кулешова А.В., Искова И.И., Киселева Е.Е., Чеботкевич В.Н. Респираторные вирусные инфекции, в т. ч. вызванные коронавирусами, у онкологических и онкогематологических больных. Медицинский академический журнал. 2021;21(3):117–20. doi: 10.17816/MAJ
    [Kuleshova AV, Iskova II, Kiseleva EE, Chebotkevich VN. Respiratory viral infections including caused by coronaviruses, in oncological and oncohematological patients. Medical academic journal. 2021;21(3):117–20. doi: 10.17816/MAJ78565. (In Russ)]
  7. Mato A, Roeker L, Lamanna N, et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136(10):1134–43. doi: 10.1182/blood.2020006965.
  8. The Lancet Oncology. COVID-19 and cancer: 1 year on. Lancet Oncol. 2021;22(4):411. doi: 10.1016/S1470-2045(21)00148-0.
  9. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции COVID-19. Версия 3 (03.03.2020), 62 с. [электронный документ]. Доступно по: www.ВМР_COVID-19_V3.pdf. Ссылка активна на 07.06.2022.
    [Interim methodological guidelines. Prophylaxis, diagnosis, and treatment of new coronavirus infection COVID-19. Version 3 (03.03.2020), 62 p. (Internet) Available from: www.ВМР_COVID-19_V3.pdf. Accessed 07.06.22. (In Russ)]
  10. Романенко Н.А., Бессмельцев С.С., Чечеткин А.В. Коррекция иммунного статуса пациентов иммуноглобулином человека для внутривенного введения. Казанский медицинский журнал. 2017;98(5):775–83. doi: 10.17750/KMJ2017-775.
    [Romanenko NA, Bessmeltsev SS, Chechetkin AV. Correction of patients’ immune status with human intravenous immunoglobulin. Kazan medical journal. 2017;98(5):775–83. doi: 10.17750/KMJ2017-775. (In Russ)]
  11. Mouthon L, Fermand JP, GottenbergE. Management of secondary immune deficiencies: what is the role of immunoglobulins? Curr Opin Allergy Clin Immunol. 2013;13(Suppl 2):S56–S67. doi: 10.1097/01.all.0000433132.16436.b5.
  12. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79. doi: 10.1111/j.1365-2141.2007.06705.x.
  13. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

Monitoring of Red Cell Donor Chimerism in Oncohematological Patients After Allogeneic Hematopoietic Stem Cell Transplantation

MV Smolnikova, EV Butina, AV Iovdii, EA Poponina, NA Zorina

Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027

For correspondence: Mariya Viktorovna Smolnikova, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027; e-mail: smolnikova_96@inbox.ru

For citation: Smolnikova MV, Butina EV, Iovdii A, et al. Monitoring of Red cell Donor Chimerism in Oncohematological Patients After Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2023;16(1):96–100. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-96-100


ABSTRACT

Background. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a definitive therapy for patients with different oncological and hematological diseases. The study of red cell chimerism is a crucial process for diagnosing transplant engraftment and functioning during the post-transplantation period.

Aim. To assess the effect of immunohematological (АВО and HLA donor–recipient matching) and medical (conditioning regimens) parameters on the onset time of post-transplantation donor chimerism which is determined by RBC antigens.

Materials & Methods. The study enrolled 54 patients at the Kirov Research Institute of Hematology and Transfusiology in Russia (25 female and 29 male patients) aged 3–60 years (median 32 years). All of them received allo-HSCT in 2013–2021. Acute leukemias were identified in 39 patients, 8 patients were reported to have malignant lymphoproliferative diseases, 3 patients had myeloproliferative neoplasms, and 4 patients were diagnosed with aplastic anemia. RBC antigens of donors and recipients were analyzed by gel hemagglutination using Bio-Rad (USA) reagents and equipment.

Results. The onset time of donor chimerism depends neither on the degree of HLA donor–recipient matching, nor on conditioning regimen. Donor chimerism in recipients with major ABO-incompatibility occurs significantly later than in patients with minor АВО-incompatibility and ABO-identity.

Conclusion. Monitoring of post-transplantation donor chimerism is an important diagnostic and prognostic tool to assess donor hematopoietic cell engraftment, hematologic recovery, graft rejection, and relapse of the disease. After allo-HSCT, first donor red cells occur in pairs with major АВО-incompatibility later than in pairs with minor АВО-incompatibility or ABO antigen compatibility. Other immunohematological and medical parameters do not affect the development rate of donor chimerism determined by RBC antigens.

Keywords: allogeneic hematopoietic stem cell transplantation, donor chimerism, HLA system, ABO system, conditioning regimen, RBC antigens.

Received: June 23, 2022

Accepted: November 29, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Лавриненко В.А., Савицкая Т.В., Волочник Е.В. и др. Количественный анализ химеризма после аллогенной трансплантации гемопоэтических стволовых клеток молекулярно-генетическими методами. Онкогематология. 2014;9(2):29–36.
    [Lavrinenko VA, Savitskaya TV, Volochnik EV, et al. Quantitative analysis of chimerism after allogeneic hematopoietic stem cell transplantation with molecular genetic methods. 2014;9(2):29–36. (In Russ)]
  2. Vaezi M, Dameshghi DO, Souri M, et al. ABO Incompatibility and Hematopoietic Stem Cell Transplantation Outcomes. Int J Hematol Oncol Stem Cell Res. 2017;11(2):139–47.
  3. Лавриненко В.А., Марейко Ю.Е., Березовская Е.Ю. и др. Становление донорского химеризма у пациентов с первичными иммунодефицитами после аллогенной трансплантации гемопоэтических стволовых клеток. Онкогематология. 2018;13(2):82–92. doi: 10.17650/1818-8346-2018-13-2-82-92.
    [Lavrinenko VA, Marejco YE, Berezovskaya EY, et al. Donor chimerism in patients with primary immunodeficiency after allogeneic hematopoietic stem cell transplantation. Oncohematology. 2018;13(2):82–92. doi: 10.17650/1818-8346-2018-13-2-82-92. (In Russ)]
  4. Богданов К.В., Моторин Д.В., Никулина Т.С. и др. Мониторинг донорского химеризма и минимальной остаточной болезни у онкогематологических больных после аллогенной трансплантации гемопоэтических стволовых клеток. Биомедицинская химия. 2017;63(6):570–81. doi: 18097/PBMC20176306570.
    [Bogdanov KV, Motorin DV, Nikulina TS, et al. Donor chimerism and minimal residual disease monitoring in leukemia patients after allo-HSCT. Biomeditsinskaya khimiya. 2017;63(6):570–81. doi: 10.18097/PBMC20176306570. (In Russ)]
  5. Минаковская Н.В., Марейко Ю.Е., Кирсанова Н.П. и др. Трансплантации гемопоэтических стволовых клеток у детей и молодых взрослых в Республике Беларусь. Гематология. Трансфузиология. Восточная Европа. 2017;3(3):271–84.
    [Minakovskaya NV, Mareiko YuE, Kirsanova NP, et al. Hematopoietic stem cell transplantation in children and young adults in the Republic of Belarus. Gematologiya. Transfuziologiya. Vostochnaya Evropa. 2017;3(3):271–84. (In Russ)]
  6. Worel N. ABО-mismatched allogeneic hematopoietic stem cell transplantation. Transfus Med Hemother. 2016;43(1):3–12. doi: 10.1159/000441507
  7. Лавриненко В.А., Марейко Ю.Е., Красько О.В. и др. Химеризм и восстановление гемопоэза после аллогенной трансплантации гемопоэтических стволовых клеток при апластических анемиях у детей. Гематология. Трансфузиология. Восточная Европа. 2016;2(4):206–7.
    [Lavrinenko VA, Mareiko YuE, Krasko OV, et al. Chimerism and hematopoietic reconstitution after allogeneic stem cell transplantation in children with aplastic anemia. Gematologiya. Transfuziologiya. Vostochnaya Evropa. 2016;2(4):206–7. (In Russ)]
  8. Rydberg L. ABO-incompatibility in solid organ transplantation. Transfus Med. 2001;11(4):325–42. doi: 10.1046/j.1365-3148.2001.00313.x.
  9. Кучер M.A., Певцов Д.Э., Макаренко О.А. и др. АВ0-несовместимость при аллогенной трансплантации гемопоэтических клеток: анализ 15-летнего опыта НИИ детской онкологии, гематологии и трансплантологии имени Р.М. Горбачевой. Онкогематология. 2016;11(4):49–55. doi: 10.17650/1818-8346-2016-11-4-49-55.
    [Kucher MA, Pevtcov DE, Makarenko OA, et al. АВ0-incompatibility in allogeneic hematopoietic stem cell transplantation: 15-years experience of R.M. Gorbacheva Memorial Research Institute for Children Oncology, Hematology and Transplantation. Oncohematology. 2016;11(4):49–55. doi: 10.17650/1818-8346-2016-11-4-49-55. (In Russ)]
  10. Хамаганова Е.Г., Кузьмина Л.А. Оценка HLA-совместимости и требования к HLA-типированию больного и донора при трансплантации аллогенных гемопоэтических стволовых клеток. Гематология и трансфузиология. 2019;64(2):175–87. doi: 10.35754/0234-5730-2019-64-2-175-187.
    [Khamaganova EG, Kuzmina LA. Assessment of HLA-compatibility and requirements for HLA-typing of patient and donor in allogeneic hematopoietic stem cell transplantation. Russian journal of hematology and transfusiology. 2019;64(2):175–87. doi: 10.35754/0234-5730-2019-64-2-175-187. (In Russ)]
  11. Bolan CD, Leitman SF, Griffith LM, et al. Delayed donor red cell chimerism and pure red cell aplasia following major ABO-incompatible nonmyeloablative hematopoietic stem cell transplantation. 2001;98(6):1687–94. doi: 10.1182/blood.V98.6.1687.
  12. Wang Z, Sorror ML, Leisenring W. The Impact of Donor Type and ABO Incompatibility on Transfusion Requirements after Nonmyeloablative Hematopoietic Cell Transplantation (HCT). Br J Haematol. 2010;149(1):101–10. doi: 10.1016/j.bbmt.2009.12.323.
  13. Йовдий А.В., Бутина Е.В., Попонина Е.А. и др. Интерпретация результатов иммуногематологических исследований у пациентов гематологической клиники. Клиническая лабораторная диагностика. 2019;64(4):221–4. doi: 18821/0869-2084-2019-64-4-221-224.
    [Yovdiy AV, Butina EV, Poponina EA, et al. Interpretation of the results of immunohematological tests in hematological patients. Klinicheskaya laboratornaya diagnostika. 2019;64(4):221–4. doi: 10.18821/0869-2084-2019-64-4-221-224. (In Russ)]
  14. Бутина Е.В., Минеева Н.В., Зайцева Г.А. и др. Аллоиммунизация к антигенам эритроцитов у пациентов с гематологическими и онкогематологическими заболеваниями. Трансфузиология. 2019;21(2):27–34.
    [Butina EV, Mineeva NV, Zaitseva GA, et al. Red blood cell alloimmunization in patients with hematology/oncology disorders. Transfuziologiya. 2019;21(2):27–34. (In Russ)]

Efficacy of Combined Drug Pre-transplant Conditioning Regimens in Multiple Myeloma Patients with Single Autologous Hematopoietic Stem Cell Transplantation

II Kostroma1, AS Zhuk2, ZhYu Sidorova1,3, RR Sabitova1, AYu Aksenova4, OB Belopolskaya4, SS Bessmeltsev1, SV Sidorkevich1, SV Gritsaev1

1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

2 ITMO National Research University, 49 lit. A Kronverkskii pr-t, Saint Petersburg, Russian Federation, 197101

3 BP Konstantinov Petersburg Nuclear Physics Institute of National Research Center “Kurchatov Institute”, 1 Orlova roshcha microdistrict, Gatchina, Leningrad Region, Russian Federation, 188300

4 Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, Russian Federation, 199034

For correspondence: Ivan Ivanovich Kostroma, MD, PhD, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024; e-mail: obex@rambler.ru

For citation: Kostroma II, Zhuk AS, Sidorova ZhYu, et al. Efficacy of Combined Drug Pre-transplant Conditioning Regimens in Multiple Myeloma Patients with Single Autologous Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2023;16(1):88–95. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-88-95


ABSTRACT

Aim. To conduct an interim outcome analysis of conditioning regimens with carfilzomib or thiotepa compared to standard melphalan 200 mg/m2 regimen in multiple myeloma (MM) patients with single autologous hematopoietic stem cell transplantation (auto-HSCT).

Materials & Methods. The retrospective analysis focused on outcomes of 67 single auto-HSCTs performed from 2017 to 2021. Responses as well as progression-free (PFS) and overall survival (OS) rates were compared in MM patients per IWMG criteria in pre- and post-transplant periods. Three conditioning regimens were assigned: melphalan 200 mg/m2 (Mel200), melphalan/carfilzomib combination (Mel/Karfil), and melphalan/thiotepa combination (Mel/Thio). In an additional cohort of 12 MM patients, next-generation sequencing assay was used to detect inherited and somatic mutations associated with proteasome inhibitor efficacy. For this purpose, DNA of peripheral blood lymphocytes and bone marrow plasma cells were examined.

Results. PFS medians were comparable in MM patients treated with Mel200 (n = 40) and Mel/Karfil (n = 10) conditioning regimens, they were 32 and 23 months, respectively (= 0.241). In these cohorts, OS median was not reached, and the curves showed no significant differences (= 0.050). Out of 10 MM patients treated with Mel/Karfil, six received melphalan 140 mg/m2, the remaining 4 patients received 200 mg/m2. Complete response (CR) rate in the Mel200 and Mel/Karfil groups increased two-fold after auto-HSCT: from 35.5 % to 74.2 % and from 25.0 % to 50.0 %, respectively. The worst PFS and OS medians were in the Mel/Thio group, i.e., 12 and 17 months, respectively, and CR rate after auto-HSCT remained unchanged. The best PFS was associated with CR rather than very good partial or partial response after auto-HSCT, they were 48, 21, and 23 months, respectively (= 0.001). Exome sequencing of DNA of peripheral blood lymphocytes and bone marrow plasma cells revealed polymorphic variants in the genes associated with chemotherapy response.

Conclusion. The outcomes of Mel/Karfil, the regimen containing the reduced dose of melphalan 140 mg/m2, and the statistical comparability with the Mel200 regimen suggest that this combination can be effective in the treatment of MM patients with impaired renal function, which still needs to be further confirmed. No advantage of the combined conditioning regimen over the standard one can be accounted for by the loss of plasma cell sensitivity to proteasome inhibitors. The obtained data provide ground for modifying the study protocol with a particular focus on evaluating the efficacy and safety of conditioning regimen Mel/Karfil with melphalan 200 mg/m2 depending on biologic phenotype of plasma cell.

Keywords: multiple myeloma, autologous hematopoietic stem cell transplantation, conditioning regimen, melphalan, carfilzomib, thiotepa.

Received: June 15, 2022

Accepted: December 2, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]
  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]
  3. Goicoechea E, Puig N, Cedenae MT, et al. Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma. Blood. 2021;137(1):49–60. doi: 1182/blood.2020006731
  4. Goel U, Usmani S, Kumar S. Current approaches to management of newly diagnosed multiple myeloma. Am J Haematol. 2022;97(Suppl 1):S3–S25. doi: 1002/ajh.26512.
  5. Palumbo A, Bringhen S, Bruno B, et al. Melphalan 200 mg/m2 versus melphalan 100 mg/m2 in newly diagnosed myeloma patients: a prospective, multicenter phase 3 study. Blood. 2010;115(10):1873–9. doi: 1182/blood-2009-09-241737.
  6. Saini N, Bashir O, Milton D, et al. Busulfan and melphalan conditioning is superior to melphalan alone in autologous stem cell transplantation for high-risk MM. Blood Adv. 2020;4(19):4834–7. doi: 10.1182/bloodadvances.2020002590.
  7. Farag S, Bacher U, Jeker B, et al. Adding bendamustine to melphalan before ASCT improves CR rate in myeloma vs. melphalan alone: A randomized phase-2 trial. Bone Marrow Transplant. 2022;57(6):990–7. doi: 10.1038/s41409-022-01681-y.
  8. Roussel M, Lauwers-Cances V, Macro M, et al. Bortezomib and high-dose melphalan conditioning regimen in frontline multiple myeloma: an IFM randomized phase 3 study. 2022;139(18):2747–57. doi: 10.1182/blood.2021014635.
  9. Costa L, Landau H, Chhabra S, et al. Phase 1/2 trial of carfilzomib plus high-dose melphalan preparative regimen for salvage autologous hematopoietic cell transplantation followed by maintenance carfilzomib in patients with relapsed/refractory multiple myeloma. Biol Blood Marrow Transplant. 2018;24(7):1379–85. doi: 10.1016/j.bbmt.2018.01.036.
  10. Грицаев С.В., Кострома И.И., Жернякова А.А. и др. Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2019;12(3):282–8. doi: 10.21320/2500-2139-2019-12-3-282-288.
    [Gritsaev SV, Kostroma II, Zhernyakova AA, et al. Experience with the Use of Thio/Mel Conditioning Regimen Prior to Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma. Clinical oncohematology. 2019;12(3):282–8. doi: 10.21320/2500-2139-2019-12-3-282-288. (In Russ)]
  11. Karam D, Gertz M, Lacy M, et al. Impact of maintenance therapy post autologous stem cell transplantation for multiple myeloma in early and delayed transplant. Bone Marrow Transplant. 2022;57(5):803–9. doi:1038/s41409-022-01631-8.
  12. Roussel M, Lauwers-Cances V, Wuilleme S, et al. Up-front carfilzomib, lenalidomide, and dexamethasone with transplant for patients with multiple myeloma: the IFM KRd final results. Blood. 2021;138(2):113–21. doi: 1182/blood.2021010744.
  13. Bazarbachi A, Hamed R, Malard F, et al. Induction therapy prior to autologous stem cell transplantation (ASCT) in newly diagnosed multiple myeloma: an update. Blood Cancer J. 2022;12(3):47. doi: 1038/s41408-022-00645-1.
  14. Lahuerta J, Mateos M, Martinez-Lopez J, et al. Influence of pre- and post-transplantation responses on outcome of patients with multiple myeloma: sequential improvement of response and achievement of complete response are associated with longer survival. J Clin Oncol. 2008;26(35):5775–82. doi: 1200/JCO.2008.17.9721.
  15. Harousseau JL, Attal M, Avet-Loiseau H. The role of complete response in multiple myeloma. Blood. 2009;114(15):3139–46. doi: 1182/blood-2009-03-201053.
  16. Kumar S, Fu A, Niesvizky R, et al. Renal response in real-world carfilzomib- vs bortezomib-treated patients with relapsed or refractory multiple myeloma. Blood Adv. 2021;5(2):367–76. doi: 1182/bloodadvances.2019001059.
  17. Hodges L, Markova S, Chinn L, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–61. doi: 1097/FPC.0b013e3283385a1c.
  18. Hassen W, Kassambara A, Reme T, et al. Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. 2015;6(8):6431–47. doi: 10.18632/oncotarget.3237.
  19. Soriano G, Besse L, Li N, et al. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. 2016;30(11):2198–207. doi: 10.1038/LEU.2016.102.
  20. Sissung T, Peer C, Korde N, et al. Carfilzomib and lenalidomide response related to VEGF and VEGFR2 germline polymorphisms. Cancer Chemother Pharmacol. 2017;80(1):217–21. doi: 10.1007/s00280-017-3323-8.
  21. Kuhn D, Berkova Z, Jones R, et al. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. 2012;120(16):3260–70. doi: 10.1182/blood-2011-10-386789.
  22. Shirazi F, Jones R, Singh R, et al. Activating KRAS, NRAS, and BRAF mutants enhance proteasome capacity and reduce endoplasmic reticulum stress in multiple myeloma. Proc Natl Acad Sci USA. 2020;117(33):20004–14. doi: 10.1073/pnas.2005052117.
  23. Mulligan G, Lichter D, Di Bacco A, et al. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy. 2014;123(5):632–9. doi: 10.1182/blood-2013-05-504340.
  24. Narita T, Ri M, Masaki A, et al. Lower expression of activating transcription factors 3 and 4 correlates with shorter progression-free survival in multiple myeloma patients receiving bortezomib plus dexamethasone therapy. Blood Cancer J. 2015;5(12):e373. doi: 10.1038/bcj.2015.98.
  25. Pinto V, Bergantim R, Caires H, et al. Multiple myeloma: Available therapies and causes of drug resistance. Cancers (Basel). 2020;12(2):407. doi: 10.3390/cancers12020407.
  26. Aksenova AY, Zhuk AS, Lada AG, et al. Genome instability in multiple myeloma: facts and factors. Cancers (Basel). 2021;13(23):5949. doi: 10.3390/cancers13235949.

Identification of Somatic Mutations in EZH2 Gene and Assessment of Their Prognostic Value in Follicular Lymphoma Grades 1–3А

ES Nesterova, NA Severina, BV Biderman, AB Sudarikov, AM Kovrigina, TN Obukhova, YaK Mangasarova, SM Kulikov, EE Zvonkov, EN Parovichnikova, VG Savchenko

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Ekaterina Sergeevna Nesterova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-23-61, +7(910)429-62-26; e-mail: nest.ek@yandex.ru

For citation: Nesterova ES, Severina NA, Biderman BV, et al. Identification of Somatic Mutations in EZH2 Gene and Assessment of Their Prognostic Value in Follicular Lymphoma Grades 1–3А. Clinical oncohematology. 2023;16(1):80–7. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-80-87


ABSTRACT

Aim. To determine the incidence and prognostic value of mutations in exon 16 of EZH2 as well as those of polymorphism с.1582-21А>G (rs2072407) in EZH2 in patients with follicular lymphoma (FL) grades 1–3А in relation to morphologic and cytogenetic tumor characteristics.

Materials & Methods. The prospective cohort study conducted by the National Research Center for Hematology from January 2017 to April 2021 enrolled 80 patients with newly diagnosed FL grades 1/2 and 3А. The median follow-up was 53 months. Molecular and cytogenetic analyses were based on biopsy samples of lymph nodes obtained before chemotherapy. The mutation status of exon 16 in EZH2 and the presence of intronic polymorphism rs2072407 in EZH2 were examined by Sanger sequencing method. Translocation t(14;18)(q32;q21) was detected by karyotyping or FISH.

Results. Mutations in exon 16 of EZH2 (mutEZH2) were identified in 10/80 (13 %) patients. All patients showed missense mutation in codon 646 of EZH2. Translocation t(14;18) was detected in 45/80 (56 %) cases. Poor outcome in the cohort with no t(14;18) was observed 3 times more often than in the group of patients with t(14;18) (= 0.0001). The presence of t(14;18) was associated with favorable prognosis irrespective of either the mutation status of exon 16 in EZH2 or the FL grade. The analysis of the polymorphism rs2072407 status yielded the following genotypes: AA in 24 % (n = 19), AG in 42 % (n = 34), and GG in 34 % (n = 27) of cases. The variants АА and AG were associated with higher risk of death (hazard ratio 2.9; 95% confidence interval 1.2–10.6; = 0.01), whereas the genotype GG was associated with wtEZH2 (10 % vs. 37 %) and favorable prognosis (= 0.065).

Conclusion. Significant biological markers for favorable prognosis in FL appeared to be the presence of t(14;18)(q32;q21) and GG genotype of polymorphism rs2072407 in EZH2. The previously identified prognostic factors (grade 3А, bulky tumor lesions > 6 cm, Ki-67 > 35 %, and a short interval between symptom onset and chemotherapy start) were incorporated into a new unified personalized predictive (index PPI) FL model by supplementing it with two additional biological markers: the presence of t(14;18)(q32;q21) and GG genotype of polymorphism rs2072407. This approach may increase the prognostic value of the new personalized design which will provide the basis for risk-adapted algorithms for FL treatment.

Keywords: follicular lymphoma, prognosis, bulky, grades, Ki-67, t(14;18)(q32;q21), EZH2 gene.

Received: July 9, 2022

Accepted: November 30, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. 2016;127(20):2375–90. doi: 10.1182/blood‐2016‐01‐643569.
  2. Бабичева Л.Г., Поддубная И.В. Первая линия терапии индолентных неходжкинских лимфом в рутинной клинической практике. Современная онкология. 2020;22(2):119–25. doi: 10.26442/18151434.2020.2.200125.
    [Babicheva LG, Poddubnaya IV. First-line therapy of indolent non-Hodgkin’s lymphoma in routine clinical practice. Journal of Modern Oncology. 2020;22(2):119–25. doi: 10.26442/18151434.2020.2.200125. (In Russ)]
  3. Ardeshna KM, Qian W, Smith P, et al. Rituximab versus a watch-and-wait approach in patients with advanced-stage, asymptomatic, non-bulky follicular lymphoma: an open-label randomised phase 3 trial. Lancet Oncol. 2014;15(4):424–35. doi: 10.1016/S1470-2045(14)70027-0.
  4. Matasar MJ, Luminari S, Barr PM, et al. Follicular Lymphoma: Recent and Emerging Therapies, Treatment Strategies, and Remaining Unmet Needs. Oncologist. 2019;24(11):e1236–e1250. doi: 10.1634/theoncologist.2019-0138.
  5. Casulo C, Byrtek M, Dawson KL, et al. Early Relapse of Follicular Lymphoma After Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone Defines Patients at High Risk for Death: An Analysis From the National LymphoCare Study. J Clin Oncol. 2015;33(23):2516–22. doi: 10.1200/JCO.2014.59.7534.
  6. Casulo C, Day B, Dawson KL, et al. Disease characteristics, treatment patterns, and outcomes of follicular lymphoma in patients 40 years of age and younger: an analysis from the National Lymphocare Study. Ann Oncol. 2015;26(11):2311– doi: 10.1093/ annonc/mdv375.
  7. Smith A, Crouch S, Lax S, et al. Lymphoma incidence, survival and prevalence 2004–2014: sub-type analyses from the UK’s Haematological Malignancy Research Network. Br J Cancer. 2015;112(9):1575–84. doi: 10.1038/bjc.2015.94.
  8. Bachy E, Houot R, Morschhauser F, et al. Long-term follow up of the FL2000 study comparing CHVP-interferon to CHVP-interferon plus rituximab in follicular lymphoma. Haematologica. 2013;98(7):1107–14. doi: 10.3324/haematol.2012.082412.
  9. Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5. doi: 10.1038/ng.518.
  10. Pastore A, Jurinovic V, Kridel R, et al. Integration of gene mutations in risk prognostication for patients receiving first‐line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population‐based registry. Lancet Oncol. 2015;16(9):1111– doi: 10.1016/ S1470‐2045(15)00169‐2.
  11. Carlotti E, Wrench D, Matthews J, et al. Transformation of follicular lymphoma to diffuse large B-cell lymphoma may occur by divergent evolution from a common progenitor cell or by direct evolution from the follicular lymphoma clone. Blood. 2009;113(15):3553–7. doi: 10.1182/blood-2008-08-174839.
  12. Kridel R, Mottok A, Farinha P, et al. Cell of origin of transformed follicular lymphoma. Blood. 2015;126(18):2118–27. doi: 10.1182/blood-2015-06-649905.
  13. Dubois S, Mareschal S, Picquenot J-M, et al. Immunohistochemical and genomic profiles of diffuse large B-cell lymphomas: implications for targeted EZH2 inhibitor therapy? Oncotarget. 2015;6(18):16712–24. doi: 10.18632/oncotarget.3154.
  14. Huet S, Xerri L, Tesson B, et al. EZH2 alterations in follicular lymphoma: biological and clinical correlations. Blood Cancer J. 2017;7(4):e555. doi: 10.1038/bcj.2017.32.
  15. Kridel R, Sehn LH, Gascoyne RD. Can histologic transformation of follicular lymphoma be predicted and prevented? Blood. 2017;130(3):258–66. doi: 10.1182/blood-2017-03-691345.
  16. Lossos IS, Alizadeh AA, Diehn M, et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc Natl Acad Sci USA. 2002;99(13):8886–91. doi: 10.1073/pnas.132253599.
  17. Yap DB, Chu J, Berg T, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011;117(8):2451–9. doi: 10.1182/blood-2010-11-321208.
  18. Okosun J, Bodor C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46(2):176–81. doi: 10.1038/ng.2856.
  19. Beguelin W, Popovic R, Teater M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013;23(5):677–92. doi: 10.1016/j.ccr.2013.04.011.
  20. Caganova M, Carrisi C, Varano G, et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest. 2013;123(12):5009–22. doi: 10.1172/JCI70626.
  21. Smith S. Transformed lymphoma: what should I do now? Hematology Am Soc Hematol Educ Program. 2020;2020(1):306–11. doi: 10.1182/hematology.2020000115.
  22. Cartron G, Trotman J. Time for an individualized approach to first-line management of follicular lymphoma. Haematologica. 2022;107(1):7–18. doi: 10.3324/haematol.2021.278766.
  23. Нестерова Е.С., Кравченко С.К., Мангасарова Я.К. и др. Фолликулярная лимфома. Высокодозная иммунохимиотерапия с трансплантацией аутологичных стволовых клеток крови: результаты первого проспективного исследования в России. Терапевтический архив. 2016;88(7):62–71. doi: 10.17116/terarkh201688762-71.
    [Nesterova ES, Kravchenko SK, Mangasarova YaK, et al. Follicular lymphoma. High-dose immunochemotherapy with autologous blood stem cell transplantation: Results of the first prospective study in Russia. Terapevticheskii arkhiv. 2016;88(7):62–71. doi: 10.17116/terarkh201688762-71. (In Russ)]
  24. Нестерова Е.С., Кравченко С.К., Ковригина А.М. и др. Фолликулярная лимфома: результаты многоцентрового исследования терапии первой линии препаратами бендамустин и ритуксимаб; факторы риска неблагоприятных событий (протокол FL-RUS-2013). Онкогематология. 2018;13(3):10–24. doi: 10.17650/1818-8346-2018-13-3-10-24.
    [Nesterova ES, Kravchenko SK, Kovrigina AM, et al. Follicular lymphoma: results of multicenter study of first-line therapy with bendamustine and rituximab; risk factors for adverse events (FL-RUS-2013 protocol). Oncohematology. 2018;13(3):10–24. doi: 10.17650/1818-8346-2018-13-3-10-24. (In Russ)]
  25. Нестерова Е.С., Кравченко С.К., Барях Е.А. и др. Трансплантация аутологичных стволовых клеток крови в первой ремиссии фолликулярной лимфомы как «терапия спасения» пациентов с факторами неблагоприятного прогноза. Результаты первого проспективного исследования. Современная онкология. 2016;18(5):31–2. doi: 10.26442/1815-1434_2016.5.31-32.
    [Nesterova ES, Kravchenko SK, Baryah EA, et al. Autologous stem cells transplantation in the first remission of follicular lymphoma as “rescue therapy” in patients with unfavorable prognosis factors. The first prospective study results. Journal of Modern Oncology. 2016;18(5):31–2. doi: 10.26442/1815-1434_2016.5.31-32. (In Russ)]
  26. Нестерова Е.С., Кравченко С.К., Ковригина А.М. и др. Фолликулярная лимфома: критерии выбора терапии первой линии. Терапевтический архив. 2019;91(8):75–83. doi: 10.26442/00403660.2019.08.000388.
    [Nesterova ES, Kravchenko SK, Kovrigina AM, et al. Follicular lymphoma: first-line selection criteria of treatment. Terapevticheskii arkhiv. 2019;91(8):75–83. doi: 10.26442/00403660.2019.08.000388. (In Russ)]
  27. Rummel MJ, Maschmeyer G, Ganser A, et al. Bendamustine plus rituximab (B-R) versus CHOP plus rituximab (CHOP-R) as first-line treatment in patients with indolent lymphomas: Nine-year updated results from the StiL NHL1 study. J Clin Oncol. 2017;35(15_suppl):7501. doi: 10.1200/JCO.2017.35.15_suppl.7501.
  28. Нестерова Е.С., Яцык Г.А., Луцик Н.С. и др. Информативность диффузионно-взвешенной магнитно-резонансной томографии всего тела и позитронно-эмиссионной томографии с компьютерной томографией при фолликулярной лимфоме. Терапевтический архив. 2020;92(7):55–62. doi: 10.26442/00403660.2020.07.000774.
    [Nesterova ES, Yatsyk GA, Lutsik NS, et al. Informativeness of whole-body diffusion-weighted magnetic resonance imaging and positron emission tomography with computed tomography in follicular lymphoma. Terapevticheskii arkhiv. 2020;92(7):55–62. doi: 10.26442/00403660.2020.07.000774. (In Russ)]
  29. Knutson SK, Kawano S, Minoshima Y, et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther. 2014;13(4):842–54. doi: 10.1158/1535-7163.MCT-13-0773.
  30. Kahl BS, Yang DT. Follicular lymphoma: evolving therapeutic strategies. Blood. 2016;127(17):2055–63. doi: 10.1182/blood-2015-11-624288.
  31. Morschhauser F, Tilly H, Chaidos A, et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open‐label, single‐arm, multicentre, phase 2 trial. Lancet Oncol. 2020;21(11):1433–42. doi: 10.1016/S1470‐2045(20)30441‐1.
  32. Fischer T, Zing NPC, Chiattone CS, et al. Transformed follicular lymphoma. Ann Hematol. 2018;97(1):17–29. doi: 10.1007/s00277-017-3151-2.