The Prognostic Value of Immunophenotypic Characteristics of Plasma Cells in Newly Diagnosed Multiple Myeloma Patients Treated with First-Generation Proteasome Inhibitor Bortezomib

GN Salogub1, EB Rusanova2, MV Gorchakova2, EA Belyakova3

1 VA Almazov National Medical Research Center, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341

2 IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

3 II Mechnikov North-Western State Medical University, 41 Kirochnaya ul., Saint Petersburg, Russian Federation, 191015

For correspondence: Galina Nikolaevna Salogub, MD, PhD, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341; e-mail: salogub@bk.ru

For citation: Salogub GN, Rusanova EB, Gorchakova MV, Belyakova EA. The Prognostic Value of Immunophenotypic Characteristics of Plasma Cells in Newly Diagnosed Multiple Myeloma Patients Treated with First-Generation Proteasome Inhibitor Bortezomib. Clinical oncohematology. 2022;15(4):377–87. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-377-387


ABSTRACT

Aim. To assess the number of plasma cells (PC) in the bone marrow and their immunophenotype using flow cytometry (FC) and light microscopy. To analyze clinical and prognostic value of the data obtained in newly diagnosed multiple myeloma (MM) patients treated with first-generation proteasome inhibitor bortezomib.

Materials & Methods. The study enrolled 153 newly diagnosed MM patients treated and followed-up at the IP Pavlov First Saint Petersburg State Medical University in the period from 2007 to 2017. The median age of patients was 69 years. In 115 patients, the regimens based on first-generation proteasome inhibitor bortezomib were used as induction therapy. To determine the immunophenotypic profile of PC, the CD19, CD20, CD27, CD38, CD45, CD56, CD138, and CD117 monoclonal antibodies were used. PC immunophenotyping in the bone marrow was performed by FC using Cytomics FC500 (Beckman Coulter, USA).

Results. Patients with different phenotypes did not show any considerable differences in monocloncal production of certain classes and types of immunoglobulin heavy and/or light chains. In case of immunophenotypic profile of CD20+CD27– myeloma cells, the secretion of the monoclonal κ-chain predominated over that of λ-chain. By and large, the secretion of light chains was observed more often in ММ CD20+ and more seldom in ММ CD56+. In case of CD56 expression, IgAλ secretion was more often reported; IgAκ secretion was more common in case of CD117 expression. Worst survival scores were shown by patients with PC immunophenotype CD27–CD56–. At the primary MM diagnosis, the advanced stages of the disease, according to the ISS, were more commonly characterized by phenotype CD45–CD27–CD56+.

Conclusion. The flow cytometry characteristics of PC immunophenotype can be applied to evaluate the prognosis of MM and to optimize the therapy.

Keywords: multiple myeloma, flow cytometry, bortezomib, immunophenotypic profile, plasma cells, overall survival, progression-free survival.

Received: May 22, 2022

Accepted: August 28, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Saxe D, Seo E-J, Bergeron MB, Han J-Y. Recent advances in cytogenetic characterization of multiple myeloma. Int J Lab Hematol. 2019;41(1):5–14. doi: 10.1111/ijlh.12882.
  2. Johnsen HE, Bogsted M, Klausen TW, et al. Multiparametric flow cytometry profiling of neoplastic plasma cells in multiple myeloma. Cytometry B Clin Cytom. 2010;78(5):338–47. doi: 10.1002/cyto.b.20523.
  3. Dispenzieri A, Kumar S. Treatment for high-risk smoldering myeloma. N Engl J Med. 2013;369(18):1762–5. doi: 10.1056/NEJMc1310911#SA1.
  4. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):538–48. doi: 10.1016/S1470-2045(14)70442-5.
  5. Dimopoulos MA, Sonneveld P, Leung N, et al. International Myeloma Working Group Recommendations for the Diagnosis and Management of Myeloma-Related Renal Impairment. J Clin Oncol. 2016;34(13):1544–57. doi: 10.1200/JCO.2015.65.0044.
  6. Flores-Montero J, de Tute R, Paiva B, et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90(1):61–72. doi: 10.1002/cyto.b.21265.
  7. Flores-Montero J, Sanoja-Flores L, Paiva B, et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–103. doi: 10.1038/leu.2017.29.
  8. Kumar SK, Kimlinger T, Morice W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best Pract Res Clin Haematol. 2010;23(3):433–51. doi: 10.1016/j.beha.2010.09.002.
  9. Kumar S, Rajkumar SV, Kimlinger T, et al. CD45 expression by bone marrow plasma cells in multiple myeloma: clinical and biological correlations. Leukemia. 2005;19(8):1466–70. doi: 10.1038/sj.leu.2403823.
  10. Iriyama N, Miura K, Hatta Y, et al. Clinical effect of immunophenotyping on the prognosis of multiple myeloma patients treated with bortezomib. Oncol Lett. 2017;13(5):3803–8. doi: 10.3892/ol.2017.5920.
  11. Grigoriadis G, Gilbertson M, Came N, et al. Is CD20 positive plasma cell myeloma a unique clinicopathological entity? A study of 40 cases and review of the literature. Pathology. 2012;44(6):552–6. doi: 10.1097/PAT.0b013e3283583f5d.
  12. Arana P, Paiva B, Cedena MT, et al. Prognostic value of antigen expression in multiple myeloma: a PETHEMA/GEM study on 1265 patients enrolled in four consecutive clinical trials. Leukemia. 2018;32(4):971–8. doi: 10.1038/leu.2017.320.
  13. Li Z, Xu Y, An G, et al. The characteristics of 62 cases of CD20-positive multiple myeloma. 2015;36(1):44–8. doi: 10.3760/cma.j.issn.0253-2727.2015.01.011.
  14. Shen C, Xu H, Alvarez X, et al. Reduced expression of CD27 by collagenase treatment: implications for interpreting B cell data in tissue. PLoS One. 2015;10(3):213–20. doi: 10.1371/journal.pone.0116667.
  15. Moreau P, Robillard N, Jego G, et al. Lack of CD27 in myeloma delineates different presentation and outcome. Br J Haematol. 2006;132(2):168–70. doi: 10.1111/j.1365-2141.2005.05849.x.
  16. Lok R, Golovyan D, Smith J. Multiple myeloma causing interstitial pulmonary infiltrates and soft-tissue plasmacytoma. Respir Med Case Rep. 2018;24:155–7. doi: 10.1016/j.rmcr.2018.05.023.
  17. Klimiene I, Radzevicius M, Matuzeviciene R, et al. Adhesion molecule immunophenotype of bone marrow multiple myeloma plasma cells impacts the presence of malignant circulating plasma cells in peripheral blood. Int J Lab Hematol. 2021;43(3):403–8. doi: 10.1111/ijlh.13387.
  18. Khallaf SM, Yousof EA, Ahmed EH, et al. Prognostic value of CD56 expression in multiple myeloma. Res Oncol. 2020;16(1):6–1. doi: 10.21608/resoncol.2020.24758.1091.
  19. Yoshida T, Ri M, Kinoshita S, et al. Low expression of neural cell adhesion molecule, CD56, is associated with low efficacy of bortezomib plus dexamethasone therapy in multiple myeloma. PLoS One. 2018;13(5):e0196780. doi: 10.1371/journal.pone.0196780.
  20. Baughn LB, Sachs Z, Noble-Orcutt KE, et al. Phenotypic and functional characterization of a bortezomib resistant multiple myeloma cell line by flow and mass cytometry. Leuk Lymphoma. 2017;58(8):1931–40. doi: 10.1080/10428194.2016.1266621.
  21. Pan Y, Wang H, Tao Q, et al. Absence of both CD56 and CD117 expression on malignant plasma cells is related with a poor prognosis in patients with newly diagnosed multiple myeloma. Leuk Res. 2016;40:77–82. doi: 10.1016/j.leukres.2015.11.003.
  22. Chen F, Hu Y, Wang X, et al. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018;7(12):5920–7. doi: 10.1002/cam4.1840.
  23. Wang H, Zhou X, Zhu JW. Association of CD117 and HLA-DR expression with shorter overall survival and/or progression-free survival in patients with multiple myeloma treated with bortezomib and thalidomide combination treatment without transplantation. Oncol Lett. 2018;16(5):5655–66. doi: 10.3892/ol.2018.9365.
  24. Skerget M, Skopec B, Zadnik V, et al. CD56 Expression is an important prognostic factor in multiple myeloma even with bortezomib induction. Acta Haematol. 2018;139(4):228–34. doi: 10.1159/000489483.
  25. Raja KR, Kovarova L, Hajek R. Review of phenotypic markers used in flow cytometric analysis of MGUS and MM, and applicability of flow cytometry in other plasma cell disorders. Br J Haematol. 2010;149(3):334–51. doi: 10.1111/j.1365-2141.2010.08121.x.
  26. Sahara N, Takeshita A, Shigeno K, et al. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br J Haematol. 2002;117(4):882–5. doi: 10.1046/j.1365-2141.2002.03513.x.

Multiple Myeloma: Nuances of Minimal Residual Disease Diagnosis and Monitoring with the Use of Multicolor Flow Cytometry

IV Galtseva, KA Nikiforova, YuO Davydova, NM Kapranov, MV Solov’ev, EN Parovichnikova, LP Mendeleeva

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Kseniya Aleksandrovna Nikiforova, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-62-21; e-mail: nikiforovaksenya@gmail.com

For citation: Galtseva IV, Nikiforova KA, Davydova YuO, et al. Multiple Myeloma: Nuances of Minimal Residual Disease Diagnosis and Monitoring with the Use of Multicolor Flow Cytometry. Clinical oncohematology. 2022;15(4):365–76. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-365-376


ABSTRACT

The assessment of minimal residual disease (MRD) by multicolor flow cytometry (MFC) is a rapidly growing area of laboratory studies. In recent years, it has become particularly valuable for hematologists. Although the MFC analysis of plasma cells in multiple myeloma patients is sufficiently standardized, there are differences in methods of sample preparation, monoclonal antibody combinations being used as well as in cytometric data evaluation. The present paper summarizes the key international and domestic data on the MFC analysis of plasma cells and documents the authors’ own experience with MFC analysis in multiple myeloma over the last few years.

Keywords: minimal residual disease, multiple myeloma, multicolor flow cytometry, gating, immunophenotyping.

Received: May 24, 2022

Accepted: August 10, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–e548. doi: 10.1016/S1470-2045(14)70442-5.
  2. Каприн А.Д., Старинский В.В., Шахзадова А.О. и др. Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020.
    [Kaprin AD, Starinskii VV, Shakhzadova AO, et al. Zlokachestvennye novoobrazovaniya v Rossii v 2019 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2019 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 2020. (In Russ)]
  3. Соловьев М.В., Менделеева Л.П., Алексеева А.Н. и др. Эффективность терапии множественной миеломы в России (результаты многоцентрового проспективного исследования). Гематология и трансфузиология. 2020;65(1):103–4.
    [Solov’ev MV, Mendeleeva LP, Alekseeva AN, et al. The efficacy of multiple myeloma therapy in Russia (results of a multi-center prospective study). Gematologiya i transfuziologiya. 2020;65(1):103–4. (In Russ)]
  4. Rajkumar SV. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91(7):719–34. doi: 10.1002/ajh.24402.
  5. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346. doi: 10.1016/S1470-2045(16)30206-6.
  6. Paiva B, Vidriales M-B, Mateo G, et al. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood. 2009;114(20):4369–72. doi: 10.1182/blood-2009-05-221689.
  7. Rawstron AC, Child JA, de Tute RM, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol. 2013;31(20):2540–7. doi: 10.1200/JCO.2012.46.2119.
  8. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9. doi: 10.1182/blood-2014-01-550020.
  9. Korde N, Mailankody S, Roschewski M, et al. Minimal Residual Disease (MRD) Testing in Newly Diagnosed Multiple myeloma (MM) Patients: A Prospective Head-to-Head Assessment of Cell-Based, Molecular, and Molecular-Imaging Modalities. Blood. 2014;124(21):2105. doi: 10.1182/blood.V124.21.2105.2105.
  10. Avet-Loiseau H, Corre J, Lauwers-Cances V, et al. Evaluation of Minimal Residual Disease (MRD) By Next Generation Sequencing (NGS) Is Highly Predictive of Progression Free Survival in the IFM/DFCI 2009 Trial. Blood. 2015;126(23):191. doi: 10.1182/blood.V126.23.191.191.
  11. Гальцева И.В., Менделеева Л.П., Давыдова Ю.О. и др. Исследование минимальной остаточной болезни методом многоцветной проточной цитофлуориметрии у больных множественной миеломой после трансплантации аутологичных гемопоэтических стволовых клеток. Онкогематология. 2017;12(2):62–9. doi: 10.17650/1818-8346-2017-12-2-62-69.
    [Galtseva IV, Mendeleeva LP, Davydova YuO, et al. Study of minimal residual disease by multicolor flow cytometry in multiple myeloma after autologous hematopoietic stem cell transplantation. Oncohematology. 2017;12(2):62–9. doi: 10.17650/1818-8346-2017-12-2-62-69. (In Russ)]
  12. Соловьев М.В., Менделеева Л.П., Покровская О.С. и др. Множественная миелома: поддерживающая терапия после трансплантации гемопоэтических стволовых клеток в зависимости от минимальной остаточной болезни. Терапевтический архив. 2017;89(7):25–31. doi: 10.17116/terarkh201789725-31.
    [Solovyev MV, Mendeleeva LP, Pokrovskaia OS, et al. Multiple myeloma: Maintenance therapy after autologous hematopoietic stem cell transplantation, depending on minimal residual disease. Terapevticheskii arkhiv. 2017;89(7):25–31. doi: 10.17116/terarkh201789725-31. (In Russ)]
  13. Munshi NC, Avet-Loiseau H, Anderson KC, et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020;4(23):5988–99. doi: 10.1182/BLOODADVANCES.2020002827.
  14. Stetler-Stevenson M, Paiva B, Stoolman L, et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytometry B Clin Cytom. 2016;90(1):26–30. doi: 10.1002/cyto.b.21249.
  15. Менделеева Л.П., Вотякова О.М., Рехтина И.Г. и др. Множественная миелома: Клинические рекомендации [электронный документ]. Доступно по: https://cr.minzdrav.gov.ru/schema/144_1. Ссылка активна на 24.05.2022.
    [Mendeleeva LP, Votyakova OM, Rekhtina IG, et al. Multiple Myeloma: Clinical Guidelines [Internet]. Available from: https://cr.minzdrav.gov.ru/schema/144_1. Accessed 24.05.2022. (In Russ)]
  16. Менделеева Л.П., Покровская О.С. Множественная миелома. Клиническая онкогематология. 2009;2(1):96–8.
    [Mendeleeva LP, Pokrovskaya OS. Multiple myeloma. Klinicheskaya onkogematologiya. 2009;2(1):96–8. (In Russ)]
  17. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]
  18. Bergstrom DJ, Kotb R, Louzada ML, et al. Consensus Guidelines on the Diagnosis of Multiple Myeloma and Related Disorders: Recommendations of the Myeloma Canada Research Network Consensus Guideline Consortium. Clin Lymphoma Myeloma Leuk. 2020;20(7):e352–e367. doi: 10.1016/j.clml.2020.01.017.
  19. Kumar SK, Callander NS, Adekola K, et al. Multiple Myeloma, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2020;18(12):1685–717. doi: 10.6004/jnccn.2020.0057.
  20. Perez-Persona E, Vidriales M-B, Mateo G, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110(7):2586–92. doi: 10.1182/blood-2007-05-088443.
  21. Hogan KA, Chini CCS, Chini EN. The Multi-faceted Ecto-enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases. Front Immunol. 2019;10:1187. doi: 10.3389/FIMMU.2019.01187.
  22. Marti GE, Rawstron AC, Ghia P, et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol. 2005;130(3):325–32. doi: 10.1111/j.1365-2141.2005.05550.x.
  23. Flores-Montero J, de Tute R, Paiva B, et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90(1):61–72. doi: 10.1002/CYTO.B.21265.
  24. Bataille R, Jego G, Robillard N, et al. The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica. 2006;91(9):1234–40.
  25. Tembhare PR, Yuan CM, Venzon D, et al. Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases. Leuk Res. 2014;38(3):371–6. doi: 10.1016/J.LEUKRES.2013.12.007.
  26. Arroz M, Came N, Lin P, et al. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom. 2016;90(1):31–9. doi: 10.1002/cyto.b.21228.
  27. Peceliunas V, Janiulioniene A, Matuzeviciene R, Griskevicius L. Six color flow cytometry detects plasma cells expressing aberrant immunophenotype in bone marrow of healthy donors. Cytometry B Clin Cytom. 2011;80B(5):318–23. doi: 10.1002/cyto.b.20601.
  28. Rawstron AC, Orfao A, Beksac M, et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93(3):431–8. doi: 10.3324/HAEMATOL.11080.
  29. Manasanch EE, Salem DA, Yuan CM, et al. Flow cytometric sensitivity and characteristics of plasma cells in patients with multiple myeloma or its precursor disease: influence of biopsy site and anticoagulation method. Leuk Lymphoma. 2015;56(5):1416. doi: 10.3109/10428194.2014.955020.
  30. Stetler-Stevenson M, Ahmad E, Barnett D, et al. Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells; Approved Guideline, CLSI Document H43-A2. 2nd edn. Wayne: Clinical and Laboratory Standards Institute; 2007.
  31. Гальцева И.В., Давыдова Ю.О., Капранов Н.М. и др. Способ оценки качества аспирата костного мозга в процессе проведения мониторинга минимальной резидуальной болезни при множественной миеломе. Патент РФ № 2639382/21.12.2017. Бюлл. № 36. Доступно по: https://findpatent.ru/patent/263/2639382.html. Ссылка активна на 09.04.2022.
    [Galtseva IV, Davydova YuO, Kapranov NM, et al. Sposob otsenki kachestva aspirata kostnogo mozga v protsesse provedeniya monitoringa minimalnoi rezidualnoi bolezni pri mnozhestvennoi mielome. Patent RUS No. 2639382/21.12.2017. Byul. No. 36. Available from: https://findpatent.ru/patent/263/2639382.html. Accessed 09.04.2022. (In Russ)]
  32. Rawstron AC. Immunophenotyping of Plasma Cells. Curr Protoc Cytom. 2006;36(1). doi: 10.1002/0471142956.cy0623s36.
  33. Britt Z, O’Donahue M, Mills D. Surface staining for kappa and lambda, how many washes are sufficient? You might be surprised. Available from: http://www.cytometry.org/public/newsletters/eICCS-6–3/article2.php. (accessed 24.05.2022).
  34. Flores-Montero J, Sanoja-Flores L, Paiva B, et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–103. doi: 10.1038/LEU.2017.29.
  35. Paiva B, Gutierrez NC, Rosinol L, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood. 2012;119(3):687–91. doi: 10.1182/blood-2011-07-370460.
  36. Puig N, Sarasquete ME, Balanzategui A, et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014;28(2):391–7. doi: 10.1038/leu.2013.217.

Plasmablastic Lymphoma with Primary Impairment of Bone Marrow in a HIV-Negative Patient: A Literature Review and a Case Report

MV Firsova, MV Solov’ev, AM Kovrigina, LP Mendeleeva

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Maiya Valerevna Firsova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: firs-maia@yandex.ru

For citation: Firsova MV, Solov’ev MV, Kovrigina AM, Mendeleeva LP. Plasmablastic Lymphoma with Primary Impairment of Bone Marrow in a HIV-Negative Patient: A Literature Review and a Case Report. Clinical oncohematology. 2022;15(4):356–64. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-356-364


ABSTRACT

Background. Plasmablastic lymphoma (PBL) is a rare variant of large B-cell lymphoma. This disease is usually associated with HIV infection and is predominantly identified in male patients. Tumor lesion is typically localized in oral cavity. PBL is characterized by aggressivity and low rate of long-term survival.

Aim. To report a clinical case of a rare localization of PBL with primary impairment of bone marrow in a 19-year-old HIV-negative patient.

Materials & Methods. The diagnosis of the disease turned out to be challenging and was based on the results of a multi-step complex immunohistochemical analysis of a bone marrow core biopsy sample.

Results. Intensive block-based mNHL-BFM-90 polychemotherapy combined with bortezomib and daratumumab resulted in remission which allowed to perform consecutive autologous and then allogeneic hematopoietic stem cell transplantations. For the lack of immune control of allogeneic transplant over the tumor the conducted therapy was disappointingly unsuccessful. In other words, graft-versus-tumor effect could not be achieved. The patient died in 11 months after diagnosis because of tumor progression. A post-mortem report is required.

Conclusion. New approaches are definitely called for in order to explore methods of treating this complex disease. A study of mechanisms underlying PBL pathogenesis can contribute to better understanding of tumor biology and personalized choice of chemotherapy.

Keywords: plasmablastic lymphoma, CD38, bortezomib, daratumumab, auto-HSCT, allo-HSCT, bone marrow.

Received: May 4, 2022

Accepted: August 30, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89(4):1413–20.
  2. Salmon SE, Dalton WS, Grogan TM, et al. Multidrug-resistant myeloma: laboratory and clinical effects of verapamil as a chemosensitizer. Blood. 1991;78(1):44–50.
  3. Castillo JJ, Bibas M, Miranda RN. The biology and treatment of plasmablastic lymphoma. Blood. 2015;125(15):2323–30. doi: 10.1182/blood-2014-10-567479.
  4. Castillo JJ, Winer ES, Stachurski D, et al. HIV-negative plasmablastic lymphoma: Not in the mouth. Clin Lymphoma Myeloma Leuk. 2011;11(2):185–9. doi: 10.1016/j.clml.2011.03.008.
  5. Natkunam Y. The biology of the germinal center. Hematology Am Soc Hematol Educ Program. 2007:210–5. doi: 10.1182/asheducation-2007.1.210.
  6. Chan TD, Brink R. Affinity-based selection and the germinal center response. Immunol Rev. 2012;247(1):11–23. doi: 10.1111/j.1600-065X.2012.01118.x.
  7. Spender LC, Inman GJ. Inhibition of germinal centre apoptotic programmes by Epstein-Barr virus. Adv Hematol. 2011;2011:829525. doi: 10.1155/2011/829525.
  8. Kilger E, Kieser A, Baumann M, Hammerschmidt W. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998;17(6):1700–9. doi: 10.1093/emboj/17.6.1700.
  9. Vega F, Chang CC, Medeiros LJ, et al. Plasmablastic lymphomas and plasmablastic plasma cell myelomas have nearly identical immunophenotypic profiles. Mod Pathol. 2005;18(6):806–15. doi: 10.1038/modpathol.3800355.
  10. Morscio J, Dierickx D, Nijs J, et al. Clinicopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: Single-center series of 25 cases and meta-analysis of 277 reported cases. Am J Surg Pathol. 2014;38(7):875–86. doi: 10.1097/PAS.0000000000000234.
  11. Shaarani MA, Shackelford RE, Master SR, et al. Plasmablastic Lymphoma, a Rare Entity in Bone Marrow with Unusual Immunophenotype and Challenging Differential Diagnosis. Case Rep Hematol. 2019;2019:1586328. doi: 10.1155/2019/1586328.
  12. Chang CC, Zhou X, Taylor JJ, et al. Genomic profiling of plasmablastic lymphoma using array comparative genomic hybridization (aCGH): Revealing significant overlapping genomic lesions with diffuse large B-cell lymphoma. J Hematol Oncol. 2009;2:47. doi: 10.1186/1756-8722-2-47.
  13. Cattaneo C, Re A, Ungari M, et al. Plasmablastic lymphoma among human immunodeficiency virus-positive patients: Results of a single center’s experience. Leuk Lymphoma. 2015;56(1):267–9. doi: 10.3109/10428194.2014.911867.
  14. Castillo JJ, Furman M, Beltran BE, et al. Human immunodeficiency virus-associated plasmablastic lymphoma: Poor prognosis in the era of highly active antiretroviral therapy. Cancer. 2012;118 (21):5270–7. doi: 10.1002/cncr.27551.
  15. Schommers P, Wyen C, Hentrich M, et al. Poor outcome of HIV-infected patients with plasmablastic lymphoma: Results from the German AIDS-related lymphoma cohort study. AIDS. 2013;27(5):842–5. doi: 10.1097/QAD.0b013e32835e069d.
  16. Armstrong R, Bradrick J, Liu YC. Spontaneous Regression of an HIV-Associated Plasmablastic Lymphoma in the Oral Cavity: A Case Report. J Oral Maxillofac Surg. 2007;65(7):1361–4. doi: 10.1016/j.joms.2005.12.039.
  17. Nasta SD, Carrum GM, Shahab I, et al. Regression of a plasmablastic lymphoma in a patient with HIV on highly active antiretroviral therapy. Leuk Lymphoma. 2002;43(2):423–6. doi: 10.1080/10428190290006260.
  18. Castillo J, Pantanowitz L, Dezube BJ. HIV-associated plasmablastic lymphoma: Lessons learned from 112 published cases. Am J Hematol. 2008;83(10):804–9. doi: 10.1002/ajh.21250.
  19. NCCN Guidelines В-Cell Lymphomas. Version 3.2022. Available from: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1480 (accessed 06.06.2022).
  20. Валиев Т.Т., Барях Е.А. Эволюция взглядов на диагностику и лечение лимфомы Беркитта. Клиническая онкогематология. 2014;7(1):46–56.
    [Valiev TT, Baryakh EA. Evolution of concepts for diagnosis and treatment of Burkitt’s lymphoma. Klinicheskaya onkogematologiya. 2014;7(1):46–56. (In Russ)]
  21. Валиев Т.Т. Лимфома Беркитта у детей: 30 лет терапии. Педиатрия. Журнал им. Г.Н. Сперанского. 2020;99(4):35–41. doi: 10.24110/0031-403X-2020-99-4-35-42.
    [Valiev TT. Burkitt lymphoma in children: 30-year treatment expirience. Pediatria n.a. G.N. Speransky. 2020;99(4):35–41. doi: 10.24110/0031-403X-2020-99-4-35-42. (In Russ)]
  22. Lopez A, Abrisqueta P. Plasmablastic lymphoma: current perspectives. Blood Lymphat Cancer. 2018;8:63–70. doi: 10.2147/BLCTT.S142814.
  23. Liu JJ, Zhang L, Ayala E, et al. Human immunodeficiency virus (HIV)-negative plasmablastic lymphoma: A single institutional experience and literature review. Leuk Res. 2011;35(12):1571–7. doi: 10.1016/j.leukres.2011.06.023.
  24. Al-Malki MM, Castillo JJ, Sloan JM, Re A. Hematopoietic Cell Transplantation for Plasmablastic Lymphoma: A Review. Biol Blood Marrow Transplant. 2014;20(12):1877–84. doi: 10.1016/j.bbmt.2014.06.009.
  25. Bibas M, Grisetti S, Alba L, et al. Patient with HIV-associated plasmablastic lymphoma responding to bortezomib alone and in combination with dexamethasone, gemcitabine, oxaliplatin, cytarabine, and pegfilgrastim chemotherapy and lenalidomide alone. J Clin Oncol. 2010;28(34):e704–е708. doi: 10.1200/JCO.2010.30.0038.
  26. Saba NS, Dang D, Saba J, et al. Bortezomib in plasmablastic lymphoma: A case report and review of the literature. Onkologie. 2013;36(5):287–91. doi: 10.1159/000350325.
  27. Pretscher D, Kalisch A, Wilhelm M, Birkmann J. Refractory plasmablastic lymphoma—a review of treatment options beyond standard therapy. Ann Hematol. 2017;96(6):967–70. doi: 10.1007/s00277-016-2904-7.
  28. Sharma P, Sreedharanunni S, Koshy A, et al. Plasmablastic lymphoma of bone marrow: Report of a rare case and immunohistochemistry based approach to the diagnosis. Indian J Pathol Microbiol. 2019;62(1):107–10. doi: 10.4103/IJPM.IJPM_180_18.
  29. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2018. Т. 2. 1255 с.
    [Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika; 2018. Vol. 2. 1255 p. (In Russ)]
  30. Dittus C, Sarosiek S. A case of HIV-negative plasmablastic lymphoma of the bone marrow with a unique immunophenotype. Clin Case Rep. 2017;5(6):902–4. doi: 10.1002/ccr3.878.
  31. Marvyin K, Tjonnfjord EB, Breland UM, Tjonnfjord GE. Transformation to plasmablastic lymphoma in CLL upon ibrutinib treatment. BMJ Case Rep. 2020;13(9):e235816. doi: 10.1136/bcr-2020-235816.

Experience with the Use of B-RAF Inhibitor Vemurafenib in the Treatment of Hairy Cell Leukemia

LS Al-Radi, SYu Smirnova, TN Moiseeva, IS Piskunova, LV Plastinina, DV Novikova, EG Gemdzhian, GM Galstyan

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Svetlana Yurevna Smirnova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(926)879-65-94; e-mail: smirnova-s-ju@yandex.ru

For citation: Al-Radi LS, Smirnova SYu, Moiseeva TN, et al. Experience with the Use of B-RAF Inhibitor Vemurafenib in the Treatment of Hairy Cell Leukemia. Clinical oncohematology. 2022;15(4):349–55. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-349-355


ABSTRACT

Background. The standard and effective treatment of hairy cell leukemia (HCL) involves purine analogs, interferon-α (IFN-α) administration, and splenectomy. However, primary resistant HCL and early relapses (within 2–3 years after achieving remission) remain clinical challenges. Due to myelotoxicity of cladribine and slow effect of IFN-α, these drugs can be administered neither in deep neutropenia/agranulocytosis patients (especially in case of infectious complications) nor in patients with IFN-α allergy/intolerance.

Aim. To report clinical experience with vemurafenib, a B-RAF inhibitor, in HCL with BRAFV600E mutation in treatment-resistant patients with contraindications to standard therapy.

Materials & Methods. The study enrolled 39 HCL patients aged 24–78 years (median 55 years), 13 women and 26 men. HCL was diagnosed in accordance with the WHO 2017 criteria. Vemurafenib 240 mg was administered once or twice a day within 3 months. Three groups of patients were analyzed: those with early relapses and resistant HCL (n = 7), those with deep neutropenia/agranulocytosis (with and without infectious complications, n = 29), and those with IFN-α intolerance (n = 3).

Results. In 6 (86 %) out of 7 patients from group 1 (with early relapses and resistant HCL) a complete course of treatment was carried out, which included vemurafenib with subsequent standard cladribine chemotherapy and further consolidation with rituximab. Complete remission was achieved in 5 (71 %) patients, and partial remission was achieved in 1 (14 %) patient. The 7th patient was a non-responder. In 28 (97 %) out of 29 patients from group 2 with deep neutropenia/agranulocytosis, hematologic recovery was reported which allowed for further basic treatment with cladribine. In 1 patient vemurafenib appeared to be ineffective. In 3 patients from group 3 with IFN-α intolerance, vemurafenib administration was used as a stage of treatment preceding cladribine therapy. Cladribine treatment resulted in complete remission in 2 (67 %) patients and partial remission in 1 (33 %) patient.

Conclusion. In HCL with BRAFV600E mutation, low-dose vemurafenib can be effective in patients with relapsed/refractory disease as well as deep neutropenia with life-threatening infectious complications. In addition to that, vemurafenib administration can be used in cases of IFN-α intolerance as a stage of treatment of HCL with BRAFV600E mutation which precedes the basic cladribine therapy.

Keywords: hairy cell leukemia, B-RAF inhibitor, vemurafenib, relapsed/refractory disease, agranulocytosis, infectious complications.

Received: April 25, 2022

Accepted: September 2, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.
  2. Grever MR. How I treat hairy cell leukemia. Blood. 2010;115(1):21–8. doi: 10.1182/blood-2009-06-195370.
  3. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2018. Т. 2. С. 363–84.
    [Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika; 2018. Vol. 2. pр. 363–84. (In Russ)]
  4. Аль-Ради Л.С. Волосатоклеточный лейкоз: особенности течения, современная тактика терапии: Дис.… канд. мед. наук. М., 2008.
    [Al-Radi LS. Volosatokletochnyi leikoz: osobennosti techeniya, sovremennaya taktika terapii. (Hairy cell leukemia: clinical features, current treatment strategy.) [dissertation] Moscow; 2008. (In Russ)]
  5. Piro LD, Carrera CJ, Carson DA, Beutler E. Lasting remissions in hairy-cell leukemia induced by a single infusion of 2-chlorodeoxyadenosine. N Engl J Med. 1990;322(16):1117–21. doi: 10.1056/NEJM199004193221605.
  6. Tallman MS, Hakimian D, Variakojis D, et al. A single cycle of 2-chlorodeoxyadenosine results in complete remission in the majority of patients with hairy cell leukemia. Blood. 1992;80(9):2203–9.
  7. Tiacci E, Trifonov V, Schiavoni G, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15. doi: 10.1056/NEJMoa1014209.
  8. Grever MR, Abdel-Wahab O, Andritsos LA, et al. Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. Blood. 2017;129(5):553–60. doi: 10.1182/blood-2016-01-689422.
  9. Tiacci E, Schiavoni G, Martelli MP, et al. Constant activation of the RAF-MEK-ERK pathway as a diagnostic and therapeutic target in hairy cell leukemia. Haematologica. 2013;98(9):635–9. doi: 10.3324/haematol.2012.078071.
  10. Урнова Е.С., Аль-Ради Л.С., Кузьмина Л.А. и др. Успешное применение вемурафениба у больного с резистентной формой волосатоклеточного лейкоза. Терапевтический архив. 2013;85(7):76–8.
    [Urnova ES, Al’-Radi LS, Kuz’mina LA, et al. Successful use of vemurafenib in a patient with resistant hairy cell leukemia. Terapevticheskii arkhiv. 2013;85(7):76–8. (In Russ)]
  11. Dietrich S, Zenz T. BRAF inhibitor therapy in HCL. Best Pract Res Clin Haematol. 2015;28(4):246–52. doi: 10.1016/j.beha.2015.10.001.
  12. Fiskus W, Mitsiades N. B-Raf inhibition in the clinic: present and future. Annu Rev Med. 2016;67(1):29–43. doi: 10.1146/annurev-med-090514-030732.
  13. Dietrich S, Glimm H, Andrulis M, et al. BRAF inhibition in refractory hairy-cell leukemia. N Engl J Med. 2012;366(21):2038–40. doi: 10.1056/NEJMc1202124.
  14. Shallis RM, Patel TH, Podoltsev NA, et al. Disseminated, yet dissembled: Rare infections behind the veil of classical hairy cell leukemia. Leuk Res. 2020;90:106315. doi: 10.1016/j.leukres.2020.106315.
  15. Maurer H, Haas P, Wengenmayer T, et al. Successful vemurafenib salvage treatment in a patient with primary refractory hairy cell leukemia and pulmonary aspergillosis. Ann Hematol. 2014;93(8):1439–40. doi: 10.1007/s00277-013-1987-7.
  16. Peyrade F, Re D, Ginet C, et al. Low-dose vemurafenib induces complete remission in a case of hairy-cell leukemia with a V600E Haematologica. 2013;98(2):e20–e22. doi: 10.3324/haematol.2012.082404.
  17. Robak T, Wolska A, Robak P. Potential breakthroughs with investigational drugs for hairy cell leukemia. Expert Opin Investig Drugs. 2015;24(11):1419–31. doi: 10.1517/13543784.2015.1081895.
  18. Jain P, Polliack A, Ravandi F. Novel therapeutic options for relapsed hairy cell leukemia. Leuk Lymphoma. 2015;56(8):2264–72. doi: 10.3109/10428194.2014.1001988.
  19. Sarvaria A, Topp Z, Saven A. Current therapy and new directions in the treatment of hairy cell leukemia: a review. JAMA Oncol. 2016;2(1):123–9. doi: 10.1001/jamaoncol.2015.4134.
  20. Dearden CE, Else M, Catovsky D. Long-term results for pentostatin and cladribine treatment of hairy cell leukemia. Leuk Lymphoma. 2011;52(Suppl 2):21–4. doi: 10.3109/10428194.2011.565093.
  21. Goodman GR, Burian C, Koziol JA, Saven A. Extended follow-up of patients with hairy cell leukemia after treatment with cladribine. J Clin Oncol. 2003;21(5):891–6. doi: 10.1200/JCO.2003.05.093.
  22. Tadmor T. Purine Analog Toxicity in Patients With Hairy Cell Leukemia. Leuk Lymphoma. 2011;52(Suppl 2):38–42. doi: 10.3109/10428194.2011.565097.
  23. Epperla N, Pavilack M, Olufade T, et al. Adverse event rates and economic burden associated with purine nucleoside analogs in patients with hairy cell leukemia: a US population-retrospective claims analysis. Orphanet J of Rare Dis. 2020;15(1):47. doi: 10.1186/s13023-020-1325-9.
  24. Dasanu CA, Ichim TE, Alexandrescu DT. Inherent and iatrogenic immune defects in hairy cell leukemia: revisited. Expert Opin Drug Saf. 2010;9(1):55–9. doi: 10.1517/14740330903427951.
  25. Golomb HM, Hadad LJ. Infectious complications in 127 patients with hairy cell leukemia. Am J Hematol 1984;16(4):393–401. doi: 10.1002/ajh.2830160410.
  26. Kraut E. Infectious complications in hairy cell leukemia. Leuk Lymphoma. 2011;52(Suppl 2):50–2. doi: 10.3109/10428194.2011.570819.
  27. Damaj G, Kuhnowski F, Marolleau JP, et al. Risk factors for severe infections in patients with hairy cell leukemia: a long-term study of patients. Eur J Haematol. 2009;83(3):246–50. doi: 10.1111/j.1600-0609.2009.01259.x.
  28. Аль-Ради Л.С., Моисеева Т.Н., Смирнова С.Ю., Шмаков Р.Г. Волосатоклеточный лейкоз и беременность. Терапевтический архив. 2017;89(7):99–104.
    [Al’-Radi LS, Moiseeva TN, Smirnova SYu, Shmakov RG. Hairy cell leukemia and pregnancy. Terapevticheskii arkhiv. 2017;89(7):99–104. (In Russ)]
  29. Волкова М.А. Волосатоклеточный лейкоз. В кн.: Клиническая онкогематология. Руководство для врачей, 2-е изд. Под ред. М.А. Волковой. М.: Медицина, 2007. С. 819–34.
    [Volkova MA. Hairy cell leukemia. In: Volkova MA, ed. Klinicheskaya onkogematologiya. Rukovodstvo dlya vrachei. (Clinical oncohematology. A physician’s manual.) 2nd edition. Moscow: Meditsina Publ.; 2007. pр. 819–34. (In Russ)]
  30. Bohn JP, Gastl G, Steurer M. Long-term treatment of hairy cell leukemia with interferon-α: still a viable therapeutic option. MEMO. 2016;9:63–5. doi: 10.1007/s12254-016-0269-1.
  31. Аль-Ради Л.С., Пивник А.В. Особенности течения и современная тактика терапии волосатоклеточного лейкоза. Клиническая онкогематология. 2009;2(2):111–20.
    [Al’-Radi LS, Pivnik AV. Clinical features and current strategy of hairy cell leukemia treatment. Klinicheskaya onkogematologiya. 2009;2(2):111–20. (In Russ)]
  32. Thompson J, Tallman MS, Pulliack A. Past and present role of interferon in hairy cell leukemia. In: Tallmlan MS, Pulliack A, eds. Advances in Blood Disorders. Vol. 5. UK: Harwood academic Publishers; 2000. рр. 127–39.
  33. Скопец А.А., Корнилов И.А., Афонин Е.С. Роль экстракорпоральной мембранной оксигенации в терапии легионеллезной пневмонии у пациентки с волосатоклеточным лейкозом. Инновационная медицина Кубани. 2019;(3):44–8. doi: 10.35401/2500-0268-2019-15-3-44-48.
    [Skopets AA, Kornilov IA, Afonin ES. Importance of extracorporeal membrane oxygenation (ECMO) in therapy for legionella pneumonia in patient with hairy-cell leucosis. Innovative Medicine of Kuban. 2019;(3):44–8. doi: 10.35401/2500-0268-2019-15-3-44-48. (In Russ)]
  34. Галстян Г.М., Баженов А.В., Данишян К.И. и др. Роль спленэктомии в лечении острой дыхательной недостаточности у больной волосатоклеточным лейкозом. Гематология и трансфузиология. 2017;62(1):51–4.
    [Galstyan GM, Bazhenov AV, Danishyan KI, et al. The role of splenectomy in the treatment of acute respiratory distress in a female patient with hairy cell leukemia. Gematologiya i transfuziologiya. 2017;62(1):51–4. (In Russ)]
  35. Smirnova SY, Al-Radi LS, Moiseeva TN, et al. Inhibitor of BRAF(V600E) mutation as a treatment option for hairy cell leukemia with deep neutropenia and infectious complications. Clin Lymphoma Myeloma Leuk. 2021;21(7):427–30. doi: 10.1016/j.clml.2021.02.005
  36. Tiacci E, Park JH, De Carolis L, et al. Targeting Mutant BRAF in Relapsed or Refractory Hairy-Cell Leukemia. N Engl J Med. 2015;373(18):1733–47. doi: 10.1056/NEJMoa1506583.
  37. Tiacci E, De Carolis L, Simonetti E, et al. Vemurafenib plus Rituximab in Refractory or Relapsed Hairy-Cell Leukemia. N Engl J Med. 2021;384(19):1810–23. doi: 10.1056/NEJMoa2031298.
  38. Bohn JP, Pircher A, Wanner D, et al. Low-dose Vemurafenib in hairy cell leukemia patients with active infection. Am J Hematol. 2019;94(6):E180–E182. doi: 10.1002/ajh.25474.
  39. Shenoi DP, Andritsos AL, Blachly JS. Classic hairy cell leukemia complicated by pancytopenia and severe infection: a report of 3 cases treated with vemurafenib. Blood Adv. 2019;3(2):116–8. doi: 10.1182/bloodadvances.2018027466.
  40. Dietrich S, Hullein S, Hundemer M, et al. Continued response off treatment after BRAF inhibition in refractory hairy cell leukemia. J Clin Oncol. 2013;31(19):e300–e303. doi: 10.1200/JCO.2012.45.9495.
  41. Robert C, Arnault JP, Mateus C. RAF inhibition and induction of cutaneous squamous cell carcinoma. Curr Opin Oncol. 2011;23(2):177–82. doi: 10.1097/CCO.0b013e3283436e8c.
  42. Zimmer L, Hillen U, Livingstone E, et al. Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. J Clin Oncol. 2012;30(19):2375–83. doi: 10.1200/JCO.2011.41.1660.

Production of CD87 Antigen-Specific CAR-T Lymphocytes and Assessment of Their In Vitro Functional Activity

MV Neklesova, SV Smirnov, AA Shatilova, KA Levchuk, AE Ershova, SA Silonov

Center for Personalized Medicine, VA Almazov National Medical Research Center, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341

For correspondence: Sergei Vladimirovich Smirnov, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341; Tel.: +7(964)612-57-14; e-mail: sergeiismirnoff@gmail.com

For citation: Neklesova MV, Smirnov SV, Shatilova AA, et al. Production of CD87 Antigen-Specific CAR-T Lymphocytes and Assessment of Their In Vitro Functional Activity. Clinical oncohematology. 2022;15(4):340–8. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-340-348


ABSTRACT

Aim. To generate anti-CD87 CAR-T lymphocytes and to assess their in vitro functional activity.

Materials & Methods. Т-lymphocytes isolated from healthy donor peripheral blood were transduced with the anti-CD87-CAR, T2A, and FusionRed gene coding lentiviral vector. Transduction efficacy assessed by reporter protein FusionRed signal, subpopulation structure, and functional status of CAR-T lymphocytes were determined by flow cytometry. Interferon-γ (IFN-γ) expression by CAR-T lymphocytes was analyzed using immunoassay. Cytotoxic activity of CAR-T lymphocytes was evaluated during their co-cultivation with HeLa target cells by means of xCELLigence real-time assay.

Results. The efficacy of T-lymphocyte transduction was 8.4 %. The obtained CAR-T cells contained the markers of both CD27 and/or CD28 activation (92.91 % cases) and PD1 exhaustion (20.66 % cases). The population of CAR-T lymphocytes showed 98.51 % central memory T-cell phenotype and CD4/CD8 ratio of 1:7. IFN-γ concentration in the medium after co-cultivation of CAR-T lymphocytes with target cells appeared to be significantly higher than in control samples. The study demonstrates that generated CAR-T lymphocytes manifest specific cytotoxicity towards target cells with both unmodified expression and overexpression of CD87 antigen in HeLa cell lines. Cytotoxicity proved to be more pronounced with respect to the cell line with CD87 antigen overexpression.

Conclusion. Despite overexpression of PD1 exhaustion marker, CAR-T lymphocytes showed specific IFN-γ secretion and pronounced cytotoxic activity in interaction with CD87 antigen on target cell membranes. Therefore, anti-CD87 CAR-T lymphocytes can be applied in the treatment of hematologic as well as solid tumors. Since the observed difference in cytotoxicity does not linearly correlate with CD87 antigen density on the surface of attacked cells, the in vivo administration of a CAR-T cell drug should be designed to prevent cytotoxic risk for CD87-expressing healthy cells.

Keywords: CD87, uPAR, CAR-T lymphocytes, acute myeloid leukemias.

Received: June 27, 2022

Accepted: September 10, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Stoppelli MP, Corti A, Soffientini A, et al. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA. 1985;82(15):4939–43. doi: 10.1073/pnas.82.15.4939.
  2. Behrendt N, Ronne E, Dano K. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe Seyler. 1995;376(5):269–79.
  3. Кугаевская Е.В., Гуреева Т.А., Тимошенко О.С., Соловьева Н.И. Система активатора плазминогена урокиназного типа в норме и при жизнеугрожающих процессах (обзор). Общая реаниматология. 2018;14(6):61–79. doi: 10.15360/1813-9779-2018-6-61-79.
    [Kugaevskaya EV, Gureeva TA, Timoshenko OS, Solovyeva NI. Urokinase-type plasminogen activator system in norm and in life-threatening processes (Review). General Reanimatology. 2018;14(6):61–79. doi: 10.15360/1813-9779-2018-6-61-79. (In Russ)]
  4. Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front Oncol. 2018;8(2):8–24. doi: 10.3389/fonc.2018.00024.
  5. Alfano D, Gorrasi A, Li Santi A, et al. Urokinase receptor and CXCR4 are regulated by common microRNAs in leukaemia cells. J Cell Mol Med. 2015;19(9):2262–72. doi: 10.1111/jcmm.12617.
  6. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11(1):23–36. doi: 10.1038/nrm2821.
  7. Gorantla B, Asuthkar S, Rao JS, et al. Suppression of the uPAR-uPA system retards angiogenesis, invasion, and in vivo tumor development in pancreatic cancer cells. Mol Cancer Res. 2011;9(4):377–89. doi: 10.1158/1541-7786.MCR-10-0452.
  8. Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127–32. doi: 10.1038/s41586-020-2403-9.
  9. Kusch A, Gulba D. Die Bedeutung des uPA/uPAR-Systems fur die Entwicklung von Arteriosklerose und Restenose. Z Kardiol. 2001;90(1):307–18. doi: 10.1007/s003920170160.
  10. Laurenzana A, Chilla A, Luciani C, et al. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells. Int J Cancer. 2017;141(6):1190–200. doi: 10.1002/ijc.30817.
  11. Ahmad A, Kong D, Sarkar SH, et al. Inactivation of uPA and its receptor uPAR by 3,3’-diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. J Cell Biochem. 2009;107(3):516–27. doi: 10.1002/jcb.22152.
  12. Fox SB, Taylor M, Grondahl-Hansen J, et al. Plasminogen activator inhibitor-1 as a measure of vascular remodelling in breast cancer. J Pathol. 2001;195(2):236–43. doi: 10.1002/path.931.
  13. Fisher JL, Field CL, Zhou H, et al. Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases – a comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Res Treat. 2000;61(1):1–12. doi: 10.1007/s10549-004-6659-9.
  14. Pierga JY, Bonneton C, Magdelenat H, et al. Real-time quantitative PCR determination of urokinase-type plasminogen activator receptor (uPAR) expression of isolated micrometastatic cells from bone marrow of breast cancer patients. Int J Cancer. 2005;114(2):291–8. doi: 10.1002/ijc.20698.
  15. Hildenbrand R, Schaaf A, Dorn-Beineke A, et al. Tumor stroma is the predominant uPA-, uPAR-, PAI-1-expressing tissue in human breast cancer: prognostic impact. Histol Histopathol. 2009;24(7):869–77. doi: 10.14670/HH-24.869.
  16. Boonstra MC, Verbeek FP, Mazar AP, et al. Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study. BMC Cancer. 2014;14:269. doi: 10.1186/1471-2407-14-269.
  17. Graf M, Reif S, Hecht K, et al. High expression of urokinase plasminogen activator receptor (UPA-R) in acute myeloid leukemia (AML) is associated with worse prognosis. Am J Hematol. 2005;79(1):26–35. doi: 10.1002/ajh.20337.
  18. Plesner T, Ralfkiaer E, Wittrup M, et al. Expression of the receptor for urokinase-type plasminogen activator in normal and neoplastic blood cells and hematopoietic tissue. Am J Clin Pathol. 1994;102(6):835–41. doi: 10.1093/ajcp/102.6.835.
  19. Bene MC, Castoldi G, Knapp W, et al. CD87 (urokinase-type plasminogen activator receptor), function and pathology in hematological disorders: a review. Leukemia. 2004;18(3):394–400. doi: 10.1038/sj.leu.2403250.
  20. Cummins KD, Gill S. Will CAR T cell therapy have a role in AML? Promises and pitfalls. Semin Hematol. 2019;56(2):155–63. doi: 10.1053/j.seminhematol.2018.08.008.
  21. Kramer MD, Spring H, Todd RF, et al. Urokinase-type plasminogen activator enhances invasion of human T cells (Jurkat) into a fibrin matrix. J Leukoc Biol. 1994;56(2):110–6. doi: 10.1002/jlb.56.2.110.
  22. Bianchi E, Ferrero E, Fazioli F, et al. Integrin-dependent induction of functional urokinase receptors in primary T lymphocytes. J Clin Invest. 1996;98(5):1133–41. doi: 10.1172/JCI118896.
  23. Xu Y, Zhang M, Ramos CA, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9. doi: 10.1182/blood-2014-01-552174.
  24. Sommermeyer D, Hudecek M, Kosasih PL, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500. doi: 10.1038/leu.2015.247.
  25. Baumeister SH, Murad J, Werner L, et al. Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunol Res. 2019;7(1):100–12. doi: 10.1158/2326-6066.CIR-18-0307.
  26. Barber A, Meehan KR, Sentman CL. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther. 2011;18(5):509–16. doi: 10.1038/gt.2010.174.
  27. Roybal KT, Rupp LJ, Morsut L, et al. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell. 2016;164(4):770–9. doi: 10.1016/j.cell.2016.01.011.
  28. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–47. doi: 10.1038/nrc1367.
  29. Kosti P, Larios-Martinez KI, Maher J, Arnold JN. Generation of hypoxia-sensing chimeric antigen receptor T cells. STAR Protoc. 2021;2(3):100723. doi: 10.1016/j.xpro.2021.100723.

Experimental Study of the In Vitro and In Vivo Functional Activity of NKG2D Chimeric Antigen Receptor

KA Levchuk1, SA Osipova1, AV Onopchenko1, ML Vasyutina1, ER Bulatov2, AKh Valiullina2, ON Demidov1,3,4, AV Petukhov1

1 VA Almazov National Medical Research Center, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341

2 Kazan (Privolzhsky) Federal University, 18 Kremlevskaya ul., Kazan, Russian Federation, 420008

3 Institute of Cytology, 4 Tikhoretskii pr-t, Saint Petersburg, Russian Federation, 194064

4 Sirius University of Science and Technology, 1 Olimpiiskii pr-t, Sochi, Russian Federation, 354340

For correspondence: Kseniya Aleksandrovna Levchuk, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341; e-mail: levchuk_ka@almazovcentre.ru

For citation: Levchuk KA, Osipova SA, Onopchenko AV, et al. Experimental Study of the In Vitro and In Vivo Functional Activity of NKG2D Chimeric Antigen Receptor. Clinical oncohematology. 2022;15(4):327–39. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-327-339


ABSTRACT

Aim. To study antitumor cytotoxic effect of CAR-T NKG2D and CAR-T anti-CD19 in vitro and in vivo in order to compare antitumor activity of chimeric antigen receptors (CAR) with different structural and functional properties.

Materials & Methods. CAR constructions were produced by molecular cloning. CAR-T cell populations were obtained by transduction of healthy donor T-lymphocytes with recombinant lentiviral particles coding CAR NKG2D or CD19 target antigen CAR sequences. CAR-T cell proportion was assessed by FusionRed fluorescence and EGFR membrane receptor imaging. Specific in vitro cytotoxic activity of CAR-T effector cells was analyzed by Real-Time Cytotoxicity Assay (RTCA) during co-cultivation with HeLa_CD19 target cell line using xCELLigence. Interferon-γ (IFN-γ) synthesis in vitro and in vivo along with the degree of cytotoxic effect were analyzed by immunoassay of culture medium of co-cultivated effector cells and target cells as well as isolated auto-plasma from the peripheral blood of mice. To assess the in vivo functional activity, CAR-T cell populations were infused into immunodeficient NSG-SGM3 mice (10 000 000 cells/mouse) 12 days after HeLa_CD19 cell injection and confirmation of engraftment and tumor growth. Upon euthanasia, tumors were removed and fixed in paraffin to prepare histological sections. CAR-T cell tumor infiltration was assessed by CD3 antigen immunohistochemical staining.

Results. The highest ligand (molecules MICA, ULBP1/2/3/4/5/6) expression levels were detected in HeLa cell line. The obtained NKG2D CAR-T cells showed a considerable cytotoxic activity against HeLa_CD19 target line (cell index [CI] = 1.27), which was, however, twice as low as that of CAR-T anti-CD19 (CI = 0.60) (= 0.0038). IFN-γ level during co-cultivation of CAR-T anti-CD19 with HeLa_CD19 at the ratio of Е/Т = 1:1 was 64,852 pcg/mL, which was 3.5 times higher than IFN-γ level during co-cultivation of CAR-T NKG2D with HeLa_CD19 (18,635 pcg/mL) (= 0.0360). The degree of tumor infiltration by CAR-T anti-CD19 cells was higher than that by CAR-T NKG2D. The absence of NKG2D proliferating CAR-T cells in mice peripheral blood confirms their low persistence. IFN-γ concentration in mice auto-plasma was 11.89 pcg/mL after CAR-T anti-CD19 infusion and 0.57 pcg/mL after CAR-T NKG2D infusion (= 0.0079). The mean weight of tumor xenografts in experimental groups 10 days after CAR-T anti-CD19 injection was 0.72 g (= 0.0142), after Т-lymphocyte and NKG2D CAR-T cell infusions it was 2.12 g and 1.2 g, respectively.

Conclusion. CAR-T anti-CD19 cells are characterized by more pronounced cytotoxic effect under both in vitro and in vivo experimental conditions compared with CAR-T NKG2D cells. The degree of CAR-T anti-CD19 proliferation and their infiltration in mice xenograft models is considerably higher than the levels reached with NKG2D CAR-T cell injections. A single CAR-T NKG2D injection results only in short-term tumor reduction.

Keywords: CAR-T cell therapy, NKG2D chimeric antigen receptor, co-stimulatory domains, NKG2D ligands, cytotoxic effect, CAR-T infiltration, CAR-T persistence.

Received: June 27, 2022

Accepted: September 12, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Saez-Borderias A, Guma M, Angulo A, et al. Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur J Immunol. 2006;36(12):3198–206. doi: 10.1002/eji.200636682.
  2. Allez M, Tieng V, Nakazawa A, et al. CD4+NKG2D+ T cells in Crohn’s disease mediate inflammatory and cyto-toxic responses through MICA interactions. Gastroenterology. 2007;132(7):2346–58. doi: 10.1053/j.gastro.2007.03.025.
  3. Dai Z, Turtle CJ, Booth GC, et al. Normally occurring NKG2D+CD4+ T cells are immunosuppressive and inversely correlated with disease activity in juvenile-onset lupus. J Exp Med. 2009;206(4):793–805. doi: 10.1084/jem.20081648.
  4. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3(10):781–90. doi: 10.1038/nri1199.
  5. Le Bert N, Gasser S. Advances in NKG2D ligand recognition and responses by NK cells. Immunol Cell Biol. 2014;92(3):230–6. doi: 10.1038/icb.2013.111.
  6. Rabinovich B, Li J, Wolfson M, et al. NKG2D splice variants: a reexamination of adaptor molecule associations. Immunogenetics. 2006;58(2–3):81–8. doi: 10.1007/s00251-005-0078-x.
  7. Lanier LL. DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev. 2009;227(1):150–60. doi: 10.1111/j.1600-065X.2008.00720.x.
  8. Raulet DH, Gasser S, Gowen BG, et al. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31(1):413–41. doi: 10.1146/annurev-immunol-032712-095951.
  9. Luo QZ, Lin L, Gong Z, et al. Positive association of major histocompatibility complex class I chain-related gene A polymorphism with leukemia susceptibility in the people of Han nationality of Southern China. Tissue Antigens. 2011;78(3):178–84. doi: 10.1111/j.1399-0039.2011.01748.x.
  10. Kim H, Byun JE, Yoon SR, et al. SARS-CoV-2 peptides bind to NKG2D and increase NK cell activity. Cell Immunol. 2022;371:104454. doi: 10.1016/j.cellimm.2021.104454.
  11. Farzad F, Yaghoubi N, Jabbari-Azad F, et al. Prognostic Value of Serum MICA Levels as a Marker of Severity in COVID-19 Patients. Immunol Invest. 2022:1–11. doi: 10.1080/08820139.2022.2069035.
  12. Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2(3):255–60. doi: 10.1038/85321.
  13. Ehrlich LI, Ogasawara K, Hamerman JA, et al. Engagement of NKG2D by cognate ligand or antibody alone is insufficient to mediate costimulation of human and mouse CD8+ T cells. J Immunol. 2005;174(4):1922–31. doi: 10.4049/jimmunol.174.4.1922.
  14. O’Hayre M, Salanga CL, Handel TM, Allen SJ. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J. 2008;409(3):635–49. doi: 10.1042/BJ20071493.
  15. Zhang T, Lemoi BA, Sentman CL. Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood. 2005;106(5):1544–51. doi: 10.1182/blood-2004-11-4365.
  16. Zhang T, Barber A, Sentman CL. Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res. 2006;66(11):5927–33. doi: 10.1158/0008-5472.CAN-06-0130.
  17. Chang YH, Connolly J, Shimasaki N, et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013;73(6):1777–86. doi: 10.1158/0008-5472.CAN-12-3558.
  18. Song DG, Ye Q, Santoro S, et al. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum Gene Ther. 2013;24(3):295–305. doi: 10.1089/hum.2012.143.
  19. Lehner M, Gotz G, Proff J, et al. Redirecting T cells to Ewing’s sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS One. 2012;7(2):e31210. doi: 10.1371/journal.pone.0031210.
  20. Sentman CL, Meehan KR. NKG2D CARs as cell therapy for cancer. Cancer J. 2014;20(2):156–9. doi: 10.1097/PPO.0000000000000029.
  21. Barber A, Zhang T, DeMars LR, et al. Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. Cancer Res. 2007;67(10):5003–8. doi: 10.1158/0008-5472.CAN-06-4047.
  22. Chang YH, Connolly J, Shimasaki N, et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013;73(6):1777–86. doi: 10.1158/0008-5472.CAN-12-3558.
  23. Barber A, Meehan KR, Sentman CL. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther. 2011;18(5):509–16. doi: 10.1038/gt.2010.174.
  24. Smith AJ, Oertle J, Warren D, Prato D. Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: Summary and perspective. J Cell Immunother. 2016;2(2):59–68. doi: 10.1016/j.jocit.2016.08.001.
  25. Ng YY, Tay JCK, Li Z, et al. T Cells Expressing NKG2D CAR with a DAP12 Signaling Domain Stimulate Lower Cytokine Production While Effective in Tumor Eradication. Mol Ther. 2021;29(1):75–85. doi: 10.1016/j.ymthe.2020.08.016.
  26. Fontaine M, Demoulin B, Bornschein S, et al. Next generation NKG2D-based CAR T-cells (CYAD-02): co-expression of a single shRNA targeting MICA and MICB improves cell persistence and anti-tumor efficacy in vivo. Blood. 2019;134(Suppl_1):3931. doi: 10.1182/blood-2019-129998.
  27. Breman E, Demoulin B, Agaugue S, et al. Overcoming Target Driven Fratricide for T Cell Therapy. Front Immunol. 2018;9:2940. doi: 10.3389/fimmu.2018.02940.

A Current View on Pathogenesis, Diagnosis, and Treatment of Some Rare Acute Leukemia Variants

OYu Baranova, AD Shirin

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Olga Yurevna Baranova, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(925)837-27-08; e-mail: baranova-crc@mail.ru

For citation: Baranova OYu, Shirin AD. A Current View on Pathogenesis, Diagnosis, and Treatment of Some Rare Acute Leukemia Variants. Clinical oncohematology. 2022;15(4):307–26. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-307-326


ABSTRACT

Fundamental discoveries in immunobiology of normal hematopoiesis, emerging views on malignant growth mechanisms together with further improvement of diagnostic capabilities led to a crucial change in perception of leukemiology as one of separate important areas of modern clinical oncohematology. The now available detailed molecular genetic classification of acute leukemias is being complemented by new disease variants. New categories of acute leukemias and progenitor cell tumors have been identified. Nevertheless, many issues related to pathogenesis and classification of some variants of this heterogeneous disease remain unsolved and require further study. The present review provides thorough analysis of some rare variants of acute leukemias which are particularly challenging in terms of pathogenesis, diagnosis, and choice of treatment.

Keywords: rare acute leukemia variants, blastic plasmacytoid dendritic cell neoplasm, early T-cell precursor acute lymphoblastic leukemia, acute leukemias of indeterminate lineage, pure erythroid leukemia, lineage switch.

Received: June 2, 2022

Accepted: September 1, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Воробьев А.И., Дризе Н.И., Чертков И.Л. Схема кроветворения: 2005. Терапевтический архив. 2006;78(7):5–12.
    [Vorob’ev AI, Drize NI, Chertkov IL. Diagram of hematopoiesis: 2005. Terapevticheskii arkhiv. 2006;78(7):5–12. (In Russ)]
  2. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16(1):395–419. doi: 10.1146/annurev.immunol.16.1.395.
  3. Ashkenazi A, Dixit VM. Death Receptors: Signaling and Modulation. Science. 1998;281(5381):1305–8. doi: 10.1126/science.281.5381.1305.
  4. Domen J, Weissman I. Hematopoietic Stem Cells Need Two Signals to Prevent Apoptosis; Bcl-2 Can Provide One of These, Kitl/C-KIT Signaling the Other. J Exp Med. 2000;192(12):1707–18. doi: 1084/jem.192.12.1707.
  5. Akashi K, He X, Chen J, et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood. 2003;101(2):383–9. doi: 10.1182/blood-2002-06-1780.
  6. Фрадкин В. Перепрограммирование живых клеток: новые успехи [электронный документ]. Доступно по: https://www.dw.com/ru/%D0%BF%D0%B5%D1%80%D0%B5%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5-%D0%B6%D0%B8%D0%B2%D1%8B%D1%85-%D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D0%BA-%D0%BD%D0%BE%D0%B2%D1%8B%D0%B5-%D1%83%D1%81%D0%BF%D0%B5%D1%85%D0%B8/a-15194138. Ссылка активна на 02.06.2022.
    [Fradkin V. Reprogramming of living cells: new achievements (Internet). Available from: https://www.dw.com/ru/%D0%BF%D0%B5%D1%80%D0%B5%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5-%D0%B6%D0%B8%D0%B2%D1%8B%D1%85-%D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D0%BA-%D0%BD%D0%BE%D0%B2%D1%8B%D0%B5-%D1%83%D1%81%D0%BF%D0%B5%D1%85%D0%B8/a-15194138. Accessed 06.2022. (In Russ)]
  7. Копнин Б.П. Современные представления о механизмах злокачественного роста: сходства и различия солидных опухолей и лейкозов. Клиническая онкогематология. 2012;5(3):165–83.
    [Kopnin BP. Modern concepts of the mechanisms of tumor growth: similarities and differences between solid tumors and leukemia. Klinicheskaya onkogematologiya. 2012;5(3):165–83. (In Russ)]
  8. Киселевский М.В., Самойленко И.В., Жаркова О.В. и др. Прогностические биомаркеры эффективности иммунотерапии злокачественных новообразований ингибиторами контрольных точек иммунного ответа. Российский журнал детской гематологии и онкологии. 2021;8(2):73–83. doi: 10.21682/2311-1267-2021-8-2-73-83.
    [Kiselevskii MV, Samoilenko IV, Zharkova OV, et al. Predictive biomarkers of inhibitors immune checkpoints therapy in malignant tumors. Russian Journal of Pediatric Hematology and Oncology. 2021;8(2):73–83. doi: 10.21682/2311-1267-2021-8-2-73-83. (In Russ)]
  9. Voelkerding KV, Dames SA, Durtschi JD. Next-generation Sequencing: From Basic Research to Diagnostics. Clin Chem. 2009;55(4):641–8. doi: 10.1373/clinchem.2008.112789.
  10. Ansorge WJ. Next-generation DNA sequencing techniques. New Biotechnol. 2009;25(4):195–203. doi: 10.1016/j.nbt.2008.12.009.
  11. Kchouk M, Gibrat JF, Elloumi M. Generations of Sequencing Technologies: From First to Next Generation. Biol Med. 2017;9(03). doi: 10.4172/0974-8369.1000395.
  12. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. doi: 10.1056/NEJMoa1516192.
  13. Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol. 2011;136(4):527–39. doi: 10.1309/ajcpr1svt1vhugxw.
  14. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the Classification of the Acute Leukaemias. Br J Haematol. 1976;33(4):451–8. doi: 10.1111/j.1365-2141.1976.tb03563.x.
  15. Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103(4):620–5. doi: 10.7326/0003-4819-103-4-620.
  16. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51(2):189–99. doi: 10.1111/j.1365-2141.1982.tb02771.x.
  17. Bennett JM, Catovsky D, Daniel MT, et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-M0). Br J Haematol. 1991;78(3):325–9. doi: 10.1111/j.1365-2141.1991.tb04444.x.
  18. Jaffe ES, Harris NL, Stein H, et al, eds. Pathology and Genetics: Tumours of Haematopoietic and Lymphoid Tissues (WHO Classification of Tumours). Lyon: IARC Press; 2001.
  19. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. 4th edition. Lyon: WHO Press; 2008.
  20. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press;
  21. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56. doi: 10.1016/S1470-2045(08)70314-0.
  22. Neumann M, Heesch S, Schlee C, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121(23):4749–52. doi: 10.1182/blood-2012-11-465138.
  23. Neumann M, Coskun E, Fransecky L, et al. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors. PLoS One. 2013;8(1):e53190. doi: 10.1371/journal.pone.0053190.
  24. Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63. doi: 10.1038/nature10725.
  25. Di Guglielmo G. Le Maltase Eritremiche Ed Eritroleucemiche. II Pensiero Scientifico. Haematologica. 1928;9:301–47.
  26. Boddu P, Benton CB, Wang W, et al. Erythroleukemia – Historical perspectives and recent advances in diagnosis and management. Blood Rev. 2018;32(2):96–105. doi: 10.1016/j.blre.2017.09.002.
  27. Liu W, Hasserjian RP, Hu Y, et al. Pure erythroid leukemia: a reassessment of the entity using the 2008 World Health Organization classification. Mod Pathol. 2010;24(3):375–83. doi: 10.1038/modpathol.2010.194.
  28. Grossmann V, Bacher U, Haferlach C, et al. Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics. Leukemia. 2013;27(9):1940–3. doi: 10.1038/leu.2013.144.
  29. Lessard M, Struski S, Leymarie V, et al. Cytogenetic study of 75 erythroleukemias. Cancer Genet Cytogenet. 2005;163(2):113–22. doi: 10.1016/j.cancergencyto.2005.05.006.
  30. Guillermo M, Benton C, Wang S, et al. More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood. 2017;129(18):2584–7. doi: 10.1182/blood-2016-11-749903.
  31. Almeida A, Prebet T, Itzykson R, et al. Clinical Outcomes of 217 Patients with Acute Erythroleukemia According to Treatment Type and Line: A Retrospective Multinational Study. Int J Mol Sci. 2017;18(4):837. doi: 10.3390/ijms18040837.
  32. Taylor J, Kim SS, Stevenson KE, et al. Loss-Of-Function Mutations In The Splicing Factor ZRSR2 Are Common In Blastic Plasmacytoid Dendritic Cell Neoplasm and Have Male Predominance. Blood. 2013;122(21):741. doi: 10.1182/blood.v122.21.741.741.
  33. Voelkl A, Flaig M, Roehnisch T, et al. Blastic plasmacytoid dendritic cell neoplasm with acute myeloid leukemia successfully treated to a remission currently of 26 months duration. Leuk Res. 2011;35(6):61–3. doi: 10.1016/j.leukres.2010.11.019.
  34. Facchetti F, Wolf-Peeters CD, Kennes C, et al. Leukemia-associated lymph node infiltrates of plasmacytoid monocytes (so-called plasmacytoid T-cells). Evidence for two distinct histological and immunophenotypical patterns. Am J Surg Pathol. 1990;14(2):101–12. doi: 10.1097/00000478-199002000-00001.
  35. Fitzgerald-Bocarsly P. Human natural interferon-alpha producing cells. Pharmacol Ther. 1993;60(1):39–62. doi: 10.1016/0163-7258(93)90021-5.
  36. Liu Y-J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors Annu Rev Immunol. 2005;23(1):275–306. doi: 10.1146/annurev.immunol.23.021704.115633.
  37. Colonna M, Trinchieri G, Liu Y-J. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5(12):1219–26. doi: 10.1038/ni1141.
  38. Gill MА, Bajwa G, George TA, et al. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol. 2010;184(11):5999–6006. doi: 10.4049/jimmunol.0901194.
  39. Shi Y, Wang E. Blastic Plasmacytoid Dendritic Cell Neoplasm: A Clinicopathologic Review. Arch Pathol Lab Med. 2014;138(4):564–9. doi: 10.5858/ 2013–0101-rs.
  40. Zheng YY, Chen G, Zhou XG, et al. Retrospective analysis of 4 cases of the so-called blastic NK-cell lymphoma, with reference to the 2008 WHO classification of tumors of haematopoietic and lymphoid tissues. Zhonghua Bing Li Xue Za Zhi. 2010;39(9):600–5.
  41. Takiuchi Y, Maruoka H, Aoki K, et al. Leukemic manifestation of blastic plasmacytoid dendritic cell neoplasm lacking skin lesion: a borderline case between acute monocytic leukemia. J Clin Exp Hematopathol. 2012;52(2):107–11. doi: 10.3960/jslrt.52.107.
  42. Petrella T, Comeau MR, Maynadie M, et al. Agranular CD4+ CD56+ hematodermic neoplasm’ (blastic NK-cell lymphoma) originates from a population of CD56+ precursor cells related to plasmacytoid monocytes. Am J Surg Pathol. 2002;26(7):852–62. doi: 10.1097/00000478-200207000-00003.
  43. Petrella T, Bagot M, Willemze R, et al. Blastic NK-cell lymphomas (agranular CD4+CD56+ hematodermic neoplasms). Am J Clin Pathol. 2005;123(5):662–75. doi: 10.1309/gjwnpd8hu5maj837.
  44. Garnache-Ottou F, Vidal C, Biichle S, et al. How should we diagnose and treat blastic plasmacytoid dendritic cell neoplasm patients. Blood Adv. 2019;3(24):4238–51. doi: 10.1182/bloodadvances.2019000647.
  45. Lucioni M, Novara F, Fiandrino G, et al. Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion. Blood. 2011;118(17):4591–4. doi: 10.1182/blood-2011-03-337501.
  46. Dijkman R, Doorn R, Szuhai K, et al. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood. 2007;109(4):1720–7. doi: 10.1182/blood-2006-04-018143.
  47. Sapienza MR, Fuligni F, Agostinelli C, et al. Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition. Leukemia. 2014;28(8):1606–16. doi: 10.1038/leu.2014.64.
  48. Menezes J, Acquadro F, Wiseman M, et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2014;28(4):823–9. doi: 10.1038/leu.2013.283.
  49. Stenzinger A, Endris V, Pfarr N, et al. Targeted ultra-deep sequencing reveals recurrent and mutually exclusive mutations of cancer genes in blastic plasmacytoid dendritic cell neoplasm. Oncotarget. 2014;5(15):6404–13. doi: 10.18632/oncotarget.2223.
  50. Cota C, Vale E, Viana I, et al. Cutaneous manifestations of blastic plasmacytoid dendritic cell neoplasm-morphologic and phenotypic variability in a series of 33 patients. Am J Surg Pathol. 2010;34(1):75–87. doi: 10.1097/PAS.0b013e3181c5e26b.
  51. Jacob MC, Chaperot L, Mossuz P, et al. CD4+ CD56+ lineage negative malignancies: a new entity developed from malignant early plasmacytoid dendritic cells. Haematologica. 2003;88(8):941–55.
  52. Julia F, Petrella T, Beylot-Barry M, et al. Blastic plasmacytoid dendritic cell neoplasm: clinical features in 90 patients. Br J Dermatol. 2013;169(3):579–86. doi: 10.1111/bjd.12412.
  53. Pagano L, Valentini CG, Pulsoni A, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica. 2013;98(2):239–46. doi: 10.3324/haematol.2012.072645.
  54. Trottier AM, Cerquozzi S, Owen CJ. Blastic plasmacytoid dendritic cell neoplasm: challenges and future prospects. Blood Lymphat Cancer. 2017;7:85–93. doi: 10.2147/blctt.s132060.
  55. Riaz W, Zhang L, Horna P, Sokol L. Blastic plasmacytoid dendritic cell neoplasm: update on molecular biology, diagnosis, and therapy. Cancer Control. 2014;21(4):279–89. doi: 10.1177/107327481402100404.
  56. Kharfan-Dabaja MA, Lazarus HM, Nishihori T, et al. Diagnostic and therapeutic advances in blastic plasmacytoid dendritic cell neoplasm: A focus on hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19(7):1006–12. doi: 10.1016/j.bbmt.2013.01.027.
  57. Gruson B, Vaida I, Merlusca L, et al. L-asparaginase with methotrexate and dexamethasone is an effective treatment combination in blastic plasmacytoid dendritic cell neoplasm. Br J Haematol. 2013;163(4):543–5. doi: 10.1111/bjh.12523.
  58. Gilis L, Lebras L, Bouafia-Sauvy F, et al. Sequential combination of high dose methotrexate and L-asparaginase followed by allogeneic transplant: A first-line strategy for CD4+/CD56+ hematodermic neoplasm. Leuk Lymphoma. 2012;53(8):1633–7. doi: 10.3109/10428194.2012.656627.
  59. Pagano L, Valentini CG, Pulsoni A, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: An Italian multicenter study. Haematologica. 2013;98(2):239–46. doi: 10.3324/haematol.2012.072645.
  60. Tsagarakis NJ, Kentrou NA, Papadimitriou K, et al. Acute lymphoplasmacytoid dendritic cell (DC2) leukemia: Results from the Hellenic Dendritic Cell Leukemia Study Group. Leuk Res. 2010;34(4):438–46. doi: 10.1016/j.leukres.2009.09.006.
  61. Deotare U, Yee KWL, Le LW, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: 10-Color flow cytometry diagnosis and HyperCVAD therapy: BPDCN Diagnosis and Therapy. Am J Hematol. 2016;91(3):283–6. doi: 10.1002/ajh.24258.
  62. Bekkenk MW, Jansen PM, Meijer CJLM, Willemze R. CD56+ hematological neoplasms presenting in the skin: A retrospective analysis of 23 new cases and 130 cases from the literature. Ann Oncol. 2004;15(7):1097–108. doi: 10.1093/annonc/mdh268.
  63. Khwaja R, Daly A, Wong M, et al. Azacitidine in the treatment of blastic plasmacytoid dendritic cell neoplasm: A report of 3 cases. Leuk Lymphoma. 2016;57(11):2720–2. doi: 10.3109/10428194.2016.1160084.
  64. Laribi K, Denizon N, Ghnaya, H, et al. Blastic plasmacytoid dendritic cell neoplasm: The first report of two cases treated by 5-azacytidine. Eur J Haematol. 2014;93(1):81–5. doi: 10.1111/ejh.12294.
  65. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. doi: 10.1182/blood-2018-08-868752.
  66. DiNardo CD, Rausch CR, Benton C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol. 2018;93(3):401–7. doi: 10.1002/ajh.25000.
  67. Agha ME, Monaghan SA, Swerdlow SH, et al. Venetoclax in a Patient with a Blastic Plasmacytoid Dendritic-Cell Neoplasm. N Engl J Med. 2018;379(15):1479–81. doi: 10.1056/NEJMc1808354.
  68. Pemmaraju N, Lane AA, Sweet K, et al. Results of pivotal phase 2 clinical trial of tagraxofusp (sl-401) in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). HemaSphere. 2019;3(S1):481. doi: 10.1097/01.hs9.0000562548.32991.bc.
  69. Dubois SG, Etzell JE, Matthay KK, et al. Pediatric acute blastic natural killer cell leukemia. Leuk Lymphoma. 2002;43(4):901–6. doi: 10.1080/10428190290017088.
  70. Hyakuna N, Toguchi S, Higa T, et al. Childhood blastic NK cell leukemia successfully treated with L-asparaginase and allogeneic bone marrow transplantation. Pediatr Blood Cancer. 2004;42(7):631–4. doi: 10.1002/pbc.20034.
  71. Liang X, Greffe B, Garrington T, Graham DK. Precursor natural killer cell leukemia. Pediatr Blood Cancer. 2008;50(4):876–8. doi: 10.1002/pbc.21189.
  72. Matano S, Nakamura S, Nakamura S, et al. Monomorphic agranular natural killer cell lymphoma/leukemia with no Epstein-Barr virus association. Acta Haematol. 1999;101(4):206–8. doi: 10.1159/000040955.
  73. Suzuki Y, Kato S, Kohno K, et al. Clinicopathological analysis of 46 cases with CD4+ and/or CD56+ immature haematolymphoid malignancy: reappraisal of blastic plasmacytoid dendritic cell and related neoplasms. 2017;71(6):972–84. doi: 10.1111/his.13340.
  74. Khoury JD. Blastic Plasmacytoid Dendritic Cell Neoplasm. Curr Hematol Malig Rep. 2018;13(6):477–83. doi: 10.1007/s11899-018-0489-z.
  75. Julia F, Dalle S, Duru G, et al. Blastic plasmacytoid dendritic cell neoplasms: clinico-immunohistochemical correlations in a series of 91 patients. Am J Surg Pathol. 2014;38(5):673–80. doi: 10.1097/pas.0000000000000156.
  76. Massone C, Chott A, Metze D, et al. Subcutaneous, blastic natural killer (NK), NK/T-cell, and other cytotoxic lymphomas of the skin: a morphologic, immunophenotypic, and molecular study of 50 patients. Am J Surg Pathol. 2004;28(6):719–35. doi: 10.1097/01.pas.0000126719.71954.4f.
  77. Santucci M, Pimpinelli N, Massi D, et al. Cytotoxic/natural killer cell cutaneous lymphomas. Report of EORTC Cutaneous Lymphoma Task Force Workshop. Cancer. 2003;97(3):610–27. doi: 10.1002/cncr.11107.
  78. Sanchez MJ, Muench MO, Roncarolo MG, et al. Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med. 1994;180(2):569–76. doi: 10.1084/jem.180.2.569.
  79. Oshimi K. Progress in understanding and managing natural killer-cell malignancies. Br J Haematol. 2007;139(4):532–44. doi: 10.1111/j.1365-2141.2007.06835.x.
  80. Grzywacz B, Kataria N, Kataria N, et al. Natural killer-cell differentiation by myeloid progenitors. Blood. 2011;117(13):3548–58. doi: 10.1182/blood-2010-04-281394.
  81. Suzuki R, Nakamura S, Suzumiya J, et al. Blastic natural killer cell lymphoma/leukemia (CD56-positive blastic tumor). Cancer. 2005;104(5):1022–31. doi: 10.1002/cncr.21268.
  82. Sedick Q, Alotaibi S, Alshieban S, et al. Natural Killer Cell Lymphoblastic Leukaemia/Lymphoma: Case Report and Review of the Recent Literature. Case Rep Oncol. 2017;10(2):588–95. doi: 10.1159/000477843.
  83. Spits H, Lanier LL, Phillips JH. Development of human T and natural killer cells. Blood. 1995;85(10):2654–70. doi: 10.1182/blood.v85.10.2654.bloodjournal85102654.
  84. Marquez C, Trigueros C, Franco JM, et al. Identification of a common developmental pathway for thymic natural killer cells and dendritic cells. Blood. 1998;91(8):2760–71. doi: 1182/blood.v91.8.2760.2760_2760_2771.
  85. Hanna J, Gonen-Gross T, Fitchett J, et al. Novel APC-like properties of human NK cells directly regulate T cell activation. J Clin Invest. 2004;114(11):1612–23. doi: 10.1172/jci22787.
  86. Spits H, Lanier LL. Natural killer or dendritic: what’s in a name? Immunity. 2007;26(1):11–6. doi: 10.1016/j.immuni.2007.01.004.
  87. Френкель М.А., Баранова О.Ю., Антипова А.С. и др. NK-клеточный лимфобластный лейкоз/лимфома (обзор литературы и собственные наблюдения). Клиническая онкогематология. 2016;9(2):208–17. doi: 10.21320/2500-2139-2016-9-2-208-217.
    [Frenkel’ MA, Baranova OYu, Antipova AS, et al. NK-Cell Lymphoblastic Leukemia/Lymphoma (Literature Review and Authors’ Experience). Clinical oncohematology. 2016;9(2):208–17. doi: 10.21320/2500-2139-2016-9-2-208-217. (In Russ)]
  88. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56. doi: 10.1016/S1470-2045(08)70314-0.
  89. Inukai T, Kiyokawa N, Campana D, et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children’s Cancer Study Group Study L99-15. Br J Haematol 2012;156(3):358–65. doi: 10.1111/j.1365-2141.2011.08955.x.
  90. Wood B, Winter S, Dunsmore K, et al. Patients with early T-сell precursor (ETP) acute lymphoblastic leukemia (ALL) have high levels of minimal residual disease (MRD) at the of induction-A Children’s Oncology Group (COG) Study. Blood. 2009;114(22):9. doi: 10.1182/blood.v114.22.9.9.
  91. Sin C-F, Man PM. Early T-Cell Precursor Acute Lymphoblastic Leukemia: Diagnosis, Updates in Molecular Pathogenesis, Management, and Novel Therapies. Front Oncol. 2021;11:750789. doi: 10.3389/fonc.2021.750789.
  92. Neumann M, Coskun E, Fransecky L, et al. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors. PLoS One. 2013;8(1):e53190. doi: 10.1371/journal.pone.0053190.
  93. Neumann M, Heesch S, Schlee C, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121(23):4749–52. doi: 10.1182/blood-2012-11-465138.
  94. Van Vlierberghe P, Ambesi-lmpiombato A, Perez-Garcia A, et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med. 2011;208(13):2571–9. doi: 10.1084/jem.20112239.
  95. Conter V, Valsecchi MG, Buldini B, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol. 2016;3(2):e80–е86. doi: 10.1016/S2352-3026(15)00254-9.
  96. Ma M, Wang X, Tang J, et al. Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia. Front Med. 2012;6(4):416–20. doi: 10.1007/s11684-012-0224-4.
  97. Wood BL, Winter SS, Dunsmore KP, et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s Oncology Group (COG) Study AALL0434. Blood. 2014;124(21):1. doi: 10.1182/blood.v124.21.1.1.
  98. Bond J, Marchand T, Touzart A, et al. An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. Haematologica. 2016;101(6):732–40. doi: 10.3324/haematol.2015.141218.
  99. McEwan A, Pitiyarachchi O, Viiala Relapsed/Refractory ETP-ALL Successfully Treated With Venetoclax and Nelarabine as a Bridge to Allogeneic Stem Cell Transplant. HemaSphere 2020;4(3):e379. doi: 10.1097/hs9.0000000000000379.
  100. Mullighan C, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. doi: 10.1056/NEJMoa0808253.
  101. Mullighan C, Zhang J, Harvey R, еt al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2009;106(23):9414–8. doi: 10.1073/pnas.0811761106.
  102. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. doi: 10.1016/S1470-2045(08)70339-5.
  103. Корзик А.В., Вшивкова О.С. BCR-ABL1-подобный острый лимфобластный лейкоз: от биологии к перспективным методам терапии. Гематология. Трансфузиология. Восточная Европа. 2021;7(3):313–27. doi: 10.34883/PI.2021.7.3.005.
    [Korzik AV, Vshyukova OS. BCR-ABL1-like acute lymphoblastic leukemia: from biology to promising therapies. Hematology. Transfusiology. Eastern Europe. 2021;7(3):313–27. doi: 10.34883/PI.2021.7.3.005. (In Russ)]
  104. Цаур Г.А., Ольшанская Ю.В., Друй А.Е. BCR-ABL1-подобный острый лимфобластный лейкоз у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019;18(1):112‒26. doi: 10.24287/1726-1708-2019-18-1-112-126.
    [Tsaur GA, Olshanskaya YuV, Druy AE. BCR-ABL1-like pediatric acute lymphoblastic leukemia. Pediatric Hematology/Oncology and Immunopathology. 2019;18(1):112–126. doi: 10.24287/1726-1708-2019-18-1-112-126. (In Russ)]
  105. Boer JM, Koenders JE, van der Holt B, et al. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL 1-like subgroup characterized by high non-response and relapse rates. Haematologica. 2015;100(7):e261–е264. doi: 10.3324/haematol.2014.117424.
  106. Boer JM, Marchante JR, Evans WE, et al. (2015). BCR-ABL 1-like cases in pediatric acute lymphoblastic leukemia: a comparison between DCOG/Erasmus MC and COG/St. Jude signatures. Haematologica. 2015;100(9):e354–е357. doi: 10.3324/haematol.2015.124941.
  107. Roberts KG, Pei D, Campana D, et al. Outcomes of children with BCR-ABL 1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012–20. doi: 10.1200/JCO.2014.55.4105.
  108. Weston BW, Hayden MA, Roberts KG, et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–е416. doi: 10.1200/JCO.2012.47.6770.
  109. Xu X-Q, Wang J-M, Lu S-Q, et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica. 2009;94(7):919–27. doi: 10.3324/haematol.2008.003202.
  110. Rubnitz JE, Onciu M, Pounds S, et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood. 2009;113(21):5083–9. doi: 10.1182/blood-2008-10-187351.
  111. Mirro J, Zipf TF, Pui HC, et al. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood. 1985;66(5):1115–23. doi: 1182/blood.v66.5.1115.bloodjournal6651115.
  112. Gale RP, Ben Bassat I. Hybrid acute leukaemia. Br J Haematol. 1987;65(3):261–4. doi: 10.1111/j.1365-2141.1987.tb06851.x.
  113. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.
  114. Catovsky D, Matutes E, Buccheri V, et al. A classification of acute leukaemia for the 1990s. Ann Hematol. 1991;62(1):16–21. doi: 10.1007/BF01714978.
  115. Bene MC, Bernier M, Casasnovas RO, et al. The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). Blood. 1998;92(2):596–9.1182/blood.v92.2.596.414k05_596_599.
  116. Manola KN. Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview. Br J Haematol. 2013;163(1):24–39. doi: 1111/bjh.12484.
  117. Matutes E, Pickl WF, Van’t Veer M, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. 2011;117(11):3163–71. doi: 10.1182/blood-2010-10-314682.
  118. Gerr H, Zimmermann M, Schrappe M, et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J 2010;149(1):84–92. doi: 10.1111/j.1365-2141.2009.08058.x.
  119. Maruffi M, Sposto R, Oberley MJ, et al. Therapy for children and adults with mixed phenotype acute leukemia: a systematic review and meta-analysis. Leukemia. 2018;32(7):1515–28. doi: 10.1038/s41375-018-0058-4.
  120. Al-Seraihy AS, Owaidah TM, Ayas M, et al. Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica. 2009;94(12):1682–90. doi: 10.3324/haematol.2009.009282.
  121. Orgel E, Alexander TB, Wood BL, et al. Mixed-phenotype acute leukemia: a cohort and consensus research strategy from the Children’s oncology group acute leukemia of ambiguous lineage task force. Cancer. 2020;126(3):593–601. doi: 10.1002/cncr.32552.
  122. Hrusak O, de Haas V, Stancikova J, et al. International cooperative study identifies treatment strategy in childhood ambiguous lineage leukemia. Blood. 2018;132(3):264–76. doi: 1182/blood-2017-12-821363.
  123. Wolach O, Stone RM. Optimal therapeutic strategies for mixed phenotype acute leukemia. Curr Opin Hematol. 2020;27(2):95–102. doi: 1097/moh.0000000000000570.
  124. Shimizu H, Yokohama A, Hatsumi N, et al. Philadelphia chromosome-positive mixed phenotype acute leukemia in the imatinib era. Eur J Haematol. 2014;93(4):297–301. doi: 10.1111/ejh.12343.
  125. Qasrawi A, Ramlal R, Munker R, Hildebrandt GC. Prognostic impact of Philadelphia chromosome in mixed phenotype acute leukemia (MPAL): A cancer registry analysis on real-world outcome. Am J Hematol. 2020;95(9):1015–21. doi: 10.1002/ajh.25873.
  126. Park JA, Ghim TT, Bae K, et al. Stem cell transplant in the treatment of childhood biphenotypic acute leukemia. Pediatr Blood Cancer. 2009;53(3):444–52. doi: 10.1002/pbc.22105.
  127. Tian H, Xu Y, Liu L, et al. Comparison of outcomes in mixed phenotype acute leukemia patients treated with chemotherapy and stem cell transplantation versus chemotherapy alone. Leuk Res. 2016;45:40–6. doi: 10.1016/j.leukres.2016.04.002.
  128. Munker R, Brazauskas R, Wang HL, et al. Allogeneic hematopoietic cell transplantation for patients with mixed phenotype acute leukemia. Biol Blood Marrow Transplant. 2016;22(6):1024–9. doi: 10.1016/j.bbmt.2016.02.013.
  129. Rossi JG, Bernasconi AR, Alonso CN, et al. Lineage switch in childhood acute leukemia: an unusual event with poor outcome. Am J Hematol. 2012;87(9):890–7. doi: 10.1002/ajh.23266.
  130. Dorantes-Acosta E, Pelayo R. Lineage switching in acute leukemias: a consequence of stem cell plasticity? Bone Marrow Res. 2012;2012:406796. doi: 10.1155/2012/406796.
  131. Rath A, Panda T, Dhawan R, et al. A paradigm shift: lineage switch from T-ALL to B/myeloid MPAL. Blood Res. 2021;56(1):50–3. doi: 10.5045/br.2021.2020268.
  132. Kobayashi S, Teramura M, Mizoguchi H, Tanaka J. Double Lineage Switch from Acute Megakaryoblastic Leukemia (AML-M7) to Acute Lymphoblastic Leukemia (ALL) and Back Again: A Case Report. J Blood Disorders Transf. 2014;5(3):199. doi: 10.4172/2155-9864.1000199.
  133. Lounici A, Cony-Makhoul P, Dubus P, et al. Lineage switch from acute myeloid leukemia to acute lymphoblastic leukemia: report of an adult case and review of the literature. Am J Hematol. 2000;65(4):319–21. doi: 10.1002/1096-8652(200012)65:4<319::aid-ajh13>3.0.co;2-1.
  134. Mantadakis E, Danilatou V, Stiakaki E, et al. T-cell acute lymphoblastic leukemia relapsing as acute myelogenous leukemia. Pediatr Blood Cancer. 2007;48(3):354–7. doi: 10.1002/pbc.20543.
  135. Emami A, Ravindranath Y, Inoue S, et al. Phenotypic change of acute monocytic leukemia to acute lymphoblastic leukemia on therapy. Am J Pediatr Hematol Oncol. 1983;5(4):341–3. doi: 10.1097/00043426-198324000-00004.
  136. Hatae Y, Yagyu K, Yanazume N, et al. Lineage switch on recurrence from minimally differentiated acute leukemia (M0) to acute megakaryocytic leukemia (M7). Rinsho Ketsueki. 2002;43(7):543–7.
  137. Haddox C, Mangaonkar A, Chen D, et al. Blinatumomab-induced lineage switch of B-ALL with t(4:11)(q21;q23) KMT2A/AFF1 into an aggressive AML: pre- and post-switch phenotypic, cytogenetic and molecular analysis. Blood Cancer. 2017;7(9):e607. doi: 10.1038/bcj.2017.89.
  138. Gentles AJ, Plevritis SK, Majeti R, et al. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA. 2010;304(24):2706–15. doi: 10.1001/jama.2010.1862.
  139. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617–28. doi: 10.1056/NEJMoa040465.
  140. Beck K. Plasticity Cell Definition. Available from: https://sciencing.com/plasticity-cell-definition-6239472.html. (accessed 06.2022).
  141. Shannon K, Armstrong SA. Genetics, epigenetics, and leukemia. N Engl J Med. 2010;363(25):2460–1. doi: 10.1056/NEJMe1012071.
  142. He X, Li C, Kapinova A, Nguyen K. Stem cell plasticity: fact or fiction. Available from: https://web.wpi.edu/Pubs/E-project/Available/E-project-082713-220018/unrestricted/8-27-13__Stem-2_Final_IQP_Report.pdf. (accessed 06.2022).
  143. Corbett JL, Tosh D. Conversion of one cell type into another: implications for understanding organ development, pathogenesis of cancer and generating cells for therapy. Biochem Soc Trans. 2014;42(3):609–16. doi: 10.1042/BST2014005.
  144. Kondo M, Scherer DC, Miyamoto T, et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature. 2000;407(6802):383–6. doi: 10.1038/35030112.
  145. Bell JJ, Bhandoola A. The earliest thymic progenitors for T-cells possess myeloid lineage potential. Nature. 2008;452(7188):764–7. doi: 10.1038/nature06840.
  146. Зеркаленкова Е.А., Илларионова О.И., Казакова А.Н. и др. Смена линейной дифференцировки в рецидиве острого лейкоза с перестройкой гена MLL (KMT2A). Обзор литературы и описание случаев. Онкогематология. 2016;11(2):21–9. doi: 10.17650/1818-8346-2016-11-2-21-29.
    [Zerkalenkova EA, Illarionova OI, Kazakova AN, et al. Lineage switch in relapse of acute leukemia with rearrangement of MLL gene (KMT2A). Literature review and case reports. Oncohematology. 2016;11(2):21–9. doi: 10.17650/1818-8346-2016-11-2-21-29. (In Russ)]
  147. Представление о кроветворении и стволовых кроветворных клетках [электронный документ]. Доступно по: http://www.ispms.ru/files/Publications/sharkeev_2013/pdf/4_19.pdf. Ссылка активна на 02.06.2022.
    [A view on hematopoiesis and hematopoietic stem cells (Internet). Available from: http://www.ispms.ru/files/Publications/sharkeev_2013/pdf/4_19.pdf. Accessed 02.06.2022. (In Russ)]
  148. Ramesh T, Lee SH, Lee CS, et al. Somatic cell dedifferentiation/reprogramming for regenerative medicine. Int J Stem Cells. 2009;2(1):18–27. doi: 10.15283/ijsc.2009.2.1.18.
  149. Oliveri RS. Epigenetic dedifferentiation of somatic cells into pluripotency: cellular alchemy in the age of regenerative medicine? Regen Med. 2007;2(5):795–816. doi: 2217/17460751.2.5.795.

Clonal Evolution of Aplastic Anemia: A Brief Literature Review and a Case Report

ER Shilova1, TV Glazanova1, II Kostroma1, MN Zenina1,2, OE Rozanova1, ZhV Chubukina1, RR Sabitova1, NA Romanenko1, VA Balashova1, SV Gritsaev2

1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

2 II Mechnikov North-Western State Medical University, 41 Kirochnaya ul., Saint Petersburg, Russian Federation, 191015

For correspondence: Elena Romanovna Shilova, MD, PhD, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024; Tel.: +7(981)129-09-77, +7(812)717-08-90; e-mail: rniiht@mail.ru

For citation: Shilova ER, Glazanova TV, Kostroma II, et al. Clonal Evolution of Aplastic Anemia: A Brief Literature Review and a Case Report. Clinical oncohematology. 2022;15(3):298–306. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-298-306


ABSTRACT

Aplastic anemia (AA) is a non-neoplastic hematological disease closely associated with bone marrow failure which is typical of paroxysmal nocturnal hemoglobinuria (PNH) and myelodysplastic syndrome (MDS). The PNH clones can be detected in more than a half of AA patients at onset of the disease, and there is a probability for AA/PNH co-variants to progress to classic hemolytic PNH. At the same time, the AA patients treated by immunosuppressive therapy undergo the risk of disease transformation to MDS and acute myeloid leukemia. Currently known risk factors and possible precursors of such transformation are considered in the brief literature review. In addition to that, the paper provides a case report of AA/PNH transformation to MDS during complete AA remission after immunosuppressive therapy combined with a successful haploidentical transplantation of hematopoietic stem cells.

Keywords: aplastic anemia, myelodysplastic syndrome, paroxysmal nocturnal hemoglobinuria, immunosuppressive therapy, haploidentical transplantation of hematopoietic stem cells.

Received: January 28, 2022

Accepted: May 17, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Абдулкадыров К.М., Бессмельцев С.С. Апластическая анемия. М.: Наука; СПб.: Изд-во KN, 1995. 231 с.
    [Abdulkadyrov KM, Bessmeltsev SS. Aplasticheskaya anemiya. (Aplastic anemia.) Moscow: Nauka; Saint Petersburg: KN Publ.; 1995. 231 p. (In Russ)]
  2. Розанова О.Е. Иммунологические особенности патогенеза апластической анемии: роль цитокинов: Дис. … д-ра мед. наук. СПб., 2006.
    [Rozanova OE. Immunologicheskie osobennosti patogeneza aplasticheskoi anemii: rol’ tsitokinov. (Immunological features of the pathogenesis of aplastic anemia: the role of cytokines.) [dissertation] Saint Petersburg; 2006. (In Russ)]
  3. Кулагин А.Д., Лисуков И.А., Козлов В.А. Апластическая анемия: иммунопатогенез, клиника, диагностика, лечение. Новосибирск: Наука, 2008. 236 с.
    [Kulagin AD, Lisukov IA, Kozlov VA. Aplasticheskaya anemiya: immunopatogenez, klinika, diagnostika, lechenie. (Aplastic anemia: immunopathogenesis, clinical features, diagnosis, and treatment.) Novosibirsk: Nauka Publ.; 2008. 236 p. (In Russ)]
  4. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006;108(8):2509–19. doi: 10.1182/blood-2006-03-010777.
  5. Zeng Y, Katsanis E. The complex pathophysiology of acquired aplastic anaemia. Clin Exp Immunol. 2015;180(3):361–70. doi: 10.1111/cei.12605.
  6. Михайлова Е.А., Фидарова З.Т., Устинова Е.Н. и др. Комбинированная иммуносупрессивная терапия больных апластической анемией: повторные курсы антитимоцитарного глобулина. Гематология и трансфузиология. 2014;59:11–8.
    [Mikhailova EA, Fidarova ZT, Ustinova EN, et al. Combined immunosuppressive therapy in patients with aplastic anemia: repeated courses of antithymocyte globulin. Gematologiya i transfuziologiya. 2014;59:11–8. (In Russ)]
  7. DeLatour P, Tabrizi R, Marcais A, et al. Nationwide survey on the use of horse antithymocyte globulins (ATGAM) in patients with acquired aplastic anemia: A report on behalf of the French Reference Center for Aplastic Anemia. Am J Hematol. 2018;93(5):635–42. doi: 10.1002/ajh.25050.
  8. Михайлова Е.А., Фидарова З.Т., Троицкая В.В. и др. Клинические рекомендации по диагностике и лечению апластической анемии (редакция 2019 г.). Гематология и трансфузиология. 2020;65(2):208–26. doi: 10.35754/0234-5730-2020-65-2-208-226.
    [Mihailova EA, Fidarova ZT, Troitskaya VV, et al. Clinical recommendations for the diagnosis and treatment of aplastic anemia (2019 edition). Gematologiya i transfuziologiya. 2020;65(2):208–26. doi: 10.35754/0234-5730-2020-65-2-208-226. (In Russ)]
  9. Townsley DM, Scheinberg P, Winkler T, et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N Engl J Med. 2017;376(16):1540–50. doi: 10.1056/NEJMoa1613878.
  10. Drexler B, Passweg J. Current evidence and the emerging role of eltrombopag in severe aplastic anemia. Ther Adv Hematol. 2021;12:2040620721998126. doi: 10.1177/2040620721998126.
  11. Kulagin A, Lisukov I, Ivanova M, et al. Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression: results of two-centre prospective study. Br J Haematol 2014;164(4):546–54. doi: 10.1111/bjh.12661.
  12. Sugimori C, Chuhjo T, Feng X, et al. Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006;107(4):1308–14. doi: 10.1182/blood-2005-06-2485.
  13. Zhao X, Zhang L, Jing L et al. The role of paroxysmal nocturnal hemoglobinuria clones in response to immunosuppressive therapy of patients with severe aplastic anemia. Ann Hematol. 2015;94(7):1105–10. doi: 10.1007/s00277-015-2348-5.
  14. Кулагин А.Д. Клинико-гематологические и иммунологические критерии долгосрочного прогноза приобретенной апластической анемии: Дис.… д-ра мед. наук. СПб., 2015.
    [Kulagin AD. Kliniko-gematologicheskie i immunologicheskie kriterii dolgosrochnogo prognoza priobretennoi aplasticheskoi anemii. (Clinical, hematological, and immunological criteria for long-term prognosis of acquired aplastic anemia.) [dissertation] Saint Petersburg; 2015. (In Russ)]
  15. Scheinberg P, Rios OJ, Scheinberg P, et al. Prolonged cyclosporine administration after antithymocyte globulin delays but does not prevent relapse in severe aplastic anemia. Am J Hematol. 2014;89(6):571–4. doi: 10.1002/ajh.2369.
  16. Frickhofen N, Heimpel H, Kaltwasser JP, Schrezenmeier H. Antithymocyte globulin with or without cyclosporin A: 11-year follow-up of a randomized trial comparing treatments of aplastic anemia. Blood. 2003;101(4):1236–42. doi: 10.1182/blood-2002-04-1134.
  17. Afable MG, Tiu RV, Maciejewski JP. Clonal evolution in aplastic anemia. Hematology Am Soc Hematol Educ Program. 2011;2011:90–5. doi: 10.1182/asheducation-2011.1.90.
  18. Sun L, Babushok DV. Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria. Blood. 2020;136(1):36–49. doi: 10.1182/blood.2019000940.
  19. Li Y, Li X, Ge, et al. Long-term follow-up of clonal evolutions in 802 aplastic anemia patients: a single-center experience. Ann Hematol. 2011;90(5):529–37. doi: 10.1007/s00277-010-1140-9.
  20. Фидарова З.Т., Михайлова Е.А., Гальцева И.В. и др. Динамика ПНГ-клона у больных апластической анемией в процессе иммуносупрессивной терапии. Клиническая лабораторная диагностика. 2016;61(8):490–4. doi: 10.18821/0869-2084-2016-61-8-490-494.
    [Fidarova ZT, Mikhailova EA, Galtseva IV, et al. The dynamics of paroxysmal nocturnal hemoglobinuria clone in patients with aplastic anemia in process of immune suppressive therapy. Klinicheskaia laboratornaia diagnostika. 2016;61(8):490–4. doi: 10.18821/0869-2084-2016-61-8-490-494. (In Russ)]
  21. Boddu PC, Kadia TM. Molecular pathogenesis of acquired aplastic anemia. Eur J Haematol. 2019;102(2):103–10. doi: 10.1111/ejh.13182.
  22. Young NS, Maciejewski JP, Sloand E, et al. The relationship of aplastic anemia and PNH. Int J Hematol. 2002;76(2):168–72. doi: 10.1007/BF03165111.
  23. Shresenmeier H, Hertenstein B, Wagner B, et al. A pathogenetic link between aplastic anemia and paroxysmal nocturnal haemoglobinuria is suggested by a high frequency of aplastic anaemia patients with a deficiency of phosphatidylinositol glycan anchored proteins. Exp Haematol. 1995;23(2):181.
  24. Griscelli-Bennaceur A, Gluckman E, Scrobohaci ML, et al. Aplastic anemia and paroxysmal nocturnal hemoglobinuria: search for a pathogenetic link. Blood 1995;85(5):1354–63.
  25. Shilova E, Glazanova T, Chubukina Z, et al. Aplastic anemia associated with PNH-clone – a single centre experience. Blood. 2016;128(22):5080. doi: 10.1182/blood.V128.22.5080.5080.
  26. Wanachiwanawin W, Siripanyaphinyo U, Piyawattanasakul N, Kinoshita T. A cohort study of the nature of paroxysmal nocturnal hemoglobinuria clones and PIG-A mutations in patients with aplastic anemia. Eur J Haematol. 2006;76(6):502–9. doi: 10.1111/j.0902-4441.2005.t01-1-EJH2467.
  27. Шилова Е.Р., Глазанова Т.В., Чубукина Ж.В. и др. Пароксизмальная ночная гемоглобинурия у пациентов с апластической анемией: проблемы, особенности, анализ клинического наблюдения. Клиническая онкогематология. 2019;12(3):319–28. doi: 10.21320/2500-2139-2019-12-3-319-328.
    [Shilova ER, Glazanova TV, Chubukina ZhV, et al. Paroxysmal Nocturnal Hemoglobinuria in Patients with Aplastic Anemia: Challenges, Characteristics, and Analysis of Clinical Experience. Clinical oncohematology. 2019;12(3):319–28. doi: 10.21320/2500-2139-2019-12-3-319-328. (In Russ)]
  28. Kulagin A, Golubovskaya I, Ivanova M, et al. Incidence and risk factors for hemolytic paroxysmal nocturnal hemoglobinuria (PNH) in aplastic anemia (AA) patients. Bone Marrow Transplant. 2014;49(Suppl 1):S42–S43. doi: 10.1038/bmt.2014.43.
  29. Кулагин А.Д., Лисуков И.А., Птушкин В.В. и др. Национальные клинические рекомендации по диагностике и лечению пароксизмальной ночной гемоглобинурии. Онкогематология. 2014;9(2):20–8. doi: 10.17650/1818-8346-2014-9-2-20-28.
    [Kulagin AD, Lisukov IA, Ptushkin VV, et al. National clinical guidelines for the diagnosis and treatment of paroxysmal nocturnal hemoglobinuria. Oncohematology. 2014;9(2):20–8. doi: 10.17650/1818-8346-2014-9-2-20-28. (In Russ)]
  30. Borowitz MJ, Craig FE, Digiuseppe JA, et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom. 2010;78(4):211–30. doi: 10.1002/cyto.b.20525.
  31. Nissen-Druey C, Tichelli A, Meyer-Monard S. Human hematopoietic colonies in health and disease. Acta Haematol. 2005;113(1):5–96. doi: 10.1159/000081987.
  32. Kojima S, Ohara A, Tsuchida M, еt al. Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosupressive therapy in children. Blood. 2002;100(3):786–90. doi: 10.1182/blood.v100.3.786.
  33. Балашова В.А., Шилова Е.Р., Семенова Н.Ю., Ругаль В.И. Колониеобразующая способность гемопоэтических стволовых клеток больных апластической анемией в зависимости от наличия ПНГ-клона. Гематология и трансфузиология. 2016;1:32.
    [Balashova VA, Shilova ER, Semenova NYu, Rugal VI. Colony-forming ability of hematopoietic stem cells in patients with aplastic anemia depending on the presence of a PNH clone. Gematologiya i transfuziologiya. 2016;1:32. (In Russ)]
  34. Пономаренко В.М., Блинова Т.С., Шилова Е.Р. Новые ультраструктурные особенности стромальных клеток костного мозга больных с апластической анемией. Гематология и трансфузиология. 1993;1:11–5.
    [Ponomarenko VM, Blinova TS, Shilova ER. New ultrastructural characteristics of the bone marrow stromal cells in patients with aplastic anemia. Gematologiya i transfuziologiya. 1993;1:11–5. (In Russ)]
  35. Вартанян Н.Л., Бессмельцев С.С., Семенова Н.Ю., Ругаль В.И. Мезенхимальные стромальные клетки при апластической анемии, гемобластозах и негематологических опухолях. Бюллетень Сибирского отделения РАМН. 2014;34(6):17–26.
    [Vartanyan NL, Bessmeltsev SS, Semenova NYu, Rugal VI. Mesenchymal stromal cells in aplastic anemia, hematological malignancies and non-hematological tumors. Byulleten Sibirskogo otdeleniya RAMN. 2014;34(6):17–26. (In Russ)]
  36. Погодина Н.А., Семенова Н.Ю., Ругаль В.И. и др. Биологические особенности паренхимы и стромы костного мозга при апластической анемии. Вестник гематологии. 2019;15(2):29–36.
    [Pogodina NA, Semenova NYu, Rugal VI, et al. Biological features of parenchyma and the bone marrow stroma in aplastic anemia. Vestnik gematologii. 2019;15(2):29–36. (In Russ)]
  37. Korkama E-S, Armstrong A-E, Jarva H, Meri S. Spontaneous remission in paroxysmal nocturnal hemoglobinuria – return to health or transition into malignancy? Front Immunol. 2018;9:1749. doi: 10.3389/fimmu.2018.01749.
  38. Babushok DV, Stanley N, Xie HM, et al. Clonal replacement underlies spontaneous remission in paroxysmal nocturnal haemoglobinuria. Br J Haematol. 2017;176(3):487–90. doi: 10.1111/bjh.13963.
  39. Illingworth A, Marinov I, Sutherland DR, et al. ICCS/ESCCA consensus guidelines to detect GPI-deficient cells in paroxysmal nocturnal hemoglobinuria (PNH) and related disorders part 3 – data analysis, reporting and case studies. Cytometry B Clin Cytom. 2018;94(1):49–66. doi: 10.1002/cyto.b.21609.
  40. Mortazavi Y, Tooze JA, Gordon-Smith EC, Rutherford TR. N-RAS gene mutation in patients with aplastic anemia and aplastic anemia/ paroxysmal nocturnal hemoglobinuria during evolution to clonal disease. Blood. 2000;95(2):646–50. doi: 10.1182/BLOOD.V95.2.646.
  41. Yoshizato T, Dumitriu B, Hosokawa K, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373(1):35–47. doi: 10.1056/NEJMoa1414799.
  42. Ogawa S. Clonal hematopoiesis in acquired aplastic anemia. Blood. 2016;128(3):337–47. doi: 10.1182/blood-2016-01-636381.
  43. Negoro E, Nagata Y, Clemente MJ, et Origins of myelodysplastic syndromes after aplastic anemia. Blood. 2017;130(17):1953–7. doi: 10.1182/blood-2017-02-767731.
  44. Белоцерковская Е.В., Зайкова Е.К., Петухов А.В. и др. Выявление мутаций генов эпигенетической регуляции генома IDH1/2, DNMT3A, ASXL1 и их сочетания с мутациями FLT3, NPM1, RUNX1 у пациентов с острыми миелоидными лейкозами. Клиническая онкогематология. 2021;14(1):13–21. doi: 10.21320/2500-2139-2021-14-1-13-21.
    [Belotserkovskaya EV, Zaikova EK, Petukhov AV, et al. Identification of Mutations in IDH1/2, DNMT3A, ASXL1 Genes of Genome Epigenetic Regulation and Their Co-Occurrence with FLT3, NPM1, RUNX1 Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2021;14(1):13–21. doi: 10.21320/2500-2139-2021-14-1-13-21. (In Russ)]
  45. Makishima H. Clonal hematopoiesis in aplastic anemia. Rinsho Ketsueki. 2018;59(10):1962–8. doi: 10.11406/rinketsu.59.1962.
  46. Кохно А.В., Паровичникова Е.Н., Михайлова Е.А., Савченко В.Г. Алгоритмы обследования и протоколы лечения больных с различными формами миелодиспластических синдромов. В кн.: Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко. В 2 томах. М.: Практика, 2018. Т. 1. С. 441–78.
    [Kokhno AV, Parovichnikova EN, Mikhailova EA, Savchenko VG. Monitoring algorithms and treatment protocols for the patients with various myelodysplastic syndromes. In: Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika; 2018. In 2 volumes. Vol. 1. pр. 441–78. (In Russ)]
  47. Golubovskaya IK, Kulagin AD, Rudnitskaya YV, et al. Myelodysplastic syndrome/acute myeloid leukemia evolving from aplastic anemia: Efficacy of hematopoietic stem cell transplantation. Cell Ther Transplant. 2018;2(23):36–44. doi: 10.18620/ctt-1866-8836-2018-7-2-36-44.

Herpes Virus Reactivation in Lymphoma Patients During and After Autologous Hematopoietic Stem Cell Transplantation

YaK Mangasarova, YuO Davydova, DS Tikhomirov, OV Margolin, LG Gorenkova, ES Nesterova, FE Babaeva, AE Misyurina, MO Bagova, EA Fastova, AU Magomedova, IV Galtseva, TA Tupoleva, SK Kravchenko

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Yana Konstantinovna Mangasarova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(926)395-82-52; e-mail: v.k.jana@mail.ru

For citation: Mangasarova YaK, Davydova YuO, Tikhomirov DS, et al. Herpes Virus Reactivation in Lymphoma Patients During and After Autologous Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2022;15(3):289–97. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-289-297


ABSTRACT

Aim. To assess the detection rate of human herpes virus DNA (of cytomegalovirus, herpes simplex virus types 1 and 2 [HSV-1/2], human herpes virus type 6 [HHV-6], and Epstein-Barr virus) in different biological environments at different stages of autologous hematopoietic stem cell transplantation (auto-HSCT) as well as the effect of immune factors on reactivation of viruses under study.

Materials & Methods. From 2019 to 2021 the study enrolled 87 lymphoma patients during and after auto-HSCT. Virological monitoring was performed on biological fluids (blood, saliva, urine, etc.) on therapeutic grounds prior to conditioning regimen on Day 0 as well as on Day +5 and Day +10 after auto-HSCT. On these days (Day 0, Day +5, and Day +10) the immune factors (IgM, IgG, and IgA levels and pattern of lymphocyte subpopulation in peripheral blood) in 15 % (14/87) of patients were assessed in terms of their effect on herpes virus reactivation.

Results. The overall rate of viral DNA detection increased from 26 % (26/87) to 42 % (37/87) of cases in the period of granulocytopoietic recovery. The most frequent were HHV-6 and HSV-1/2 reactivations reported in 23 % (20/87) and 16 % (14/87) of cases, respectively. The median B-lymphocyte proportion in peripheral blood of patients with herpes virus reactivation was 0.26 %, whereas in patients without reactivation it was 6.7 % (= 0.019). The median absolute B-lymphocyte count in the cohort of patients with detected viral DNAs was 0.001 × 109/L, whereas in patients without them it was 0.098 × 109/L (= 0.026).

Conclusion. A high rate of herpes virus DNA detection in lymphoma patients after auto-HSCT affected neither transplant engraftment nor transplantation mortality. Immune predictors of virus infection reactivation were the decreasing proportion of B-cells in the total lymphocyte count and the absolute B-lymphocyte count in the peripheral blood prior to auto-HSCT.

Keywords: herpes virus infections, transplantation, lymphoma, lymphocyte subpopulation.

Received: January 25, 2022

Accepted: May 15, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Roizman B, Zhou G. The 3 facets of regulation of herpes simplex virus gene expression: A critical inquiry. Virology. 2015;479–480:562–7. doi: 10.1016/j.virol.2015.02.036.
  2. Викулов Г.Х. Иммунологические аспекты герпесвирусных инфекций. Клиническая дерматология и венерология. 2015;5:104–14.
    [Vikulov GKh. Immunological aspects of herpes virus infections. Klinicheskaya dermatologiya i venerologiya. 2015;5:104–14. (In Russ)]
  3. Zuhair M, Smit G, Wallis G, et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev Med Virol. 2019;29(3):e2034. doi: 10.1002/rmv.2034.
  4. Deayton JR, Sabin CA, Johnson MA, et al. Importance of cytomegalovirus viremia in risk of disease progression and death in HIV-infected patients receiving highly active antiretroviral therapy. Lancet. 2004;363(9427):2116–21. doi: 10.1016/S0140-6736(04)16500-8.
  5. Verschuuren EAM. Balance between Herpes Viruses and Immunosuppression after Lung Transplantation. University of Groningen; 2006.
  6. Falcone EL, Adegbulugbe AA, Sheikh V, et al. Cerebrospinal fluid HIV-1 compartmentalization in a patient with AIDS and acute varicella-zoster virus meningomyeloradiculitis. Clin Infect Dis. 2013;57(5):e135–е142. doi: 10.1093/cid/cit356.
  7. Jain NA, Lu K, Ito S, et al. The clinical and financial burden of pre-emptive management of cytomegalovirus disease after allogeneic stem cell transplantation-implications for preventative treatment approaches. Cytotherapy. 2014;16(7):927–33. doi: 10.1016/j.jcyt.2014.02.010.
  8. Тeira P, Battiwalla M, Ramanathan M, et al. Early cytomegalovirus reactivation remains associated with increased transplant-related mortality in the current era: a CIBMTR analysis. Blood. 2016;127(20):2427–38. doi: 10.1182/blood-2015-11-679639.
  9. Webb BJ, Harrington R, Schwartz J, et al. The clinical and economic impact of cytomegalovirus infection in recipients of hematopoietic stem cell transplantation. Transpl Infect Dis. 2018;20(5):e12961. doi: 10.1111/tid.12961.
  10. Schmitz N, Buske C, Gisselbrecht C. Autologous stem cell transplantation in lymphoma. Semin Hematol. 2007;44(4):234–45. doi: 10.1053/j.seminhematol.2007.08.007.
  11. Ljungman P. The role of cytomegalovirus serostatus on outcome of hematopoietic stem cell transplantation. Curr Opin Hematol. 2014;21(6):466–9. doi: 10.1097/MOH.0000000000000085.
  12. Boeckh M, Nichols W. The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood. 2004;103(6):2003–8. doi: 10.1182/blood-2003-10-3616.
  13. Inazawa AN, Hori T. Virus Reactivations after autologous hematopoietic stem cell transplantation detected by multiplex PCR assay. J Med Virol. 2017;89(2):358–62. doi: 10.1002/jmv.24621.
  14. Chapenko S, Troikas I, Donina S, et al. Relationship between beta-herpesviruses reactivation and development of complications after autologous peripheral blood stem cell transplantation. J Med Virol. 2012;84(12):1953–60. doi: 10.1002/jmv.23412.
  15. Duver F, Weissbrich B, Eyrich M, et al. Viral reactivations following hematopoietic stem cell transplantation in pediatric patients – A single center 11-year analysis. PLoS One. 2020;15(2):e0228451. doi: 10.1371/journal.pone.0228451.
  16. Хайдуков С.В., Байдун Л.В. Современные подходы к оценке клеточной составляющей иммунного статуса. Медицинский алфавит. 2015;2(8):44–51.
    [Khaidukov SV, Baidun LV. Modern approaches to assessing the cellular component of the immune status. Meditsinskii alfavit. 2015;2(8):44–51. (In Russ)]
  17. Hoppe RT, Advani RH, Ai WZ, et al. Hodgkin lymphoma, version 2.2012 featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2012;10(5):589–97. doi: 10.6004/jnccn.2012.0061.
  18. Eichenauer DA, Engert A, Dreyling M, ESMO Guidelines Working Group. Hodgkin’s lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2011;22(Suppl 6):vi55–8. doi: 10.1093/annonc/mdr378.
  19. Martelli M, Gherlinzoni F, De Renzo A, et al. Early autologous stem-cell transplantation versus conventional chemotherapy as front-line therapy in high-risk, aggressive non-Hodgkin’s lymphoma: an Italian multicenter randomized trial. J Clin Oncol. 2003;21(7):1255–62. doi: 10.1200/JCO.2003.01.117.
  20. Verdonck LF, van Putten WLJ, Hagenbeek A, et al. Comparison of CHOP chemotherapy with autologous bone marrow transplantation for slowly responding patients with aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1995;332(16):1045–51. doi: 10.1056/NEJM199504203321601.
  21. Celebi H, Akan H, Akcaglayan E, et al. Febrile neutropenia in allogeneic and autologous peripheral blood stem cell transplantation and conventional chemotherapy for malignancies. Bone Marrow Transplant. 2000;26(2):211–4. doi: 10.1038/sj.bmt.1702503.
  22. Schmidt-Hieber M, Labopin M, Beelen D, et al. CMV serostatus still has an important prognostic impact in de novo acute leukemia patients after allogeneic stem cell transplantation: a report from the Acute Leukemia Working Party of EBMT. Blood. 2013;122(19):3359–64. doi: 10.1182/blood-2013-05-499830.
  23. Drokov M, Davydova J, Kuzmina L, et al. Level of granzyme B-positive T-regulatory cells is a strong predictor biomarker of acute graft-versus-host disease after day +30 after allo-HSCT. Leuk Res. 2017;54:25–9. doi: 10.1016/j.leukres.2017.01.014.
  24. Williams K, Gress R. Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol. 2008;21(3):579–96. doi: 10.1016/j.beha.2008.06.003.

Azacitidine/Venetoclax Combination as First-Line Therapy in Elderly Patients with Acute Myeloid Leukemias: A First Step

MA Granatkin1,2, EA Nikitin1,2, ES Mikhailov1, VA Doronin1, SV Minenko1, MM Okuneva1,2, NV Degtyareva1, ME Pochtar1,2, SA Lugovskaya1,2, YuN Kobzev1, OYu Vinogradova1, VV Ptushkin1,2

1 SP Botkin City Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

2 Russian Medical Academy of Postgraduate Education, 2/1 Barrikadnaya ul., Moscow, Russian Federation, 125993

For correspondence: Prof. Evgenii Aleksandrovich Nikitin, MD, PhD, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284; Tel.: +7(916)572-06-44; e-mail: eugene_nikitin@mail.ru

For citation: Granatkin MA, Nikitin EA, Mikhailov ES, et al. Azacitidine/Venetoclax Combination as First-Line Therapy in Elderly Patients with Acute Myeloid Leukemias: A First Step. Clinical oncohematology. 2022;15(3):282–8. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-282-288


ABSTRACT

Background. The treatment of elderly patients with acute myeloid leukemias (AML) is one of the most formidable challenges in oncohematology. Hypomethylating drugs combined with venetoclax show relatively high efficacy and lower toxicity in elderly AML patients.

Aim. To retrospectively analyze the efficacy and tolerability of the combined azacitidine/venetoclax therapy in AML primary patients of older age as well as to determine a spectrum of issues related to the implementation of this regimen in real-world clinical practice.

Materials & Methods. The retrospective analysis enrolled a cohort of patients followed-up at the Botkin City Clinical Hospital (n = 35). The median age was 73 years (range 60–90 years), 57 % of patients were over 70 years of age. The median follow-up duration was 5.2 months (range 1.6–42.6 months). By the time of final analysis 15 patients were still receiving the therapy. The median of overall survival was 11.1 months (95% confidence interval [95% CI] 8.1–14.1 months). The causes of death in 20 patients were AML progression (n = 3), non-COVID-19 infectious complications (n = 3), and COVID-19 (n = 10). In 4 patients the cause of death remained unidentified.

Results. Complete remission (CR) was documented in 17 (48.5 %) patients; CR with incomplete hematologic recovery was identified in 9 (26 %) patients. The median time before achieving remission was 67 days (range 27–120 days). In 96 % of patients CR was achieved after 3 azacitidine/venetoclax cycles. The mean CR duration was 9.2 months (95% CI 5.7–12.6 months); the median time before loss of response was 19 months. Relapses were diagnosed in 5 patients. Neutropenia > grade 3 was identified in patients who achieved remission on subsequent therapy cycles in 100 % of cases (n = 26), anemia > grade 2 was reported in 9 (34 %) patients, and thrombocytopenia > grade 3 was detected in 13 (50 %) patients. Despite frequent neutropenia, patients with remission did not show any severe infectious complications.

Conclusion. The combined azacitidine/venetoclax therapy in elderly patients yields remission in more than 70 % of cases and is not marked by any severe infectious complications, despite developing neutropenia. Due to its ease of administration and low toxicity, this regimen can be performed in outpatient units.

Keywords: acute myeloid leukemias, efficacy of therapy, venetoclax, hypomethylating drugs.

Received: January 31, 2022

Accepted: May 5, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood. 2006;107(9):3481–5. doi: 10.1182/blood-2005-09-3724.
  2. Creutzig U, Zimmermann M, Reinhardt D, et al. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups. Cancer. 2016;122(24):3821–30. doi: 10.1002/cncr.30220.
  3. Kantarjian H, Ravandi F, O’Brien S, et al. Intensive chemotherapy does not benefit most older patients (age 70 years or older) with acute myeloid leukemia. Blood. 2010;116(22):4422–9. doi: 10.1182/blood-2010-03-276485.
  4. Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with > 30% blasts. Blood. 2015;126(3):291–9. doi: 10.1182/blood-2015-01-621664.
  5. Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med. 2016;375(21):2023–36. doi: 10.1056/NEJMoa1605949.
  6. Cashen AF, Schiller GJ, O’Donnell MR, et al. Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol. 2010;28(4):556–61. doi: 10.1200/jco.2009.23.9178.
  7. Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016;127(1):53–61. doi: 10.1182/blood-2015-08-604520.
  8. Guerra VA, DiNardo C, Konopleva M. Venetoclax-based therapies for acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32(2):145–53. doi: 10.1016/j.beha.2019.05.008.
  9. Серегин Г.З., Лифшиц А.В., Валиев Т.Т. Таргетные препараты в лечении острых миелоидных лейкозов у детей. Российский журнал детской гематологии и онкологии. 2020;7(3):78–85. doi: 10.21682/2311-1267-2020-7-3-78-85.
    [Seregin GZ, Lifshits AV, Valiev TT. Targeted drugs in the treatment of acute myeloid leukemia in children. Russian Journal of Pediatric Hematology and Oncology. 2020;7(3):78–85. doi: 10.21682/2311-1267-2020-7-3-78-85. (In Russ)]
  10. DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N Engl J Med. 2020;383(7):617–29. doi: 10.1056/NEJMoa2012971.
  11. Pollyea DA, Pratz K, Letai A, et al. Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: Long term follow-up from a phase 1b study. Am J Hematol. 2021;96(2):208–17. doi: 10.1002/ajh.26039.
  12. Pollyea DA, Bixby D, Perl A, et al. NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021: Featured Updates to the NCCN Guidelines. J Natl Compr Canc Netw. 2021;19(1):16–27. doi: 10.6004/jnccn.2021.0002.
  13. Lagadinou ED, Sach A, Callahan K, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329–41. doi: 10.1016/j.stem.2012.12.013.
  14. Pan R, Ruvolo VR, Wei J, et al. Inhibition of Mcl-1 with the pan–Bcl-2 family inhibitor (–)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia. Blood. 2015;126(3):363–72. doi: 10.1182/blood-2014-10-604975.
  15. Pan R, Hogdal LJ, Benito JM, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4(3):362–75. doi: 10.1158/2159-8290.Cd-13-0609.
  16. Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discov. 2016;6(10):1106–17. doi: 10.1158/2159-8290.Cd-16-0313.
  17. Bogenberger JM, Delman D, Hansen N, et al. Ex vivo activity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in myeloid malignancies. Leuk Lymphoma. 2015;56(1):226–9. doi: 10.3109/10428194.2014.910657.
  18. Tsao T, Shi Y, Kornblau S, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012;91(12):1861–70. doi: 10.1007/s00277-012-1537-8.
  19. Bose P, Gandhi V, Konopleva M. Pathways and mechanisms of venetoclax resistance. Leuk Lymphoma. 2017;58(9):1–17. doi: 10.1080/10428194.2017.1283032.
  20. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. doi: 10.1182/blood-2018-08-868752.
  21. Jonas BA, Pollyea DA. How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia. Leukemia. 2019;33(12):2795–804. doi: 10.1038/s41375-019-0612-8.