Overcoming Resistance in Relapsed Anaplastic Large-Cell Lymphoma, ALK-Positive (Literature Review and Clinical Experience)

YuE Vinogradova1, NG Chernova2

1 IM Sechenov First Moscow State Medical University, 8 bld. 2 Trubetskaya Str., Moscow, Russian Federation, 119991

2 National Medical Hematology Research Center, 4a Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Yuliya Eikhenovna Vinogradova, MD, PhD, 8 bld. 2 Trubetskaya str., Moscow, Russian Federation, 119991; Tel.: +7(495)609-14-00, +7(916)195-68-57; е-mail: jvinogr@gmail.com

For citation: Vinogradova YuE, Chernova NG. Overcoming Resistance in Relapsed Anaplastic Large-Cell Lymphoma, ALK-Positive (Literature Review and Clinical Experience). Clinical oncohematology. 2019;12(2):179–84.

DOI: 10.21320/2500-2139-2019-12-2-179-184


ABSTRACT

Peripheral T-cell lymphomas (PTCL) are characterized by unfavorable prognosis and poorer survival in comparison with B-cell lymphomas. Probability of remission on first-line PTCL therapy is not higher than 60 % with high relapse rate. Long-term remission in PTCL relapses/progression cases typically fails to be achieved. The present article provides literature review and the authors’ own clinical experience in the management of anaplastic large-cell lymphoma, ALK-positive with primary skin and soft tissue lesions in an 65-year old female patient. After NHL-BFM-90 intensive chemotherapy the first 5,5-year complete remission was achieved in this patient. Afterwards a СНОР therapy-resistant relapse was identified. Chemotherapy-resistance of tumor was successfully overcome by adding of epigenetic drugs to cytostatic antitumor therapy. The duration of second complete remission is 3 years. Oncohematological diseases with either initial chemotherapy-resistance or the resistance acquired during antitumor therapy are most efficiently treated by various drug combinations including monoclonal antibodies, epigenetic drugs, and cytostatic therapy.

Keywords: anaplastic large-cell lymphoma, ALK-positive, skin involvements, resistance associated with relapse, epigenetic drugs.

Received: July 26, 2018

Accepted: January 15, 2019

Read in PDF 


REFERENCES

  1. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30. doi: 10.1200/JCO.2008.16.4558.

  2. Conlan MG, Bast M, Armitage JO, Weisenburger DD. Bone marrow involvement by non-Hodgkin’s lymphoma: the clinical significance of morphologic discordance between the lymph node and bone marrow. Nebraska Lymphoma Study Group. J Clin Oncol. 1990;8(7):1163–72. doi: 10.1200/JCO.1990.8.7.1163.

  3. Savage KJ, Harris NL, Vose JM, et al. ALK-anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. 2008;111(12):5496–504. doi: 10.1182/blood-2008-01-134270.

  4. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-positive. Crit Rev Oncol Hematol. 2012;83(2):293–302. doi: 10.1016/j.critrevonc.2012.02.005.

  5. Mak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J Clin Oncol. 2013;31(16):1970–6. doi: 10.1200/JCO.2012.44.7524.

  6. Виноградова Ю.Е., Луценко И.Н., Капланская И.Б. и др. Эффективность терапии различных вариантов анаплазированных Т-крупноклеточных лимфом. Терапевтический архив. 2008;80(7):33–7.

    [Vinogradova YuE, Lutsenko IN, Kaplanskaya IB, et al. Efficacy of therapy of different variants of anaplastic large T-cell lymphomas. Terapevticheskii arkhiv. 2008;80(7):33–7. (In Russ)]

  7. Hutchins LF, Moon J, Clark JI, et al. Evaluation of interferon alpha-2B and thalidomide in patients with disseminated malignant melanoma, phase 2, SWOG 0026. Cancer. 2007;110(10):2269–75. doi: 10.1002/cncr.23035.

  8. Rangwala S, Zhang C, Duvic M. HDAC inhibitors for the treatment of cutaneous T-cell lymphomas. Fut Med. Chem. 2012;4(4):471–86. doi: 10.4155/fmc.12.6.

  9. Witzig TE, Reeder C, Han JJ, et al. The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma. Blood. 2015;126(3):328–35. doi: 10.1182/blood-2015-02-629543.

  10. Vose JM, Link BK, Grossbard ML, et al. Long-term update of a phase II study of rituximab in combination with CHOP chemotherapy in patients with previously untreated, aggressive non-Hodgkin’s lymphoma. Leuk Lymphoma. 2005;46(11):1569–73. doi: 10.1080/10428190500217312.

  11. Vaishampayan UN, Heilbrun LK, Marsack C, et al. Phase II trial of pegylated interferon and thalidomide in malignant metastatic melanoma. Anticancer Drugs. 2007;18(10):1221–6. doi: 10.1097/CAD.0b013e3282eea391.

  12. Younes A, Bartlett N, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21. doi: 10.1056/NEJMoa1002965.

  13. Pro B, Advani R, Brice P, et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2017;130(25):2709–17. doi: 10.1182/blood-2017-05-780049.

  14. Bartlett NL, Chen R, Fanale MA, et al. Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies. J Hematol Oncol. 2014;7(1):24. doi: 10.1186/1756-8722-7-24.

  15. Lamarque M, Bossard C, Contejean A, et al. Brentuximab vedotin in refractory or relapsed peripheral T-cell lymphomas: the French named patient program experience in 56 patients. Haematologica. 2016;101(3):e103–6. doi: 10.3324/haematol.2015.135400.

  16. Fanale MA, Horwitz SM, Forero-Torres A, et al.. Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32(28):3137–43. doi: 0.1200/JCO.2013.54.2456.

  17. Morel A, Briere J, Lamant L, et al. Long-term outcomes of adults with first-relapsed/refractory systemic anaplastic large-cell lymphoma in the pre-brentuximab vedotin era: A LYSA/SFGM-TC study. Eur J Cancer. 2017;83:146–53. doi: 10.1016/j.ejca.2017.06.026.

  18. Виноградова Ю.Е., Потекаев Н.С., Виноградов Д.Л. Лимфомы кожи. Диагностика и лечение. М.: Практическая медицина, 175 c.

    [Vinogradova YuE, Potekaev NS, Vinogradov DL. Limfomy kozhi. Diagnostika i lechenie. (Skin lymphomas: diagnosis and treatment.) Moscow: Prakticheskaya meditsina Publ.; 2014. 175 p. (In Russ)]

  19. Hoelzer D, Gokbuget N, Digel W, et al. Outcome of adult patients with T-lymphoblastic lymphoma treated according to protocols for acute lymphoblastic leukemia. Blood. 2002;99(12):4379–85. doi: 10.1182/blood-2002-01-0110.

  20. Паровичникова Е.Н., Клясова Г.А., Исаев В.Г. и др. Первые итоги терапии Ph-негативных острых лимфобластных лейкозов взрослых по протоколу научно-исследовательской группы гематологических центров России ОЛЛ-2009. Терапевтический архив. 2011;83(7):11–

    [Parovichnikova EN, Klyasova GA, Isaev VG, et al. Pilot results of therapy of adult Ph-negative acute lymphoblastic leukemia according to the protocol of Research Group of Russian Hematological Centers ALL-2009. Terapevticheskii arkhiv. 2011;83(7):11–7. (In Russ)]

  21. Виноградова Ю.Е., Чернова Н.Г., Капланская И.Б. и др. Отдаленные результаты лечения Т-клеточных лимфобластных лимфом. Терапевтический архив. 2012;84(8):57–60.

    [Vinogradova YuE, Chernova NG, Kaplanskaya IB, et al. Long-term results of treatment for T-cell lymphoblastic lymphomas. Terapevticheskii arkhiv. 2012;84(8):57–60. (In Russ)]

  22. Чернова Н.Г., Виноградова Ю.Е., Сидорова Ю.В. и др. Длительные режимы цитостатической терапии ангиоиммунобластной Т-клеточной лимфомы. Клиническая онкогематология. 2014;7(1):57–62.

    [Chernova NG, Vinogradova YuE, Sidorova YV, et al. Prolonged chemotherapy for angioimmunoblastic T-cell lymphoma. Klinicheskaya onkogematologiya. 2014;7(1):57–62. (In Russ)]

  23. Reiter A, Schrappe M, Tiemann M, et al. Successful treatment strategy for Ki-1 anaplastic large-cell lymphoma of childhood: a prospective analysis of 62 patients enrolled in three consecutive Berlin-Frankfurt-Munster group studies. J Clin Oncol. 1994;12(5):899–908. doi: 10.1200/JCO.1994.12.5.899.

  24. Виноградова Ю.Е., Зингерман Б.В. Нозологические формы и выживаемость пациентов с Т- и NK-клеточными лимфатическими опухолями, наблюдавшихся в ГНЦ в течение 10 лет. Клиническая онкогематология. 2011;4(3):201–12.

    [Vinogradova YuE, Zingerman BV. Nosological forms and survival of patients with T- and NK-cell lymphatic tumors, followed-up at HRC for 10 years. Klinicheskaya onkogematologiya. 2011;4(3):201–12. (In Russ)]

  25. Aviles A, Neri N, Nambo MJ, et al. Novel therapy in multiple myeloma. Invest New Drugs. 2005;23(5):411–5. doi: 10.1007/s10637-005-2900-6.

  26. Горенкова Л.Г., Виноградова Ю.Е., Кравченко С.К. и др. Анаплазированная Т-крупноклеточная АЛК-положительная лимфосаркома с изолированным поражением кожи и мягких тканей у пожилой больной. Гематология и трансфузиология. 2011;56(1):31–3.

    [Gorenkova LG, Vinogradova YuE, Kravchenko SK, et al. Anaplastic T-cell ALK-positive lymphoma with isolated involvement of the skin and soft tissues in an elderly female patient. Gematologiya i transfuziologiya. 2011;56(1):31–3. (In Russ)]

  27. Geller S, Canavan TN, Pulitzer M, et al. ALK-positive primary cutaneous anaplastic large cell lymphoma: a case report and review of the literature. Int J Dermatol. 2018;57(5):515–20. doi: 10.1111/ijd.13804.

  28. Oschlies I, Lisfeld J, Lamant L, et al. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study. Haematologica. 2013;98(1):50–6. doi: 10.3324/haematol.2012.065664.

  29. Сидорова Ю.В., Чернова Н.Г., Рыжикова Н.В. и др. Клональные реаранжировки и опухолевые клоны при периферической Т-клеточной лимфоме. Acta Naturae. 2015;7(3):130–40.

    [Sidorova YuV, Chernova NG, Ryzhikova NV, et al. Clonal rearrangements and malignant clones in peripheral T-cell lymphoma. Acta Naturae. 2015;7(3):130–40. (In Russ)]

Prognostic Value of PRAME Activity in Tumor Cells of Follicular Lymphoma

VA Misyurin1, AE Misyurina2, SK Kravchenko2, NA Lyzhko1, YuP Finashutina1, NN Kasatkina1, DS Mar’in2, ES Nesterova2, NN Sharkunov3, MA Baryshnikova1, AV Misyurin1

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 National Medical Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

3 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

For correspondence: Vsevolod Andreevich Misyurin, PhD in Biology, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(985)436-30-19; e-mail: vsevolod.misyurin@gmail.com

For citation: Misyurin VA, Misyurina AE, Kravchenko SK, et al. Prognostic Value of PRAME Activity in Tumor Cells of Follicular Lymphoma. Clinical oncohematology. 2019;12(2):173–8.

DOI: 10.21320/2500-2139-2019-12-2-173-178


ABSTRACT

Aim. To set survival parameters for follicular lymphoma (FL) patients with different PRAME expression levels in tumor cells.

Materials & Methods. The study was conducted on samples of lymph nodes, blood, and bone marrow of 34 patients with newly diagnosed FL. PRAME expression levels were measured in tumor cells (centrocytes and centroblasts) by quantitative real-time PCR. The impact of different PRAME expression levels on survival parameters was studied with median follow-up of 29 months. Clinical and laboratory characteristics used for FLIPI-1 and FLIPI-2 calculations in different patient groups were compared.

Results. A high (> 5 % against ABL control gene) PRAME expression level correlates with higher Ki-67 activity (= 0.043) and larger tumor mass (= 0.04). Survival parameters were worse with high PRAME expression level in FL cells. Combination of both high FLIPI-1/FLIPI-2 risk and high PRAME expression level determines extremely unfavorable prognosis and may result in death.

Conclusion. In FL patients high PRAME expression level in tumor cells has negative prognostic value, but only in the presence of parameters determining high FLIPI-1 and FLIPI-2 risk. Juxtaposition of PRAME expression level and FLIPI-1/FLIPI-2 values enables most reliable prediction of early mortality in FL patients.

Keywords: PRAME gene, follicular lymphoma.

Received: November 4, 2018

Accepted: February 24, 2019

Read in PDF 


REFERENCES

  1. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65. doi: 10.1182/blood-2003-12-4434.

  2. Federico M, Bellei M, Marcheselli L, et al. Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol. 2009;27(27):4555–62. doi: 10.1200/JCO.2008.21.3991.

  3. Montoto S, Davies AJ, Matthews J, et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol. 2007;25(17):2426–33. doi: 10.1200/JCO.2006.09.3260.

  4. Ortmann CA, Eisele L, Nuckel H, et al. Aberrant hypomethylation of the cancer–testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol. 2008;87(10):809–18. doi: 10.1007/s00277-008-0514-8.

  5. Yao J, Caballero OL, Yung WK, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res. 2014;2(4):371–9. doi: 10.1158/2326-6066.CIR-13-0088.

  6. Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005;122(6):835–47. doi: 10.1016/j.cell.2005.07.003.

  7. Dyrskjot L, Zieger K, Kissow Lildal T, et al. Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma. Br J Cancer. 2012;107(1):116–22. doi: 10.1038/bjc.2012.215.

  8. De Carvalho DD, Mello BP, Pereira WO, Amarante-Mendes GP. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mol Med. 2013;13(2):296–304. doi: 10.2174/156652413804810727.

  9. McElwaine S, Mulligan C, Groet J, et al. Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukaemia (M7) in Down’s syndrome, revealing PRAME as a specific discriminating marker. Br J Haematol. 2004;125(6):729–42. doi: 10.1111/j.1365-2141.2004.04982.x.

  10. Kim HL, Seo YR. Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage. Oncol Rep. 2012;28(6):1959–67. doi: 10.3892/or.2012.2057.

  11. Costessi A, Mahrour N, Tijchon E, et al. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO J. 2011;30(18):3786–98. doi: 10.1038/emboj.2011.262.

  12. Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34. doi: 10.1038/nrc3130.

  13. Mitsuhashi K, Masuda A, Wang YH, et al. Prognostic significance of PRAME expression based on immunohistochemistry for diffuse large B-cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2014;100(1):88–95. doi: 10.1007/s12185-014-1593-z.

  14. Мисюрин В.А., Лукина А.Е., Мисюрин А.В. и др. Особенности соотношения уровней экспрессии генов PRAME и PML/RARα в дебюте острого промиелоцитарного лейкоза. Российский биотерапевтический журнал. 2014;13(1):9–16.

    [Misyurin VA, Lukina AE, Misyurin AV, et al. A ratio between gene expression levels of PRAME and PML/RARα at the onset of acute promyelocytic leukemia. Rossiiskii bioterapevticheskii zhurnal. 2014;13(1):9–16. (In Russ)]

  15. Proto-Siqueira R, Figueiredo-Pontes LL, Panepucci RA, et al. PRAME is a membrane and cytoplasmic protein aberrantly expressed in chronic lymphocytic leukemia and mantle cell lymphoma. Leuk Res. 2006;30(11):1333–9. doi: 10.1016/j.leukres.2006.02.031.

  16. Proto-Siqueira R, Falcao RP, de Souza CA, et al. The expression of PRAME in chronic lymphoproliferative disorders. Leuk Res. 2003;27(5):393–6. doi: 10.1016/S0145-2126(02)00217-5.

  17. Qin Y, Lu J, Bao L, et al. Bortezomib improves progression-free survival in multiple myeloma patients overexpressing preferentially expressed antigen of melanoma. Chin Med J (Engl). 2014;127(9):1666–71. doi: 10.3760/cma.j.issn.0366-6999.20132356.

  18. Солодовник А.А., Мкртчян А.С., Мисюрин В.А. и др. Экспрессия раково-тестикулярных генов PRAME, NY-ESO1, GAGE1, MAGE A3, MAGE A6, MAGE A12, SSX1, SLLP1, PASD1 у больных множественной миеломой, их влияние на показатели общей выживаемости и скорость возникновения рецидива. Успехи молекулярной онкологии. 2018;5(2):62–70. doi: 10.17650/2313-805X-2018-5-2-62-70.

    [Solodovnik AA, Mkrtchyan АS, Misyurin VA, et al. Expression of cancer-testis genes PRAME, NY-ESO1, GAGE1, MAGE A3, MAGE A6, MAGE A12, SSX1, SLLP1, PASD1 in patients with multiple myeloma, their influence on overall survival and relapse rate. Advances in molecular oncology. 2018;5(2):62–70. doi: 10.17650/2313-805X-2018-5-2-62-70. (In Russ)]

Intermediate Results of Prospective Observational Study: The 2-year Experience of Ibrutinib Therapy in Relapsed/Refractory Mantle Cell Lymphoma in Clinical Practice

VI Vorob’ev, VA Zherebtsova, EI Dubrovin, LA Bychenkova, YuB Kochkareva, LA Mukha, VL Ivanova, NK Khuazheva, VV Ptushkin

SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

For correspondence: Vladimir Ivanovich Vorob’ev, MD, PhD, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284; e-mail: morela@mail.ru

For citation: Vorob’ev VI, Zherebtsova VA, Dubrovin EI, et al. Intermediate Results of Prospective Observational Study: The 2-year Experience of Ibrutinib Therapy in Relapsed/Refractory Mantle Cell Lymphoma in Clinical Practice. Clinical oncohematology. 2019;12(2):165-72.

DOI: 10.21320/2500-2139-2019-12-2-165-172


ABSTRACT

Aim. To assess efficacy and toxicity of ibrutinib monotherapy in patients with relapsed/refractory mantle cell lymphoma (MCL).

Materials & Methods. In this group of patients ibrutinib has been used since April 2016. Ibrutinib administration criteria were the age > 18 years and the confirmed MCL diagnosis with nuclear hyperexpression of cyclin D1 and t(11;14)(q13;q32) translocation. Poor physical status, pancytopenia, infectious complications (except for life-threatening conditions), blastoid variant, and the number of previous treatment lines were not regarded as contraindications to ibrutinib therapy. Oral ibrutinib was administered once a day at a dose of 560 mg before progression and until intolerable toxicity was observed.

Results. From April 20, 2016 to April 6, 2018 ibrutinib therapy was provided to 42 patients with relapsed/refractory MCL. The median age was 69 years (range 40–81); 64 % of patients were men; ECOG > 2 was registered in 14 % of patients; 38 % of patients had blastoid variant; the median number of previous treatment lines was 2 (range 1–11). The overall response rate was 85 % (35 % were in complete remission); 57 % (24/42) of patients remain on ibrutinib treatment for the period of 4–667 days. The median event-free survival (EFS) was 365 days (95% confidence interval was 31–698 days). The median overall survival was not achieved. In blastoid variant the median EFS was 92 days, in the alternative group the median was not achieved and EFS was 76 % for 12 months (< 0.001). In the majority of cases ibrutinib was well tolerated by patients. The most common complications were myalgia and muscle cramps (57 % cases), diarrhea (46 %, and grade 3 in 5 % cases), hemorrhagic complications (63 %, all of them of grade 1–2), and arrhythmia (7 %). Infectious complications were reported in 31 % of patients. In one case the start of ibrutinib treatment appeared to be problematic due to neutropenia of grade 4. Relative dose intensity was > 98 % (range 91.6–100 %). In 10 (24 %) patients ibrutinib treatment had to be adjusted (dose reduction or treatment interruption) due to toxicity and planned surgeries. None of ibrutinib recipients had to completely discontinue ibrutinib therapy due to complications.

Conclusion. These data on the use of ibrutinib in actual clinical practice are comparable with the results of international multicenter studies (PCYC-1104, SPARK, and RAY). Reduced toxicity profile and rather high speed of antitumor response allow for ibrutinib administration in cases of poor physical status, low blood count, and even infectious complications. However, some adverse effects are manifested not earlier than after 6-month treatment, which calls for continuous monitoring, especially when preparing for surgeries.

Keywords: mantle cell lymphoma, ibrutinib, relapse, refractory course, targeted therapy.

Received: November 4, 2018

Accepted: February 11, 2019

Read in PDF 


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.

  2. Zhou Y, Wang H, Fang W, et al. Incidence trends of mantle cell lymphoma in the United States between 1992 and 2004. Cancer. 2008;113(4):791–8. doi: 10.1002/cncr.23608.

  3. Smith A, Roman E, Appleton S, et al. Impact of novel therapies for mantle cell lymphoma in the real world setting: a report from the UK’s Haematological Malignancy Research Network (HMRN). Br J Haemotol. 2018;181(2):215–28. doi: 10.1111/bjh.15170.

  4. Leux C, Maynadie M, Troussard X, et al. Mantle cell lymphoma epidemiology: a population-based study in France. Ann Hematol. 2014;93(8):1327–33. doi: 10.1007/s00277-014-2049-5.

  5. Geisler CH, Kolstad A, Laurell A, et al. Nordic MCL2 trial update: six-year follow-up after intensive immunochemotherapy for untreated mantle cell lymphoma followed by BEAM or BEAC + autologous stem-cell support: still very long survival but late relapses do occur. Br J Haematol. 2012;158(3):355–62. doi: 10.1111/j.1365-2141.2012.09174.x.

  6. Romaguera JE, Fayad LE, Feng L, et al. Ten-year follow-up after intense chemoimmunotherapy with Rituximab-HyperCVAD alternating with Rituximab-high dose methotrexate/cytarabine (R-MA) and without stem cell transplantation in patients with untreated aggressive mantle cell lymphoma. Br J Haematol. 2010;150(2):200–8. doi: 10.1111/j.1365-2141.2010.08228.x.

  7. Merli F, Luminari S, Ilariucci F, et al. Rituximab plus HyperCVAD alternating with high dose cytarabine and methotrexate for the initial treatment of patients with mantle cell lymphoma, a multicentre trial from Gruppo Italiano Studio Linfomi. Br J Haematol. 2012;156(3):346–53. doi: 10.1111/j.1365-2141.2011.08958.x.

  8. Le Gouill S, Thieblemont C, Oberic L, et al. Rituximab after Autologous Stem-Cell Transplantation in Mantle-Cell Lymphoma. N Engl J Med. 2017;377(13):1250–60. doi: 10.1056/nejmoa1701769.

  9. Воробьев В.И., Кравченко С.К., Гемджян Э.Г. и др. Мантийноклеточная лимфома: программное лечение первичных больных в возрасте до 65 лет. Клиническая онкогематология. 2013;6(3):274–81.

    [Vorob’ev VI, Kravchenko SK, Gemdzhian EG, et al. Mantle cell lymphoma: program therapy for untreated patients under 65 years. Klinicheskaya onkogematologiya. 2013;6(3):274–81. (In Russ)]

  10. Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. 2013;381(9873):1203–10. doi: 10.1016/s0140-6736(12)61763-2.

  11. Flinn IW, van der Jagt R, Kahl BS, et al. Randomized trial of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment of indolent NHL or MCL: the BRIGHT study. Blood. 2014;123(19):2944–52. doi: 10.1182/blood-2013-11-531327.

  12. Kluin-Nelemans HC, Hoster E, Hermine O, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012;367(6):520–31. doi: 10.1056/nejmoa1200920.

  13. Robak T, Huang H, Jin J, et al. Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med. 2015;372(10):944–53. doi: 10.1056/nejmoa1412096.

  14. Fisher RI, Bernstein SH, Kahl BS, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol, 2006;24(30):4867–74. doi: 10.1200/jco.2006.07.9665.

  15. Goy A, Sinha R, Williams ME, et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J Clin Oncol. 2013;31(29):3688–95. doi: 10.1200/jco.2013.49.2835.

  16. Dreyling M, Jurczak W, Jerkeman M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet. 2016;387(10020):770–8. doi: 10.1016/s0140-6736(15)00667-4.

  17. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013,369(6):507–16. doi: 10.1056/nejmoa1306220.

  18. Davids SM, Roberts AW, Seymour JF, et al. Phase I First-in-Human Study of Venetoclax in Patients with Relapsed or Refractory Non-Hodgkin Lymphoma. J Clin Oncol. 2017;35(8):826–33. doi: 10.1200/jco.2016.70.4320.

  19. Khan WN. Colonel Bruton’s kinase defined the molecular basis of X-linked agammaglobulinemia, the first primary immunodeficiency. J Immunol. 2012;188(7):2933–5. doi: 10.4049/jimmunol.1200490.

  20. Herrera AF, Jacobsen ED. Ibrutinib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2014;20(21):5365–71. doi: 10.1158/1078-0432.ccr-14-0010.

  21. Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107(29):13075–80. doi: 10.1073/pnas.1004594107.

  22. Cinar M, Hamedani F, Mo Z, et al. Bruton tyrosine kinase is commonly over expressed in mantle cell lymphoma and its attenuation by Ibrutinib induces apoptosis. Leuk Res. 2013;37(10):1271–7. doi: 10.1016/j.leukres.2013.07.028.

  23. de Rooij MFM, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4. doi: 10.1182/blood-2011-11-390989.

  24. Ponader S, Chen S-S, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9. doi: 10.1182/blood-2011-10-386417.

  25. Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31(2):119–32. doi: 10.3109/08830185.2012.664797.

  26. Herman SE, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96. doi: 10.1182/blood-2011-01-328484.

  27. Cheng S, Ma J, Guo A, et al. BTK inhibition targets in vivo CLL proliferation through its effects on B-cell receptor signaling activity. Leukemia. 2014;28(3):649–57. doi: 10.1038/leu.2013.358.

  28. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94. doi: 10.1200/jco.2012.42.7906.

  29. Wang M, Rule S, Martin P, et al. Single-agent ibrutinib demonstrates safety and durability of response at 2 years follow-up in patients with relapsed or refractory mantle cell lymphoma: updated results of an international, multicenter, open-label phase 2 study. Blood. 2014;124(21):4453, abstract.

  30. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. doi: 10.1200/jco.2013.54.8800.

  31. Rule S, Dreyling M, Goy A, et al. Outcomes in 370 patients with mantle cell lymphoma treated with ibrutinib: a pooled analysis from three open-label studies. Br J Haematol. 2017;179(3):430–8. doi: 10.1111/bjh.14870.

  32. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16. doi: 10.1056/nejmoa1306220.

  33. Cheah CY, Chihara D, Romaguera JE, et al. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes. Ann Oncol. 2015;26(6):1175–9. doi: 10.1093/annonc/mdv111.

  34. Martin P, Maddocks K, Noto K, et al. Poor overall survival of patients with ibrutinib-resistant mantle cell lymphoma. Blood. 2014;124(21):3047, abstract.

  35. Balasubramanian S, Schaffer M, Deraedt W, et al. Mutational analysis of patients with primary resistance to single-agent ibrutinib in relapsed or refractory mantle cell lymphoma (MCL). Blood. 2014;124(21):78, abstract.

  36. Woyach JA, Furman RR, Liu T-M, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94. doi: 10.1056/nejmoa1400029.

  37. Sarkozy C, Traverse-Glehen A, Bachy E, et al. Comparative Effectiveness of Single-Agent Ibrutinib in the Ray Trial Versus Real-World Treatment in the Lyon-Sud Database in Patients with Relapsed or Refractory Mantle Cell Lymphoma. Blood. 2017;130: 2770, abstract.

Analysis Results of the Regional Registry of Patients with Diffuse Large B-cell Lymphoma: Risk Factors and Chemo-Immunotherapy Issues

KD Kaplanov1,2, NP Volkov1, TYu Klitochenko1, IV Matveeva1, AL Shipaeva1, MN Shirokova1, NV Davydova3, EG Gemdzhian4, DS Abramov5, DM Konovalov5, GL Snigur2, NA Red’kina1

1 Volgograd Regional Clinical Oncology Dispensary No. 1, 78 Zemlyachki str., Volgograd, Russian Federation, 400138

2 Volgograd Medical Scientific Center, 1G Rokossovskogo str., Volgograd, Russian Federation, 400081

3 Consultation and Diagnosis Polyclinic No. 2, 114A Angarskaya str., Volgograd, Russian Federation, 400081

4 National Medical Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

5 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

For correspondence: Kamil’ Daniyalovich Kaplanov, MD, PhD, 78 Zemlyachki str., Volgograd, Russian Federation, 400138; e-mail: kamilos@mail.ru

For citation: Kaplanov KD, Volkov NP, Klitochenko TYu, et al. Analysis Results of the Regional Registry of Patients with Diffuse Large B-cell Lymphoma: Risk Factors and Chemo-Immunotherapy Issues. Clinical oncohematology. 2019;12(2):154–64.

DOI: 10.21320/2500-2139-2019-12-2-154-164


ABSTRACT

Background & Aims. At least one third of patients with diffuse large B-cell lymphoma (DLBCL) are resistant to first-line therapy. R-CHOP chemo-immunotherapy does not yield acceptable results in high-risk patients. Effectiveness of options based either on increasing the dose intensity or on including auto-HSCT into the first-line therapy was not supported by the results of controlled studies. With this background the present study focuses on options, issues and failures of first-line on the basis of long-term follow-up of DLBCL patient population in the Volgograd Region.

Materials & Methods. From 2004 to 2017 the population-based registry of the Hematology Department in the Volgograd Regional Clinical Oncology Dispensary included all 492 primary DLBCL patients: 235 (48 %) men and 257 (52 %) women aged 18 to 88 years. Mean and median age was 59 and 61 years, respectively. CHOP therapy was administered to 206 (42 %) patients, and 223 (45 %) patients received R-CHOP. Other regimens including NHL-BFM-90 and R-DA-EPOCH were used only in 63 (13 %) patients. Second- and third-line therapies were administered to 145 (30 %) and 54 (11 %) patients, respectively. Value of the International Prognostic Index (IPI) and immunomorphologic characteristics was determined by multivariate Cox regression analysis. Pharmacoeconomic aspect of first-line therapy failures was analyzed using Markov model.

Results. Improvement of DLBCL therapy effects with the use of R-CHOP chemo-immunotherapy is particularly obvious in the groups with favorable and intermediate prognosis with 5-year overall survival (OS) of 90 % and 69 %, respectively. R-CHOP results are not considered to be satisfactory in the high-risk group: 5-year OS was 38 %. Pharmacoeconomic analysis proves the advantage of chemo-immunotherapy strategy in comparison with the period before rituximab era in terms of the life years gained (LYG) and the incremental cost-effectiveness ratio (ICER). With respect to immunotherapy effects the most significant immunomorphologic parameter is bcl-2 tumor cell expression. In the group of patients with bcl-2 > 50 % 5-year OS was 61 % with median of 88 months, event-free survival (EFS) was 52 % with median of 62 months. In the group without bcl-2 expression above the threshold 5-year OS and EFS were 88 % and 75 %, respectively, medians were not achieved. With c-myc and bcl-2 coexpression EFS and OS appeared to be even worse: 5-year EFS was 29 % with median of 6 months, and 5-year OS was 31 % with median of 15 months.

Conclusion. The analysis of actual practice demonstrates the need for new options of first-line therapy for DLBCL high-risk patients and also for introducing new discriminating prognostic factors which include the IPI-independent ones.

Keywords: diffuse large B-cell lymphoma, R-CHOP, chemoimmunotherapy, survival, pharmacoeconomics, Markov model, life years gained (LYG), incremental cost-effectiveness ratio (ICER).

Received: July 16, 2018

Accepted: January 10, 2019

Read in PDF 


REFERENCES

  1. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1998;16(8):2780–95. doi: 10.1200/JCO.1998.16.8.2780.

  2. Smith A, Howell D, Patmore R, et al. Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br J Cancer. 2011;105(11):1684–92. doi: 10.1038/bjc.2011.450.

  3. Cunningham D, Hawkes EA, Jack A, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet. 2013;381(9880):1817–26. doi: 10.1016/S0140-6736(13)60313-X.

  4. Ziepert, M, Hasenclever D, Kuhnt E, et al. Standard international prognostic index remains a valid predictor of outcome for patients with aggressive CD20+ B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(14):2373–80. doi: 10.1200/JCO.2009.26.2493.

  5. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.

  6. Sehn LH, Gascoyne RD. Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood. 2015;125(1):22–32. doi: 10.1182/blood-2014-05-577189.

  7. Tilly H, Gomes da Silva M, Vitolo U, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v116–25. doi: 10.1093/annonc/mdv304.

  8. Prochazka KT, Melchardt T, Posch F, et al. NCCN-IPI score-independent prognostic potential of pretreatment uric acid levels for clinical outcome of diffuse large B-cell lymphoma patients. Br J Cancer. 2016;115(10):1264–72. doi: 10.1038/bjc.2016.325.

  9. Montalban C, Diaz-Lopez A, Dlouhy I, et al. Validation of the NCCN-IPI for diffuse large B-cell lymphoma (DLBCL): the addition of beta2-microglobulin yields a more accurate GELTAMO-IPI. Br J Haematol. 2017;176(6):918–28. doi: 10.1111/bjh.14489.

  10. Wight J, Chong G, Grigg A, et al. Prognostication of diffuse large B-cell lymphoma in the molecular era: moving beyond the IPI. Blood. 2018;32(5):400–15. doi: 10.1016/j.blre.2018.03.005.

  11. Khor S, Beca J, Krahm M, et al. Real world costs and cost-effectiveness of Rituximab for diffuse large B-cell lymphoma patients: A population-based analysis. BMC Cancer. 2014;14(1):586. doi: 10.1186/1471-2407-14-586.

  12. Van Keep M, Gairy K, Seshagiri D, et al. Cost-effectiveness analysis of bortezomib in combination with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (VR-CAP) in patients with previously untreated mantle cell lymphoma. BMC Cancer. 2016;16(1):598. doi: 10.1186/s12885-016-2633-2.

  13. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Международный прогностический индекс при распространенных стадиях лимфомы Ходжкина в условиях современной терапии. Клиническая онкогематология. 2013;6(3):294–302.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. International prognostic score in advanced Hodgkin’s lymphoma. Klinicheskaya onkogematologiya. 2013;6(3):294–302. (In Russ)]

  14. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Эффективность программ химиотерапии первой линии при различных стадиях лимфомы Ходжкина. Клиническая онкогематология. 2012;5(1):22–9.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. Efficacy of first line chemotherapy programs for different stages of Hodgkin’s lymphomas. Klinicheskaya onkogematologiya. 2012;5(1):22–9. (In Russ)]

  15. Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Первая линия терапии лимфомы из клеток зоны мантии: анализ эффективности и клинико-экономическая оценка. Клиническая онкогематология. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159.

    [Kaplanov KD, Volkov NP, Klitochenko TYu, et al. First-Line Treatment of Mantle-Cell Lymphoma: Analysis of Effectiveness and Cost-Effectiveness. Clinical oncohematology. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159. (In Russ)]

  16. Abner EL, Charnigo RJ, Kryscio RJ, et al. Markov chains and semi-Markov models in time-to-event analysis. J Biom Biostat. 2013;S1:e001. doi: 10.4172/2155-6180.S1-e001.

  17. Wyndham W, Jung sin-Ho, Brandelyn P, et al. Phase III Randomized Study of R-CHOP Versus DA-EPOCH-R and Molecular Analysis of Untreated Diffuse Large B-Cell Lymphoma: CALGB/Alliance 50303. Blood. 2016;128:469.

  18. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.

  19. Wang HI, Smith A, Aas E, et al. Treatment cost and life expectancy of diffuse large B-cell lymphoma (DLBCL): a discrete event simulation model on a UK population-based observational cohort. Eur J Health Econ. 2017;18(2):255–67. doi: 10.1007/s10198-016-0775-4.

  20. Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010; 28(27):4184–90. doi: 10.1200/JCO.2010.28.1618.

  21. Gisselbrecht C, Schmitz N, Mounier N, et al. Rituximab maintenance therapy after autologous stem-cell transplantation in patients with relapsed CD20(+) diffuse large B-cell lymphoma: final analysis of the collaborative trial in relapsed aggressive lymphoma. J Clin Oncol. 2012;30(36):4462–9. doi: 10.1200/JCO.2012.41.9416.

  22. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-11-817775.

  23. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  24. Gang AO, Pedersen M, d’Amore F, et al. A clinically based prognostic index for diffuse large B-cell lymphoma with a cut-off at 70 years of age significantly improves prognostic stratification: population-based analysis from the Danish Lymphoma Registry. Leuk Lymphoma. 2015;56(9):2556–62. doi: 10.3109/10428194.2015.1010078.

  25. Zhou Z, Sehn LH, Rademaker AW, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood 2014;123(6):837–42. doi: 10.1182/blood-2014-06-583476.

  26. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41. doi: 10.1002/sim.2331.

  27. Harrell FE. Regression modeling strategies. New York: Springer-Verlag; 2001. doi: 10.1007/978-1-4757-3462-1.

  28. Biccler J, Eloranta S, de Nully Brown P, et al. Simplicity at the cost of predictive accuracy in diffuse large B-cell lymphoma: a critical assessment of the R-IPI, IPI, and NCCN-IPI. Cancer Med. 2018;7(1):114–22. doi: 10.1002/cam4.1271.

  29. Johnson NA, Slack GW, Savage KJ, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3452–9. doi: 10.1200/JCO.2011.41.0985.

  30. Schneider KMС, Banks PM, Collie AM, et al. Dual expression of MYC and BCL2 proteins predicts worse outcomes in diffuse large B-cell lymphoma. Leuk Lymphoma. 2016;57(7):1640–8. doi: 10.3109/10428194.2015.1101099.

  31. Barrans SL, Evans PA, O’Connor SJ, et al. The t(14;18) is associated with germinal center-derived diffuse large B-cell lymphoma and is a strong predictor of outcome. Clin Cancer Res. 2003;9(6):2133–9.

  32. Tsuyama N, Sakata S, Baba S, et al. BCL2 expression in DLBCL: reappraisal of immunohistochemistry with new criteria for therapeutic biomarker evaluation. Blood. 2017;130(4):489–500. doi: 10.1182/blood-2016-12-759621.

  33. Burton C, Barrans S, Ahmed S, et al. Cross-Platform validation of gene expression profiling (GEP) based cell of origin classification in a clinical laboratory setting. Hematol Oncol. 2017;35(S2):107. doi: 10.1002/hon.2437_96.

Blinatumomab in the Treatment of Acute Lymphoblastic Leukemia: Russian Multicenter Clinical Trial

SN Bondarenko1, EN Parovichnikova2, AA Maschan3, OYu Baranova4, TV Shelekhova5, VA Doronin6, VYa Mel’nichenko7, KD Kaplanov8, OS Uspenskaya9, AN Sokolov2, NV Myakova3, IS Moiseev1, IV Markova1, EI Darskaya1, AG Smirnova1, TA Bykova1, BI Ayubova1, IA Samorodova1, EV Babenko1, IM Barkhatov1, TL Gindina1, AD Kulagin1, BV Afanas’ev1

1 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

2 National Medical Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

3 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

4 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

5 VI Razumovskii Saratov State Medical University, 112 Bol’shaya Kazach’ya str., Saratov, Russian Federation, 410012

6 Municipal Clinical Hospital No. 40, 7 Kasatkina str., Moscow, Russian Federation, 129301

7 NI Pirogov Russian National Medical Center of Surgery, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

8 Volgograd Regional Clinical Oncologic Dispensary, 78 Zemlyachki str., Volgograd, Russian Federation, 400138

9 Leningrad Regional Clinical Hospital, 45–49 Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

For correspondence: Sergei Nikolaevich Bondarenko, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)338-62-72; e-mail: dr.sergeybondarenko@gmail.com

For citation: Bondarenko SN, Parovichnikova EN, Maschan AA, et al. Blinatumomab in the Treatment of Acute Lymphoblastic Leukemia: Russian Multicenter Clinical Trial. Clinical oncohematology. 2019;12(2):145–53.

DOI: 10.21320/2500-2139-2019-12-2-145-153


ABSTRACT

Background. Recent advances in the treatment of relapsed/refractory acute lymphoblastic leukemia (R/R ALL) are attributed to the implementation of immunotherapy methods which include blinatumomab, the bispecific engager of a patient’s endogenous T-cells (Blincyto™, Amgen®) (BC).

Aim. To assess BC efficacy and toxicity in the treatment of R/R ALL patients with persistence of minimal tumor clone before and after allogeneic hematopoietic stem cell transplantation (allo-HSCT).

Materials & Methods. The trial included 66 B-ALL patients with CD19+ aged 18 to 72 years, 23 (35 %) of them with measurable minimal residual disease (MRD+) and 43 (65 %) with R/R ALL. In 18 (27 %) patients BC was administered after prior allo-HSCT.

Results. In the overall group 2-year overall survival (OS) and disease-free survival (DFS) in patients with response to BC treatment were 53 % and 38 % respectively. In the R/R ALL group complete remission (CR) was achieved in 29 (67 %) patients including 24 (83 %) patients with negative MRD. CR rate was higher in standard cytogenetic risk group (73 %) in comparison with high-risk group (59 %). In patients with more or less than 50 % blast cells in bone marrow CR rate was 85 % and 61 %, respectively. When BC was administered after prior allo-HSCT and without it CR rate was 80 % and 60 %, respectively. In R/R ALL patients with response to BC 2-year OS and DFS were 40 % and 26 %, respectively, in the MRD+ group of ALL patients they were 66 % and 51 %, respectively. Relapse rate was lower in the group with allo-HSCT than in the group without it, i.e. 21 % vs. 55 %. Adverse events of grade 3–4 were observed in 25 (38 %) patients. In 11 (16 %) patients BC therapy had to be discontinued, in 5 (7 %) patients it was terminated prior to the scheduled date.

Conclusion. BC efficacy is higher in the MRD+ group and in R/R ALL patients with smaller tumor mass. BC treatment after allo-HSCT yields remissions in most patients and can be combined with immune-adoptive therapy.

Keywords: acute lymphoblastic leukemia, targeted therapy, blinatumomab.

Received: August 22, 2018

Accepted: January 18, 2019

Read in PDF 


REFERENCES

  1. Gokbuget N, Stanze D, Beck J, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. 2012;120(10):2032–41. doi: 10.1182/blood-2011-12-399287.

  2. Faderl S, O’Brien S, Pui C-H, et al. Adult Acute Lymphoblastic Leukemia. Cancer. 2010;116(5):1165–76. doi: 10.1002/cncr.24862.

  3. Gokbuget N, Dombret H, Ribera J-M, et al. International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractor y acute lymphoblastic leukemia. Haematologica. 2016;101(12):1524–33. doi: 10.3324/haematol.2016.144311.

  4. Pavlu J, Labopin M, Zoellner AK, et al. Allogeneic Hematopoietic Cell Transplantation for Primary Refractory Acute Lymphoblastic Leukemia: A Report From the Acute Leukemia Working Party of the EBMT. Cancer. 2017;123(11):1965–70. doi: 10.1002/cncr.30604.

  5. Bondarenko SN, Moiseev IS, Slesarchuk OA, et al. Allogeneic hematopoietic stem cell transplantation in children and adults with acute lymphoblastic leukemia. Cellular Therapy and Transplantation. 2016;5(2):12–20. doi: 10.18620/1866-8836-2016-5-2-12-20.

  6. Паровичникова Е.Н., Соколов А.Н., Троицкая В.В. и др. Острые Ph-негативные лимфобластные лейкозы взрослых: факторы риска при использовании протокола ОЛЛ-2009. Терапевтический архив. 2016;88(7):15–24.

    [Parovichnikova EN, Sokolov AN, Troitskaya VV, et al. Acute Ph-negative lymphoblastic leukemias in adults: Risk factors in the use of the ALL-2009 protocol. Terapevticheskii arkhiv. 2016;88(7):15–24. (In Russ)]

  7. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117(5):1137–46. doi: 10.1172/jci31405.

  8. Biagi E, Marin V, Attianese GM, et al. Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies. Haematologica. 2007;92(3):381–8. doi: 10.3324/haematol.10873.

  9. Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell–engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119(26):6226–33. doi: 10.1182/blood-2012-01-400515.

  10. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/s1470-2045(14)71170-2.

  11. Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–31. doi: 10.1182/blood-2017-08-798322.

  12. Kantarjian H, Stein AS, Gokbuget N, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J Med. 2017;376(9):836–47. doi: 10.1056/NEJMoa1609783.

  13. Zugmaier G, Gokbuget N, Klinger M, et al. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment. Blood. 2015;126(24):2578–84. doi: 10.1182/blood-2015-06-649111.

Epidemiology of Multiple Myeloma in Novosibirsk (Siberian Federal District)

NV Skvortsova1, TI Pospelova1, IB Kovynev1, GS Soldatova2, IN Nechunaeva3

1 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

2 Novosibirsk National Research State University, 2 Pirogova str., Novosibirsk, Russian Federation, 630090

3 Municipal Clinical Hospital No. 2 of Novosibirsk Region, Center of Hematology, 21 Polzunov str., Novosibirsk, Russian Federation, 630051

For correspondence: Nataliya Valer’evna Skvortsova, MD, PhD, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091; Tel.: +7(905)955-59-91; e-mail: nata_sk78@mail.ru.

For citation: Skvortsova NV, Pospelova TI, Kovynev IB, et al. Epidemiology of Multiple Myeloma in Novosibirsk (Siberian Federal District). Clinical oncohematology. 2019;12(1):86–94.

DOI: 10.21320/2500-2139-2019-12-1-86-94


ABSTRACT

Aim. To analyze major epidemiological parameters of multiple myeloma, i.e. registered incidence, prevalence, mortality, and survival in Novosibirsk, megalopolis in Siberian Federal District.

Materials & Methods. The study covered medical records of 335 patients with newly diagnosed multiple myeloma (MM) treated from January 1, 2006 to December 31, 2016 at the Center of Hematology in Novosibirsk. Median age was 67 years (range 30–89), the trial enrolled 218 (65 %) women and 117 (35 %) men.

Results. Over the last decade the mean registered MM incidence in Novosibirsk increased by 1.6 times, and MM prevalence increased by 4.9 times. These parameters correspond to 2.4 and 13.8 per 100,000 population per year, respectively, with the linear trend of growth which demonstrates not only the increased number of patients with newly diagnosed MM, but the increased longevity of them. MM incidence and prevalence parameters are significantly higher in women than in men, which most probably can be accounted for by specific administrative factors in the Novosibirsk region. Yearly mortality of MM patients decreased from 28.3 % to 8.2 % with a negative linear trend over the entire analyzed period, which is most likely to be associated with availability of new drugs and transplantation procedures.

Conclusion. The obtained epidemiological data will enable to plan the provision of timely and effective care for MM patients and to elaborate a system of judicious allocation of costly equipment and drugs.

Keywords: multiple myeloma, epidemiology, registered incidence, prevalence, mortality, survival.

Received: September 24, 2018

Accepted: December 27, 2018

Read in PDF 


REFERENCES

  1. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2).

    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). (In Russ)]

  2. Kyle RA, Rajkumar SV. Epidemiology of the plasma-cell disorders. Best Pract Res Clin Haematol. 2007;20(4):637–64. doi: 10.1016/j.beha.2007.08.001.

  3. Waxman AJ, Mink PJ, Devesa SS, et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study. Blood. 2010;116(25):5501–6. doi: 10.1182/blood-2010-07-298760.

  4. de Queiroz Crusoe E, Marinho da Silva AM, Agareno J, et al. Multiple myeloma: a rare case in an 8-year-old child. Clin Lymph Myel Leuk. 2015;15(1):e31–3. doi: 10.1016/j.clml.2014.08.004.

  5. Аль-Ради Л.С., Белоусова И.Э., Барях Е.А. и др. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Современная онкология. 2013;Экстравыпуск:6–102.

    [Al’-Radi LS, Belousova IE, Baryakh EA, et al. Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders. Sovremennaya onkologiya. 2013;Special Issue:6–102. (In Russ)]

  6. Ковынев И.Б., Поспелова Т.И., Агеева Т.А. и др. Частота и структура неходжкинских злокачественных лимфом в Новосибирске, НСО и городах Сибирского федерального округа. Бюллетень Сибирского отделения РАМН. 2006;26(4):175–81.

    [Kovynev IB, Pospelova TI, Ageeva TA, et al. Incidence and structure of non-Hodgkin’s malignant lymphomas in Novosibirsk, Novosibirsk Region, and cities of Siberian Federal District. Byulleten’ Sibirskogo otdeleniya RAMN. 2006;26(4):175–81. (In Russ)]

  7. Kazandjian D. Multiple myeloma epidemiology and survival: A unique malignance. Semin Oncol. 2016;43(6):676–81. doi: 10.1053/j.seminoncol.2016.11.004.

  8. Becker N. Epidemiology of multiple myeloma. Rec Res Cancer Res. 2011;183:25–35. doi: 10.1007/978-3-540-85772-3_2.

  9. Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin. 2007;57(1):43–66. doi: 10.3322/canjclin.57.1.43.

  10. Ruzafa JC, Merinopoulou E, Baggaley RF, et al. Patient population with multiple myeloma and transitions across different lines of therapy in the USA: an epidemiologic model. Pharmacoepidemiol Drug Saf. 2016;25(8):871–9. doi: 10.1002/pds.3927.

  11. Rosenberg PS, Barker KA, Anderson WF. Future distribution of multiple myeloma in the United States by sex, age, and race/ethnicity. Blood. 2015;125(2):410–2. doi: 10.1182/blood-2014-10-609461.

  12. Yamabe K, Inoue S, Hiroshima C. Epidemiology and burden of multiple myeloma in Japan: a systematic review. Value Health. 2015;18(7):A449. doi: 10.1016/j.jval.2015.09.1129.

  13. Hong J, Lee JH. Recent advances in multiple myeloma: a Korean perspective. Korean J Intern Med. 2016;31(5):820–34. doi: 10.3904/kjim.2015.408.

  14. Chen XC, Chen XZ. Epidemiological differences in haematological malignancies between Europe and China. Lancet Oncol. 2014;15(11):е471–2. doi: 10.1016/S1470-2045(14)70441-3.

  15. Chen JH, Chung CH, Wang YC, et al. Prevalence and mortality-related factors of multiple myeloma in Taiwan. PLoS One. 2016;11(12):e0167227. doi: 10.1371/journal.pone.0167227.

  16. Лучинин А.С., Семочкин С.В., Минаев Н.В. и др. Эпидемиология множественной миеломы по данным анализа популяционного регистра Кировской области. Онкогематология. 2017;12(3):50–6. doi: 10.17650/1818-8346-2017-12-3-50-56.

    [Luchinin AS, Semochkin SV, Minaeva NV, et al. Epidemiology of Multiple Myeloma According to the Кirov Region Population Registers. Oncohematology. 2017;12(3):50–6. doi: 10.17650/1818-8346-2017-12-3-50-56. (In Russ)]

  17. Kristinsson SY, Landgren O, Dickman PW, et al. Patterns of survival in multiple myeloma: a population-based study of patients diagnosed in Sweden from 1973 to 2003. J Clin Oncol. 2007;25(15):1993–9. doi: 10.1200/jco.2006.09.0100.

  18. Brenner H, Gondos A, Pulte D. Recent major improvements in long-term survival of younger patients with multiple myeloma. Blood. 2008;111(5):2521–6. doi: 10.1182/blood-2007-08-104984.

  19. Schaapveld M, Visser O, Siesling S, et al. Improved survival among younger but not among older patients with multiple myeloma in the Netherlands, a population-based study since 1989. Eur J Cancer. 2010;46(1):160–9. doi: 10.1016/j.ejca.2009.07.006.

  20. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20. doi: 10.1182/blood-2007-10-116129.

  21. Altekruse SF, Kosary CL, Krapcho M, et al. SEER Cancer Statistics Review. Bethesda, MD: National Cancer Institute; 1975–2007. Available from: http://seer.cancer.gov/csr/1975_2007/ (accessed 6.11.2018).

  22. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2015 г. (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена, 2017. 250 с.

    [Kaprin AD, Starinskii VV, Petrova GV. Zlokachestvennye novoobrazovaniya v Rossii v 2015 g. (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2015: incidence and mortality.) Moscow: PA Herzen MNIOI Publ.; 2017. 250 p. (In Russ)]

  23. Володичева Е.М., Воробьева Т.В., Пивник А.В. Анализ заболеваемости множественной миеломой в Тульской области. Проблемы гематологии и переливания крови. 2000;4:31–4.

    [Volodicheva EM, Vorob’eva TV, Pivnik AV. Analysis of multiple myeloma incidence in the Tula region. Problemy gematologii i perelivaniya krovi. 2000;4:31–4. (In Russ)]

  24. Капорская Т.С., Киселев И.В., Силин А.П. Анализ заболеваемости множественной миеломой в Иркутской области. Сибирский медицинский журнал. 2006;66(8):65–7.

    [Kaporskaya TS, Kiselev IV, Silin AP. Analysis of multiple myeloma incidence in the Irkutsk region. Sibirskii meditsinskii zhurnal. 2006;66(8):65–7. (In Russ)]

  25. Гильфанова Л.Р., Крисанкова К.А. Новосибирская агломерация: проблемы и перспективы развития. Новая наука: теоретический и практический взгляд. 2017;1(4):116–9.

    [Gil’fanova LR, Krisankova KA. Novosibirsk agglomeration: challenges and prospects for the development. Novaya nauka: teoreticheskii i prakticheskii vzglyad. 2017;1(4):116–9. (In Russ)]

  26. Региональная база статистических данных «Новосибирская область» [электронный документ]. Доступно по: http://www.novosibstat.gks.ru. Ссылка активна на 6.11.2018.

    [Regional statistical database “Novosibirsk region” [Internet]. Available from: http://www.novosibstat.gks.ru. (accessed 6.11.2018) (In Russ)]

  27. Durie BGM, Harousseau J-L, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73. doi: 10.1038/sj.leu.2404284.

  28. Pulte D, Jansen L, Castro FA, et al. Trends in survival of multiple myeloma patients in Germany and the United States in the first decade of the 21st century. Br J Haematol. 2015;171(2):189–96. doi: 10.1111/bjh.13537.

  29. Лосева М.И., Поспелова Т.И., Гавалова Р.Ф. и др. Полиорганная патология у больных гемобластозами в отдаленном периоде лечения. Терапевтический архив. 1999;71(7):39–42.

    [Loseva MI, Pospelova TI, Gavalova RF, et al. Multiple organ failure in patients with tumors of hematopoietic tissue during long-term follow-up. Terapevticheskii arkhiv. 1999;71(7):39–42. (In Russ)]

Diagnosis of Acute Lymphoblastic Leukemia Originating From T-Lineage Precursors and Approaches to Minimal Residual Disease Monitoring

OA Chernysheva, LYu Grivtsova, IN Serebryakova, NA Kupryshina, EN Sholokhova, MA Shervashidze, AD Palladina, BV Kurdyukov, AV Popa, NN Tupitsyn

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Ol’ga Alekseevna Chernysheva, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-14-30; e-mail: beznos.olga@gmail.com

For citation: Chernysheva OA, Grivtsova LYu, Serebryakova IN, et al. Diagnosis of Acute Lymphoblastic Leukemia Originating From T-Lineage Precursors and Approaches to Minimal Residual Disease Monitoring. Clinical oncohematology. 2019;12(1):79–85.

DOI: 10.21320/2500-2139-2019-12-1-79-85


ABSTRACT

Background. Minimal residual disease (MRD) is an independent prognostic factor in acute lymphoblastic leukemia (ALL) in children. The immunological assessment of MRD cell count is based on aberrant immunophenotype of tumor lymphoblasts. However, in the case of ALL originating from T-lineage precursor cells (T-ALL) no clear aberrancy criteria have been defined, yet. Flow-cytometric MRD assessment in T-ALL can be based on characteristics of normal T-cell ontogenesis, i.e. the absence of normal T-lineage precursor cells (T-LP) in bone marrow.

Aim. To assess the feasibility of immunological method of flow cytometry for MRD detection based on T-LP immunophenotype on Days 15 and 33 of treatment of T-ALL children.

Materials & Methods. The analysis included the data on primary immunophenotype and MRD assessment on Dayы 15 and 33 of treatment of 31 T-ALL patients in the age of 2–17 years. In the majority of cases (61.3 %) the cortical/thymic immuno-subvariant of ALL was detected, in the rest of cases (38.7 %) it was the pre-T-cell one. Diagnosis was based on cumulative results of morphocytochemical and immunological bone marrow analyses. Assessing the MRD state the morphological and immunological analyses of bone marrow aspirate were carried out in parallel with one and the same tube. All patients enrolled in the trial were treated at Scientific Research Institute of Pediatric Oncology and Hematology of NN Blokhin National Medical Cancer Research Center according to the ALL IC-BFM 2009 protocol.

Results. Our study demonstrated that at all therapy stages MRD can be assessed by the unified immunological method based on detecting cyCD3+CD7+/++smCD3 (T-LP) immunophenotype cells. It is important to ensure that the correct clones of monoclonal antibodies are used for detecting CD3 cytoplasmic and membrane molecules (UCHT1 and SK7, respectively). Standard risk group included no patients. The majority of patients (76.2 %) treated according to ALL IC-BFM 2009 protocol were assigned to medium risk group on Day 15 of treatment. By Day 33 a quarter of them (25 %) was included into high risk group.

Conclusion. The capabilities of multicolor flow cytometry allow for the most complete characterization of primary immunophenotype of tumor T-cell lymphoblasts for further search of leukemia-associated immunophenotypes. Specific ontogenesis features of normal T-cells enable unification of immunological approaches to MRD assessment at all stages of T-ALL therapy.

Keywords: T-lineage acute lymphoblastic leukemia, multicolor flow cytometry, minimal residual disease, leukemia-associated immunophenotype.

Received: June 21, 2018

Accepted: December 18, 2018

Read in PDF 


REFERENCES

  1. Clavell LA, Gelber RD, Cohen HJ. et al. A. Four-agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia. N Engl J Med. 1986;315(11):657–63. doi: 10.1056/nejm198609113151101.

  2. Crist WM, Shuster JJ, Falletta J, et al. Clinical features and outcome in childhood T-cell leukemia-lymphoma according to stage of thymocyte differentiation: a Pediatric Oncology Group Study. Blood. 1988;72(6):1891–7.

  3. Ludwig WD, Harbott J, Bartram CR, et al. Incidence and prognostic significance of immunophenotypic subgroups in childhood acute lymphoblastic leukemia: experience of the BFM study 86. Rec Res Cancer Res. 1993;131:269–82. doi: 10.1007/978-3-642-84895-7_24.

  4. Pui CH, Behm FG, Crist WM. Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood. 1993;82(2):343–62.

  5. Uckun FM, Sensel MG, Sun L, et al. Biology and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood. 1998;91(3):735–46.

  6. Бойченко Э.Г., Попов А.М., Макарова Т.А. и др. Острый лимфобластный лейкоз из ранних предшественников Т-клеток. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2015;14(1):38–45.

    [Boichenko EG, Popov AM, Makarova TA, et al. Early T-cell precursor acute lymphoblastic leukemia. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2015;14(1):38–45. (In Russ)]

  7. Goldberg JM. Silverman LB, Levy DE, et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol. 20031;21(19):3616–22. doi:1200/JCO.2003.10.116.

  8. Moricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood. 2008;111(9):4477–89. doi: 10.1182/blood-2007-09-112920.

  9. Pui C-H, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78. doi: 10.1056/NEJMra052603.

  10. Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukaemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74. doi: 10.1200/JCO.2008.20.8934.

  11. Borowitz M, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s oncology group study. Blood. 2008;111(12):5477–85. doi: 10.1182/blood-2008-01-132837.

  12. Schrappe M, Valsecchi MG, Bartram CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118(8):2077–84. doi: 10.1182/blood-2011-03-338707.

  13. Fronkova E, Mejstrikova E, Avigad S, et al. Minimal residual disease (MRD) analysis in the non-MRD-based ALL IC-BFM 2002 Protocol for childhood ALL: is it possible to avoid MRD testing? Leukemia. 2008;22(5):989–97. doi: 10.1038/leu.2008.22.

  14. van Dongen JJM, Seriu T, Panzer-Grumayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(9142):1731–8. doi: 10.1016/s0140-6736(98)04058-6.

  15. Безнос О.А., Гривцова Л.Ю., Попа А.В. и др. Определение минимальной остаточной болезни при В-линейных острых лимфобластных лейкозах с использованием подходов EuroFlow. Клиническая онкогематология. 2017;10(2):158–68. doi: 21320/2500-2139-2017-10-2-158-168.

    [Beznos OA, Grivtsova LYu, Popa AV, et al. Evaluation of Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia Using EuroFlow Approaches. Clinical oncohematology. 2017;10(2):158–68. doi: 10.21320/2500-2139-2017-10-2-158-168. (In Russ)]

  16. Jaffe ES, Campo E, Harris NL, et al. Introduction and overview of the classification of lymphoid neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. edited by. Lyon: IARC Press; рр. 189–98.

  17. Borowitz MJ, Chan JKC, Bene M-C, Arber DA. T-lymphoblastic leukemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. edited by. Lyon: IARC Press; рр. 209–12.

  18. Gelin, C. Aubrit F, Phalipon A, et al. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J. 1989;8(11):3253–9. doi: 10.1002/j.1460-2075.1989.tb08485.x.

  19. Dworzak MN, Fritsch G, Buchinger P, et al. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood. 1994;83(2):415–25.

  20. Hamilton GA, Fellinger EJ, Schratter I, et al. Characterization of a human endocrine tissue and tumor-associated Ewing’s sarcoma antigen. Cancer Res. 1988;48(21):6127–31.

  21. Levy R, Dilley J, Fox RI, et al. A human thymus-leukemia antigen defined by hybridoma monoclonal antibodies. Proc Natl Acad Sci USA. 1979;76(12):6552–56. doi: 10.1073/pnas.76.12.6552.

  22. Bodger MP, Francis GE, Delia D, et al. A monoclonal antibody specific for immature human hemopoietic cells and T lineage cells. J Immunol. 1981;127(6):2269–74.

  23. Roshal M, Fromm JR, Winter S, et al. Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection. Cytometry B: Clin Cytom. 2010;78B(3):139–46. doi: 10.1002/cyto.b.20511.

  24. Janossy G, Coustan-Smith E, Campana D. The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: a study of 500 Leukemia. 1989;3(3):170–81.

Prognostic Value of the PRAME Gene Expression in T-Cell Lymphoproliferative Disorders

EA Penskaya1, VA Misyurin2, AE Misyurina1, SK Kravchenko1, LG Gorenkova1, LV Plastinina1, VV Tikhonova2, YuP Finashutina2, NA Lyzhko2, NN Kasatkina2, LA Kesaeva2, ON Solopova2, AV Misyurin2

1 National Medical Hematology Research Center, 4a Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Vsevolod Andreevich Misyurin, PhD in Biology, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(985)436-30-19; e-mail: vsevolod.misyurin@gmail.com

For citation: Penskaya EA, Misyurin VA, Misyurina AE, et al. Prognostic Value of the PRAME Gene Expression in T-Cell Lymphoproliferative Disorders. Clinical oncohematology. 2019;12(1):73–78.

DOI: 10.21320/2500-2139-2019-12-1-73-78


ABSTRACT

Background. T-cell lymphomas (T-CL) represent a heterogeneous group of malignant lymphoproliferative disorders characterized by unfavorable prognosis. The cancer-testis PRAME gene is notable for its spontaneous expression in transformed cells as observed in solid tumors, B-cell lymphoproliferative and chronic myeloproliferative diseases. Activity and clinical significance of PRAME in T-CL was not studied before, which determines the relevance and provides ground for the present trial.

Aim. To assess the clinical significance of the PRAME gene expression in T-CL.

Materials & Methods. PRAME gene expression level was measured in samples of lymph nodes, blood, and bone marrow from 35 T-CL patients. Among them 3 patients received allogeneic hematopoietic stem cell transplantation, and 6 patients received autologous hematopoietic stem cell transplantation. A correlation was established between the PRAME expression in bone marrow and peripheral blood with morphological markers of disseminated disease with bone marrow lesions and leukemic blood. PRAME expression level was correlated with survival parameters and tumor proliferative activity (Ki-67).

Results. PRAME activity was observed in 21 (60 %) patients. PRAME hyperexpression is associated with advanced stages of disease (= 0.0734), bone marrow lesions (= 0.0289), leukemic blood (= 0.0187), worsening of the overall survival (OS) (p = 0.0787) and event-free survival (EFS) (p = 0.7185), also after hematopoietic stem cell transplantation (= 0.2661 for OS and = 0.0452 for EFS), and with a high Ki-67 expression level (= 0.0155).

Conclusion. PRAME expression in T-CL is often observed and related with unfavorable clinical prognosis.

Keywords: PRAME, T-cell lymphoproliferative disorders, prognostic value.

Received: April 24, 2018

Accepted: December 27, 2018

Read in PDF 


REFERENCES

  1. Greer JP, Kinney MC, Loughran TP Jr. T cell and NK cell lymphoproliferative disorders. Hematology. 2001;2001(1):259–81. doi: 10.1182/asheducation-2001.1.259.

  2. Bo J, Zhao Y, Zhang S, et al. Long-term outcomes of peripheral blood stem cell transplantation for 38 patients with peripheral T-cell lymphoma. J Cancer Res Ther. 2016;12(3):1189–97. doi: 10.4103/0973-1482.189235.

  3. Мангасарова Я.К., Магомедова А.У., Кравченко С.К. и др. Восьмилетний опыт лечения агрессивных В-крупноклеточных лимфом средостения. Терапевтический архив. 2013;85(7):50–6.

    [Mangasarova YaK, Magomedova AU, Kravchenko SK, et al. Eight-year experience in treating aggressive mediastinal large B-cell lymphomas. Terapevticheskii arkhiv. 2013;85(7):50–6. (In Russ)]

  4. Turgeon ML. Clinical hematology: theory and procedures. Hagerstown, MD: Lippincott Williams & Wilkins; 2005. pp. 283.

  5. Горенкова Л.Г., Пенская Е.А., Кравченко С.К. и др. Лечение резистентных форм грибовидного микоза и синдрома Сезари. Клиническая онкогематология. 2017;10(3):366–71. doi: 10.21320/2500-2139-2017-10-3-366-371.

    [Gorenkova LG, Penskaya EA, Kravchenko SK, et al. Treatment of Drug-Resistant Mycosis Fungoides and Sezary Syndrome. Clinical oncohematology. 2017;10(3):366–71. doi: 10.21320/2500-2139-2017-10-3-366-371. (In Russ)]

  6. Мисюрин В.А. Клиническое значение экспрессии гена PRAME при онкогематологических заболеваниях. Клиническая онкогематология. 2018;11(1):26–33. doi: 10.21320/2500-2139-2018-11-1-26-33.

    [Misyurin VA. Clinical Significance of the PRAME Gene Expression in Oncohematological Diseases. Clinical oncohematology. 2018;11(1):26–33. doi: 10.21320/2500-2139-2018-11-1-26-33. (In Russ)]

  7. Мисюрин В.А. Прогностическое значение экспрессии гена PRAME при солидных опухолях. Иммунология. 2018;39(1):67–73. doi: 10.18821/0206-4952-2018-39-1-67-73.

    [Misyurin VA. Prognostic value of prame’s gene expression in solid tumors. Immunology. 2018;39(1):67–73. doi: 10.18821/0206-4952-2018-39-1-67-73. (In Russ)]

  8. Мисюрин В.А., Лукина А.Е., Мисюрин А.В. и др. Особенности соотношения уровней экспрессии генов PRAME и PML/RARα в дебюте острого промиелоцитарного лейкоза. Российский биотерапевтический журнал. 2014;13(1):9–16.

    [Misyurin VA, Lukina AE, Misyurin AV, et al. A ratio between gene expression levels of PRAME and PML/RARα at the onset of acute promyelocytic leukemia. Rossiiskii bioterapevticheskii zhurnal. 2014;13(1):9–16. (In Russ)]

  9. Santamaria C, Chillon MC, Garcia-Sanz R, et al. The relevance of preferentially expressed antigen of melanoma (PRAME) as a marker of disease activity and prognosis in acute promyelocytic leukemia. Haematologica. 2008;93(12):1797–805. doi: 10.3324/haematol.13214.

  10. Doolan P, Clynes M, Kennedy S, et al. Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res Treat. 2008;109(2):359–65. doi: 10.1007/s10549-007-9643-3.

  11. Nalini V, Segu R, Deepa PR, et al. Molecular insights on post-chemotherapy retinoblastoma by microarray gene expression analysis. Bioinform Biol Insights. 2013;7:289–306. doi: 10.4137/BBI.S12494.

  12. Mitsuhashi K, Masuda A, Wang YH, et al. Prognostic significance of PRAME expression based on immunohistochemistry for diffuse large B-cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2014;100(1):88–95. doi: 10.1007/s12185-014-1593-z.

  13. Мисюрин В.А., Мисюрин А.В., Кесаева Л.А. и др. Новые маркеры прогрессирования хронического миелолейкоза. Клиническая онкогематология. 2014;7(2):206–12.

    [Misyurin VA, Misyurin AV, Kesaeva LA, et al. New molecular markers of CML progression. Klinicheskaya onkogematologiya. 2014;7(2):206–12. (In Russ)]

  14. Matsushita M, Ikeda H, Kizaki M, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol. 2001;112(4):916–26. doi: 10.1046/j.1365-2141.2001.02670.x.

  15. Liggins AP, Lim SH, Soilleux EJ, et al. A panel of cancer-testis genes exhibiting broad spectrum expression in haematological malignancies. Cancer Immun. 2010;10:8.

  16. Wadelin FR, Fulton J, Collins HM, et al. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs. PLoS One. 2013;8(2):e58052. doi: 10.1371/journal.pone.0058052.

  17. Мисюрин В.А. Теория и практика иммунотерапии, направленной против антигена PRAME. Клиническая онкогематология. 2018;11(2):138–49. doi: 10.21320/2500-2139-2018-11-2-138-149. [Misyurin VA. Theory and practice of immunotherapy directed against the PRAME antigen. Clinical oncohematology. 2018;11(2):138–49. doi: 10.21320/2500-2139-2018-11-2-138-149. (In Russ)]

  18. Финашутина Ю.П., Мисюрин А.В., Ахлынина Т.В. и др. Получение рекомбинантного раково-тестикулярного белка PRAME и моноклональных антител к нему. Российский биотерапевтический журнал. 2015;4(3):29–36.

    [Finashutina YuP, Misyurin AV, Akhlynina TV, et al. Production of purified human recombinant antigen PRAME and specific monoclonal antibodies. Rossiiskii bioterapevticheskii zhurnal. 2015;(4)3:29–36. (In Russ)]

  19. Лыжко Н.А., Мисюрин В.А., Финашутина Ю.П. и др. Проявление цитостатического эффекта моноклональных антител к белку PRAME. Российский биотерапевтический журнал. 2016;15(4):53–8. doi: 10.17650/1726-9784-2016-15-4-53-58.

    [Lyzhko NA, Misyurin VA, Finashutina YuP, et al. Development of cytostatic effect of monoclonal antibodies to the protein PRAME. Rossiiskii bioterapevticheskii zhurnal. 2016;15(4):53–58. doi: 10.17650/1726-9784-2016-15-4-53-58. (In Russ)]

  20. Epping MT, Wang L, Plumb JA, et al. A functional genetic screen identifies retinoic acid signaling as a target of histone deacetylase inhibitors. Proc Natl Acad Sci USA. 2007;104(45):17777–82. doi: 10.1073/pnas.0702518104.

  21. Qin Y, Lu J, Bao L, et al. Bortezomib improves progression-free survival in multiple myeloma patients overexpressing preferentially expressed antigen of melanoma. Chinese Med J. 2014;127(9):1666–71.

  22. Гапонова Т.В., Менделеева Л.П., Мисюрин А.В. и др. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой. Онкогематология. 2009;2:52–7.

    [Gaponova TV, Mendeleeva LP, Misyurin AV, et al. Expression of PRAME, WT1 and XIAP tumor-associated genes in patients with multiple myeloma. Onkogematologiya. 2009;2:52–7. (In Russ)]

  23. Вотякова О.М. Новые возможности лечения рецидивов и рефрактерной множественной миеломы (обзор литературы). Клиническая онкогематология. 2017;10(4):425–34. doi: 10.21320/2500-2139-2017-10-4-425-434.

    [Votyakova OM. New Possibilities of Treatment for Relapsed/Refractory Multiple Myeloma: A Literature Review. Clinical oncohematology. 2017;10(4):425–34. doi: 10.21320/2500-2139-2017-10-4-425-434. (In Russ)]

  24. Costessi A, Mahrour N, Tijchon E, et al. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO J. 2011;30(18):3786–98. doi: 10.1038/emboj.2011.262.

Clinical and Hematological Predictors of Response to First-Line Therapy in Patients with Diffuse Large B-Cell Lymphoma

SV Samarina1, EL Nazarova1, NV Minaeva1, EN Zotina1, IV Paramonov1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valer’evna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Nazarova EL, Minaeva NV, et al. Clinical and Hematological Predictors of Response to First-Line Therapy in Patients with Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(1):68–72.

DOI: 10.21320/2500-2139-2019-12-1-68-72


ABSTRACT

Aim. To assess the prognostic value of clinical and hematological parameters used by hematologists for risk stratification in diffuse large B-cell lymphoma (DLBCL), and to justify the need for discovering new prognostic factors.

Methods. The trial included 101 patients (48 men and 53 women) with newly diagnosed DLBCL at the age of 18–80 years (median age 58 years). The patients received R-CHOP as first-line therapy. Depending on their response all patients were stratified into 4 groups: with complete response (CR; n = 58), partial response (PR; n = 15), resistance to first-line therapy (n = 19), and early relapses (ER; n = 9). Median follow-up was 22 months (range 2–120 months).

Results. In terms of age influence on the efficacy of R-СНОР as first-line therapy no significant differences were established in regard to response in patients younger and older than 65 years. Statistically significant differences were observed while analyzing two parameters of International Prognostic Index (IPI; disease stage and extranodal lesions) and B-symptoms in the CR and therapy-resistant groups. With respect to the same parameters no significant differences were found in the CR and ER groups. Median 2-year disease-free survival was not achieved in patients with CR. In patients with PR it was 12 months. Median 2-year overall survival in patients with CR, PR, and ER was not achieved, and in patients with therapy-resistant DLBCL it was 10 months.

Conclusion. Results of the trial confirm prognostic value of factors applied for risk stratification in DLBCL. However, variability of clinical course of the disease, especially with a low IPI score, suggests the need for new prognostic parameters associated with the course of DLBCL.

Keywords: diffuse large B-cell lymphoma, prognosis, induction therapy, survival.

Received: June 5, 2018

Accepted: December 3, 2018

Read in PDF 


REFERENCES

  1. Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA: Cancer J Clin. 2016;66(6):443–59. doi: 10.3322/caac.21357.

  2. Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii78–82. doi: 10.1093/annonc/mds273.

  3. Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology. 2011;2011(1):498–505. doi: 10.1182/asheducation-2011.1.498.

  4. Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematology. 2016;2016(1):366–78. doi: 10.1182/asheducation-2016.1.366.

  5. Sant M, Minicozzi P, Mounier M, et al. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study. Lancet Oncol. 2014;15(9):931–42. doi: 10.1016/S1470-2045(14)70282-7.

  6. Menard G, Dulong J, Nguyen TT, et al. Lenalidomide treatment restores in vivo T сell activity in relapsed/refractory FL and DLBCL. Blood. 2017;130(Suppl 1):729.

  7. Westin JR, Oki Y, Nastoupil L, et al. Lenalidomide and obinutuzumab with CHOP for newly diagnosed diffuse large B-cell lymphoma: final phase I/II results. Blood. 2017;130(Suppl 1):189.

  8. Петухов А.В., Маркова В.А., Моторин Д.В. и др. Получение CAR T-лимфоцитов, специфичных к CD19, и оценка их функциональной активности in vitro. Клиническая онкогематология. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9.

    [Petukhov AV, Markova VA, Motorin DV, et al. Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro. Clinical oncohematology. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9. (In Russ)]

  9. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  10. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/nejm199309303291402.

  11. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/jco.1999.17.4.1244.

  12. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/jco.2006.09.2403.

  13. Kurtz D, Scherer F, Jin M, et al. Development of a dynamic model for personalized risk assessment in large B-cell lymphoma. Blood. 2017;130(Suppl 1):826.

  14. Hamadani M, Hari PN, Zhang Y, et al. Early failure of frontline rituximab-containing chemoimmunotherapy in diffuse large B cell lymphoma does not predict futility of autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2014;20(11):1729–36.

  15. Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12. J Clin Oncol. 2014;32(31):3490–6. doi: 10.1200/jco.2013.53.9593.

  16. Van Den Neste E, Schmitz N, Mounier N, et al. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant. 2016;51(1):51–7. doi: 10.1038/bmt.2015.213.

  17. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.

  18. Fang X, Xiu B, Yang Z, et al. The expression and clinical relevance of PD-1, PD-L1, and TP63 in patients with diffuse large B-cell lymphoma. Medicine (Baltimore). 2017;96(15):e6398. doi: 10.1097/MD.0000000000006398.

  19. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684.

    [Klyuchagina YuI, Sokolova ZA, Baryshnikova MA. Role of PD-1 Receptor and Its Ligands PD-L1 and PD-L2 in Cancer Immunotherapy. Onkopediatria. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]

  20. Hayano A, Komohara Y, Takashima Y, et al. Programmed cell death ligand 1 expression in primary central nervous system lymphomas: a clinicopathological study. Anticancer Res. 2017;37(10):5655–66. doi: 10.21873/anticanres.12001.

  21. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.

  22. Alizadeh AA, Gentles AJ, Alencar AJ, et al. Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood. 2011;118(5):1350–8. doi: 10.1182/blood-2011-03-345272.

  23. Amin AD, Peters TL, Li L, et al. Diffuse large B-cell lymphoma: can genomics improve treatment options for a curable cancer? Mol Case Stud. 2017;3(3):a001719. doi: 10.1101/mcs.a001719.

Primary Mediastinal (Thymic) Large B-Cell Lymphoma: Experience in Treating 131 Patients at a National Medical Research Center in Russia

IZ Zavodnova, MYu Kichigina, EV Paramonova, YuE Ryabukhina, OA Kolomeitsev, OP Trofimova, NV Volkova, YuI Pryamikova, NV Kokosadze, GS Tumyan

NN Blokhin National Medical Cancer Research Center, 23 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Prof. Gayane Sergeevna Tumyan, MD, PhD, 23 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-98-29; e-mail: gaytum@mail.ru

For citation: Zavodnova IZ, Kichigina MYu, Paramonova EV, et al. Primary Mediastinal (Thymic) Large B-Cell Lymphoma: Experience in Treating 131 Patients at a National Medical Research Center in Russia. Clinical oncohematology. 2019;12(1):59–67.

DOI: 10.21320/2500-2139-2019-12-1-59-67


ABSTRACT

Background. Primary mediastinal (thymic) large B-cell lymphoma (PMBCL) is one of the primary extranodal tumors and originates from B-cells of thymic medulla. This disease is characterized by specific immunomorphologic and genetic features which distinguish it from other malignant lymphoproliferative disorders with similar parameters. Standard PMBCL treatment consists of immunochemotherapy and subsequent radiotherapy of residual mediastinal tumor. The advantages of one immunochemotherapy regimens over the other in controlled studies have not been shown.

Aim. To study current approaches to chemoradiation in PMBCL patients with an attempt to individualize them focusing on various prognostic factors.

Materials & Methods. The data of 131 patients with newly diagnosed PMBCL were analyzed, all of them were treated at NN Blokhin National Medical Cancer Research Center in the period from 2000 to 2017. More than a half were women (58 %), median age was 30 years (range 16–70). At different historical periods PMBCL treatment was performed using different immunochemotherapy regimens: MACOP-B±R in 55 (42 %) patients, R-CHOP  in 40 (30.5  %) patients, and R-DA-EPOCH  in 36 (27.5 %) patients.

Results. In general, the treatment of all PMBCL patients (n = 131) appeared to be highly effective. The remission rate was 87 %, 3-year progression-free survival (PFS) and overall survival (OS) was 78 % and 88 %, respectively. With median follow-up of 37 months relapses and progression of the disease were detected in 17 (13 %) out of 131 patients within a period of 13 months after initiation of antitumor treatment. There was not a single case of late relapse. The treatment of relapsed patients was not effective: 12-month OS was not higher than 37 %. Intensive immunochemotherapy regimens (МАСОР-В±R, R-DA-EPOCH) do not differ in their effectiveness, but they have significant advantages over the standard R-CHOP regimen. The results of positron emission tomography (PET) considered to be an important prognostic factor in PMBCL treatment: 3-year PFS in the PET-negative group was 92 % vs. 26 % in the PET-positive group.

Conclusion. The optimal algorithm of PMBCL treatment was elaborated with consideration of clinical factors, immunochemotherapy programs, degrees of tumor regression, its metabolic activity, and radiotherapy method and irradiation area.

Keywords: primary mediastinal (thymic) large B-cell lymphoma, treatment algorithm, prognostic factors.

Received: October 19, 2018

Accepted: December 23, 2018

Read in PDF 


REFERENCES

  1. Moller P, Lammler B, Herrmann B, et al. The primary mediastinal clear cell lymphoma of B-cell type has variable defects in MHC antigen expression. Immunology. 1986;59(3):411–7. doi: 10.1007/bf00705408.

  2. Hamlin PA, Portlock CS, Straus DJ, et al. Primary mediastinal large B-cell lymphoma: optimal therapy and prognostic factor analysis in 141 consecutive patients treated at Memorial Sloan Kettering from 1980 to 1999. Br J Haematol. 2005;130(5):691–9. doi: 10.1111/j.1365-2141.2005.05661.x.

  3. Jacobson JO, Aisenberg AC, Lamarre L, et al. Mediastinal large cell lymphoma. An uncommon subset of adult lymphoma curable with combined modality therapy. Cancer. 1988;62(9):1893–8. doi: 10.1002/1097-0142(19881101)62:9<1893::AID-CNCR2820620904>3.0.CO;2-X.

  4. Zinzani PL, Martelli M, Magagnoli M, et al. Treatment and clinical management of primary mediastinal large B-cell lymphoma with sclerosis: MACOP-B regimen and mediastinal radiotherapy monitored by (67)Gallium scan in 50 patients. Blood. 1999;94(10):3289–93.

  5. Bishop PC, Wilson WH, Pearson D, et al. CNS involvement in primary mediastinal large B-cell lymphoma. J Clin Oncol. 1999;17(8):2479–85. doi: 1200/jco.1999.17.8.2479.

  6. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.

  7. Levitt LJ, Aisenberg AC, Harris NL, et al. Primary non-Hodgkin’s lymphoma of the mediastinum. Cancer. 1982;50(11):2486–92. doi: 10.1002/1097-0142(19821201)50:11<2486::AID-CNCR2820501138>3.0.CO;2-G.

  8. Zinzani PL, Stefoni V, Finolezzi E, et al. Rituximab combined with MACOP-B or VACOP-B and radiation therapy in primary mediastinal large B-cell lymphoma: a retrospective study. Clin Lymph Myel. 2009;9(5):381–5. doi: 10.3816/CLM.2009.n.074.

  9. Todeschini G, Ambrosetti A, Meneghini V, et al. Mediastinal large-B-cell lymphoma with sclerosis: a clinical study of 21 patients. J Clin Oncol. 1990;8(5):804–8. doi: 1200/jco.1990.8.5.804.

  10. Bertini M, Orsucci L, Vitolo U, et al. Stage II large B-cell lymphoma with sclerosis treated with MACOP-B. Ann Oncol. 1991;2(10):733–7. doi: 10.1093/oxfordjournals.annonc.a057853.

  11. Falini B, Venturi S, Martelli M, et al. Mediastinal large B-cell lymphoma: clinical and immunohistological findings in 18 patients treated with different third-generation regimens. Br J Haematol. 1995;89(4):780–9. doi: 10.1111/j.1365-2141.1995.tb08415.x.

  12. van Besien K, Kelta M, Bahaguna P. Primary mediastinal B-cell lymphoma: a review of pathology and management. J Clin Oncol. 2001;19(6):1855–64. doi: 10.1200/jco.2001.19.6.1855.

  13. Zinzani PL, Martelli M, Bendandi M, et al. Primary mediastinal large B-cell lymphoma with sclerosis: a clinical study of 89 patients treated with MACOP-B chemotherapy and radiation therapy. Haematologica. 2001;86(2):187–91.

  14. A predictive model for aggressive non-Hodgkin’s lymphoma. The international non-Hodgkin lymphoma prognostic factors project. NEJM. 1993;329(14):987–94. doi: 10.1056/nejm199309303291402.

  15. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of Imaging in the Staging and Response Assessment of Lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58. doi: 10.1200/jco.2013.53.5229.

  16. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31(5):1341–6. doi: 10.1016/0360-3016(95)00060-c.