Role of Positron-Emission Tomography in Prognosis of Outcomes of High-Dose Chemotherapy with Autologous Hematopoietic Stem Cell Transplantation in Hodgkin’s Lymphoma

VG Potapenko1,2, NB Mikhailova1, BI Smirnov4, IA Skorokhod2, DA Chaginskaya2, VV Ryabchikova2, IA Samorodova2, EI Podol’tseva2, VV Ipatov3, IV Boikov3, VN Semelev3, DA Gornostaev3, TG Potapenko5, TG Kulibaba5, NV Medvedeva2, BV Afanas’ev1

1 Academician IP Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

2 Municipal Hematological Center, Municipal Clinical Hospital No. 31, 3 Dinamo pr-t, Saint Petersburg, Russian Federation, 197110

3 SM Kirov Military Medical Academy, 6 Akademika Lebedeva str., Saint Petersburg, Russian Federation, 194044

4 VI Ul’yanov (Lenin) St. Petersburg State Electrotechnical University LETI, 5 Professora Popova str., Saint Petersburg, Russian Federation, 197376

5 St. Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, Russian Federation, 199034

For correspondence: Vsevolod Gennad’evich Potapenko, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel: +7(812)230-19-33; е-mail: potapenko.vsevolod@mail.ru

For citation: Potapenko VG, Mikhailova NB, Smirnov BI, et al. Role of Positron-Emission Tomography in Prognosis of Outcomes of High-Dose Chemotherapy with Autologous Hematopoietic Stem Cell Transplantation in Hodgkin’s Lymphoma. Clinical oncohematology. 2016;9(4):406–12 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-406-412


ABSTRACT

Aim. To perform a comparative analysis of the prognostic significance of positron-emission tomography (PET) with other prognostic factors of the efficacy of high-dose chemotherapy (HDCT) with autologous hematopoietic stem cell transplantation (auto-HSCT) in patients with Hodgkin’s lymphoma.

Methods. Data on 84 patients with Hodgkin’s lymphoma receiving treatment over the period from October 2007 till November 2015 were analyzed. The median age was 26.6 years (range: 10–62). The median follow-up was 25 months (range: 1–81 months). The prognostic significance of sex, response to the initial chemotherapy, time to relapse, second-line chemotherapy regimen type, B-symptoms, tumor size (>5 cm in cases of relapse prior to the HDCT), serum LDH and albumin levels, CT findings, the number of chemotherapy lines, conditioning regimen before the auto-HSCT, and the metabolic activity before the HDCT (PET1, n = 82) and after auto-HSCT (PET2, n = 57) was analyzed.

Results. The two-year overall (OS) and event-free (EFS) survival rates were 70.6 % and 58.7%, respectively. Prognosis was the worst in patients with CT-confirmed lymphoma progression by the initiation of HDCT. In the presence of a CT-response, the PET status of lymphoma has a prognostic significance. The 2-year OS and EFS rates of PET1-negative and PET1-positive patients were 82 % vs. 62 % (= 0.056) and 74 % vs. 44 % (= 0.003), respectively. In PET2-negative and PET2-positive patients, the OS and EFS rates were 90 % vs. 65 % (= 0.013) and 72 % vs. 52 % (= 0.014), respectively. From the prognostic point of view, PET2 findings prevailed over PET1 findings. The multivariate analysis confirmed only PET2 significance for OS prediction.

Conclusion. The tumor sensitivity to the chemotherapy assessed by the CT is the most important prognostic factor. In case of a positive CT dynamics, the achievement of PET1 or PET2 negativity before or after HDCT/auto-HSCT is a favorable prognostic factor. The worst prognosis was observed in patients with tumor metabolic activity before or after HDCT/auto-HSCT.


Keywords: positron-emission tomography (PET), Hodgkin’s lymphoma, high-dose chemotherapy, auto-HSCT.

Received: June 23, 2016

Accepted: August 29, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. Жуков Н.В., Румянцев А.Г., Усс А.Л. и др. Эффективность и безопасность высокодозной химиотерапии с аутологичной трансплантацией гемопоэтических стволовых клеток у больных с неблагоприятным течением лимфомы Ходжкина. Опыт трансплантационных центров России, Украины и республики Беларусь. Вопросы гематологии, онкологии и иммунопатологии в педиатрии. 2014;13(1): 22–31.
    [Zhukov NV, Rumyantsev AG, Uss AL, et al. Efficacy and safety of high-dose chemotherapy with autologous hematopoietic stem cell transplantation in patients with unfavorable course of Hodgkin’s lymphoma. Experience of transplantation centers in Russia, Ukraine, and Belarus. Voprosy gematologii, onkologii i immunopatologii v pediatrii. 2014;13(1):22–31. (In Russ)]
  2. Федоренко Д.А., Мельниченко В.Я., Ионова Т.И. и др. Клиническая оценка эффективности аутологичной трансплантации кроветворных стволовых клеток при лимфомах. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2013;8(4):62–5.
    [Fedorenko DA, Mel’nichenko VYa, Ionova TI, et al. Clinical evaluation of efficacy of autologous hematopoietic stem cell transplantation in lymphomas. Vestnik Natsional’nogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova. 2013;8(4):62–5. (In Russ)]
  3. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58. doi: 10.1200/jco.2013.53.5229.
  4. Асланиди И.П., Мухортова О.В., Шурупова И.В. и др. Позитронно-эмиссионная томография: уточнение стадии болезни при злокачественных лимфомах. Клиническая онкогематология. 2010;3(2):119–29.
    [Aslanidis IP, Mukhortova OV, Shurupova IV, et al. Positron emission tomography for staging of patients with malignant lymphomas. Klinicheskaya onkogematologiya. 2010;3(2):119–29. (In Russ)]
  5. Moskowitz СH, Yahalom J, Zelenetz AD. High-dose chemo-radiotherapy for relapsed or refractory Hodgkin lymphoma and the significance of pre-transplant functional imaging. Br J Haematol. 2010;148(6):890–7. doi: 10.1111/j.1365-2141.2009.08037.x.
  6. Nieto Y, Popat U, Anderlini P, et al. Autologous stem cell transplantation for refractory or poor-risk relapsed Hodgkin’s lymphoma: effect of the specific high-dose chemotherapy regimen on outcome. Biol Blood Marrow Transplant. 2013;19(3):410–7. doi: 10.1016/j.bbmt.2012.10.029.
  7. Schot BW, Zijlstra JM, Sluiter WJ, et al. Early FDG-PET assessment in combination with clinical risk scores determines prognosis in recurring lymphoma. Blood. 2007;109(2):486–91. doi: 10.1182/blood-2005-11-006957.
  8. Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high dose chemotherapy and stem cell transplantation. Blood. 2003;102(1):53–9. doi: 10.1182/blood-2002-12-3842.
  9. Svoboda J, Andreadis C, Elstrom R, et al. Prognostic value of FDG-PET scan imaging in lymphoma patients undergoing autologous stem cell transplantation. Bone Marrow Transplant. 2006;38(3):211–6. doi: 10.1038/sj.bmt.1705416.
  10. Becherer A, Mitterbauer M, Jaeger U, et al. Positron emission tomography with [18F]2-fluoro-D-2-deoxyglucose (FDG-PET) predicts relapse of malignant lymphoma after high-dose therapy with stem cell transplantation. Leukemia. 2002;16(2):260–7. doi: 10.1038/sj.leu.2402342.
  11. Filmont JE, Czernin J, Yap C, et al. Value of F-18 fluorodeoxyglucose positron emission tomography for predicting the clinical outcome of patients with aggressive lymphoma prior to and after autologous stem-cell transplantation. Chest. 2003;124(2):608–13. doi: 10.1378/chest.124.2.608.
  12. Devillier R, Coso D, Castagna L, et al. Positron emission tomography response at the time of autologous stem cell transplantation predicts outcome of patients with relapsed and/or refractory Hodgkin’s lymphoma responding to prior salvage therapy. Haematologica. 2012;97(7):1073–9. doi: 10.3324/haematol.2011.056051.
  13. Arai S, Letsinger R, Wong RM, et al. Phase I/II trial of GN-BVC, a gemcitabine and vinorelbine-containing conditioning regimen for autologous hematopoietic cell transplantation in recurrent and refractory Hodgkin lymphoma. Biol Blood Marrow Transplant. 2010;16(8):1145–54. doi: 10.1016/j.bbmt.2010.02.022.
  14. Castagna L, Bramanti S, Balzarotti M, et al. Predictive value of early 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) during salvage chemotherapy in relapsing/refractory Hodgkin lymphoma (HL) treated with high-dose chemotherapy. Br J Haematol. 2009;145(3):369–72. doi: 10.1111/j.1365-2141.2009.07645.x.
  15. Akhtar S, Al-Sugair AS, Abouzied M, et al. Pre-transplant FDG-PET-based survival model in relapsed and refractory Hodgkin’s lymphoma: outcome after high-dose chemotherapy and auto-SCT. Bone Marrow Transplant. 2013;48(12):1530–6. doi: 10.1038/bmt.2013.88.
  16. Crocchiolo R, Canevari C, Assanelli A, et al. Pre-transplant 18FDG-PET predicts outcome in lymphoma patients treated with high-dose sequential chemotherapy followed by autologous stem cell transplantation. Leuk Lymphoma. 2008;49(4):727–33. doi: 10.1080/10428190701885545.
  17. Gentzler RD, Evens AM, Rademaker AW, et al. F-18 FDG-PET predicts outcomes for patients receiving total lymphoid irradiation and autologous blood stem-cell transplantation for relapsed and refractory Hodgkin lymphoma. Br J Haematol. 2014;165(6):793–800. doi: 10.1111/bjh.12824.
  18. Jabbour E, Hosing C, Ayers G, et al. Pretransplant positive positron emission tomography/gallium scans predict poor outcome in patients with recurrent/refractory Hodgkin lymphoma. Cancer. 2007;109(12):2481–9. doi: 10.1002/cncr.22714.
  19. Cohen JB, Hall NC, Ruppert AS, et al. Association of pre-transplantation positron emission tomography/computed tomography and outcome in mantle-cell lymphoma. Bone Marrow Transplant. 2013;48(9):1212–7. doi: 10.1038/bmt.2013.46.
  20. Dickinson M, Hoyt R, Roberts AW, et al. Improved survival for relapsed diffuse large B cell lymphoma is predicted by a negative pre-transplant FDG-PET scan following salvage chemotherapy. Br J Haematol. 2010;150(1):39–45. doi: 10.1111/j.1365-2141.2010.08162.x.
  21. Palmer J, Goggins T, Broadwater G, et al. Early post transplant (F-18) 2-fluoro-2-deoxyglucose positron emission tomography does not predict outcome for patients undergoing auto-SCT in non-Hodgkin and Hodgkin lymphoma. Bone Marrow Transplant. 2011;46(6):847–51. doi: 10.1038/bmt.2010.203.
  22. Alousi AM, Saliba RM, Okoroji GJ, et al. Disease staging with positron emission tomography or gallium scanning and use of rituximab predict outcome for patients with diffuse large B-cell lymphoma treated with autologous stem cell transplantation. Br J Haematol. 2008;142(5):786–92. doi: 10.1111/j.1365-2141.2008.07277.x.
  23. Bondly C, Johnston PB, Lowe V, et al. Positive positron emission tomography (PET) pre-autologous stem cell transplant (ASCT) in non-Hodgkin lymphoma (NHL) does not preclude successful outcome. Biol Blood Marrow Transplant. 2006;12(2):18–9. doi: 10.1016/j.bbmt.2005.11.060.
  24. Qiao W, Zhao J, Xing Y. Predictive value of [18F]fluoro-2-deoxy-D-glucose positron emission tomography for clinical outcome in patients with relapsed/refractory diffuse large B-cell lymphoma prior to and after autologous stem cell transplant. Leuk Lymphoma. 2014;55(2):276–82. doi: 10.3109/10428194.2013.797974.
  25. Sucak GT, Ozkurt ZN, Suyani E, et al. Early post-transplantation positron emission tomography in patients with Hodgkin lymphoma is an independent prognostic factor with an impact on overall survival. Ann Hematol. 2011;90(11):1329–36. doi: 10.1007/s00277-011-1209-0.
  26. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  27. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/jco.2006.09.2403.
  28. David G, Kleinbaum MK. Survival Analysis. A Self-Learning Text. 2nd edition. Springer; 2002. рр. 583. doi: 10.1111/j.1541-0420.2006.00540_18.x.
  29. Петрова Г.Д., Мелкова К.Н., Чернявская Т.З. и др. Первично-рефрактерное течение лимфомы Ходжкина и аутологичная трансплантация гемопоэтических стволовых клеток. Результаты одноцентрового проспективного исследования. Российский онкологический журнал. 2015;20(3):4–11.
    [Petrova GD, Melkova KN, Chernyavskaya TZ, et al. Primary refractory Hodgkin’s lymphoma and autologous stem cell transplantation: results of the single-center prospective study. Rossiiskii onkologicheskii zhurnal. 2015;20(3):4–11. (In Russ)]
  30. Crocchiolo R, Fallanca F, Giovacchini G, et al. Role of 18FDG-PET/CT in detecting relapse during follow-up of patients with Hodgkin’s lymphoma. Ann Hematol. 2009;88(12):1229–36. doi: 10.1007/s00277-009-0752-4.
  31. Gupta D, Lis ChG. Pretreatment Serum Albumin as a Predictor of Cancer Survival: A Systematic Review of the Epidemiological Literature. Nutrition J. 2010;9(1):69–116. doi: 10.1186/1475-2891-9-69.
  32. Демина Е.А. Лимфома Ходжкина: прогностические признаки сегодня. Современная онкология. 2006;4:4–7.
    [Demina EA. Hodgkin’s lymphoma: prognostic factors today. Sovremennaya onkologiya. 2006;4:4–7. (In Russ)]
  33. Czyz A, Lojko-Dankowska A, Dytfeld D, et al. Prognostic factors and long-term outcome of autologous haematopoietic stem cell transplantation following a uniform-modified BEAM-conditioning regimen for patients with refractory or relapsed Hodgkin lymphoma: a single-center experience. Med Oncol. 2013;30(3):611. doi: 10.1007/s12032-013-0611-y.
  34. Villa D, Seshadri T, Puig N, et al. Second-line salvage chemotherapy for transplant-eligible patients with Hodgkin’s lymphoma resistant to platinum-containing first-line salvage chemotherapy. Haematologica. 2012;97(5):751–7. doi: 10.3324/haematol.2011.047670.
  35. Colpo A, Hochberg E, Chen YB. Current status of autologous stem cell transplantation in relapsed and refractory Hodgkin’s lymphoma. Oncologist. 2012;17(1):80–90. doi: 10.1634/theoncologist.2011-0177.

Brentuximab Vedotin: New Possibilities for Treatment of Relapses and Refractory Hodgkin’s Lymphomas

EA Demina

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Elena Andreevna Demina, DSci, Professor, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7 (499)324-90-89; e-mail: drdemina@yandex.ru

For citation: Demina EA. Brentuximab Vedotin: New Possibilities for Treatment of Relapses and Refractory Hodgkin’s Lymphomas. Clinical oncohematology. 2016;9(4):398–405 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-398-405


ABSTRACT

The concept of total curability of Hodgkin’s lymphoma was introduced as early as in 1970s. However, 10–30 % of patients develop relapses; in addition, resistant tumors cannot be excluded. A high-dose chemotherapy with autologous hematopoietic stem cell transplantation is a modern treatment standard for relapses and refractory Hodgkin’s lymphomas. However, long-term remissions are achieved only in a half of these patients. The toxicity of effective first-line treatment regimens and insufficient effectiveness of regimens prescribed for relapses and refractory disease are the reason for further search of new therapeutic options for this malignant tumor. Invention of an immunoconjugate, brentuximab vedotin, became one of the new steps in the treatment of Hodgkin’s lymphomas. This review presents data on the pharmacological properties of the drug, the mechanism of the anti-tumor effect, as well as results of large international, randomized clinical trials.


Keywords: brentuximab vedotin, Hodgkin’s lymphoma, relapse, treatment.

Received: June 14, 2016

Accepted: June 17, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. De Vita VT. The consequences of the chemotherapy of Hodgkin’s disease: the 10th David A. Karnofsky memorial lecture. Cancer. 1981;47(1):1–13. doi: 10.1002/1097-0142(19810101)47:1<1::AID-CNCR2820470102>3.0.co;2-2.
  2. Engert A, Younes A, eds. Hematologic malignancies: Hodgkin lymphoma. 2nd edition. A Comprehensive Update on Diagnostics and Clinics. Berlin Heidelberg: Springer; 2015. doi: 10.1007/978-3-319-12505-3.
  3. Horning S, Fanale M, deVos S, et al. Defining a population of Hodgkin lymphoma patients for novel therapeutics: An international effort. Ann Oncol. 2008;19(Suppl 4): Abstract 118.
  4. Falini B, Pileri S, Pizzolo G, et al. CD30 (Ki-1) molecule: A new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85(1):1–14.
  5. Matsumoto K, Terakawa M, Miura K, et al. Extremely rapid and intense induction of apoptosis in human eosinophils by anti-CD30 antibody treatment in vitro. J Immunol. 2004;172(4):2186–93. doi: 10.4049/jimmunol.172.4.2186.
  6. Ansell SM, Horwitz SM, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. J Clin Oncol. 2007;25(19):2764–9. doi: 10.1200/jco.2006.07.8972.
  7. Forero-Torres A, Leonard JP, Younes A, et al. A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146(2):171–9. doi: 10.1111/j.1365-2009.07740.x.
  8. Dosio F, Brusa P and Cattel L Immunotoxins and Anticancer Drug Conjugate Assemblies: The Role of the Linkage between Components. 2011;3(12):848–83. doi: 10.3390/toxins3070848.
  9. Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. 2003;102(4):1458–65. doi: 10.1182/blood-2003-01-0039.
  10. Sutherland MSK, Sanderson RJ, Gordon KA, et al. Lysosomal Trafficking and Cysteine Protease Metabolism Confer Target-specific Cytotoxicity by Peptide-linked Anti-CD30-Auristatin Conjugates. J Biol Chem. 2006;281(15):10540–7. doi: 10.1074/jbc.M510026200.
  11. Katz J, Janik JA, Yones A. Brentuximab vedotin (SGN-35). Clin Cancer Res. 2011;17(20):6428–36. doi: 10.1158/1078-0432.CCR-11-0488.
  12. Chen R, Gopal AK, Smith SE, et al. Five-year survival data demonstrating durable responses from a pivotal phase 2 study of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;126(Suppl 23): Abstract 2736. doi: 10.1182/blood-2016-02-699850.
  13. Gardai SJ, Epp A, Law C-L. Brentuximab vedotin-mediated immunogenic cell death. Cancer Res. 2015;75(15): Abstract 2469. doi: 10.1158/1538-7445.am2015-2469.
  14. Oflazoglu E, Stone IJ, Gordon KA. Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood. 2007;110(13):4370–2. doi: 10.1182/blood-2007-06-097014.
  15. Fu L, Xinqun Z, Kim E, et al. Relationship between in vivo antitumor activity of ADC and payload release in preclinical models. Cancer Res. 2014;74(19): Abstract 3694. doi: 10.1158/1538-am2014-3694.
  16. Kim YH, Tavallaee M, Sundram U, et al. Phase II Investigator-Initiated Study of Brentuximab Vedotin in Mycosis Fungoides and Sezary Syndrome With Variable CD30 Expression Level: A Multi-Institution Collaborative Project. J Clin Oncol. 2015;33(32):3750–8. doi: 10.1200/jco.2014.60.3969.
  17. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9. doi: 10.1200/jco.2011.38.0410.
  18. Arai S, Fanale M, DeVos S, et al. Defining a Hodgkin lymphoma population for novel therapeutics after relapse from autologous hematopoietic cell Leuk Lymphoma. 2013;54(11):2531–3. doi: 10.3109/10428194.2013.798868.
  19. Gopal AK, Chen R, Smith SE, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(8):1236–43. doi: 10.1182/blood-2014-08-595801.
  20. Lee JJ, Swain SM. Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol. 2006;24(10):1633–42. doi: 10.1200/jco.2005.04.0543.
  21. Swain SM, Arezzo JC. Neuropathy associated with microtubule inhibitors: Diagnosis, incidence, and management. Clin Adv Hematol Oncol. 2008;6(6):455–67.
  22. Zinzani PL, Corradini P, Gianni AM, et al. Brentuximab Vedotin in CD30-Positive Lymphomas: A SIE, SIES, and GITMO Position Paper. Clin Lymph Myel Leuk. 2015;15(9):507–13. doi: 10.1016/j.clml.2015.06.008.
  23. Rothe A, Sasse S, Goergen H, et al. Brentuximab vedotin for relapsed or refractory CD30 hematologic malignancies: the German Hodgkin Study Group experience. Blood. 2012;120(7):1470–2. doi: 10.1182/blood-2012-05-430918.
  24. Gibb A, Jones C, Bloor A, et al. Brentuximab vedotin in refractory CD30 lymphomas: a bridge to allogeneic transplantation in approximately one quarter of patients treated on a Named Patient Programme at a single UK center. Haematologica. 2013;98(4):611–4. doi: 10.3324/haematol.2012.069393.
  25. Zinzani PL, Viviani S, Anastasia A, et al. Brentuximab vedotin in relapsed/refractory Hodgkin’s lymphoma: the Italian experience and results of its use in daily clinical practice outside clinical trials. Haematologica. 2013;98(8):1232–6. doi: 10.3324/haematol.2012.083048.
  26. Perrot A, Monjanel H, Bouabdallah R, et al. Brentuximab vedotin as single agent in refractory or relapsed CD30-positive Hodgkin lymphoma: the French name patient program experience in 241 patients. Haematologica. 2014;99(s1):498, abstr. S1293.
  27. Perrot A, Monjanel H, Bouabdallah R, et al. Lymphoma Study Association (LYSA). Impact of post-brentuximab vedotin consolidation on relapsed/refractory CD30+ Hodgkin lymphomas: a large retrospective study on 240 patients enrolled in the French Named-Patient Program. 2016;101(4):466–73. doi: 10.3324/haematol.2015.134213. Epub 2016 Jan 14.
  28. Moskowitz CH, Yahalom J, Zelenetz AD, et al. High-Dose Chemo-Radiotherapy for Relapsed or Refractory Hodgkin Lymphoma and the Significance of Pre-transplant Functional Imaging. Br J Haematol. 2010;148(6):890–7. doi: 10.1111/j.1365-2141.2009.08037.x.
  29. Moskowitz AJ, Schoder H, Gerecitano JF. FDG-PET Adapted Sequential Therapy with Brentuximab Vedotin and Augmented ICE Followed By Autologous Stem Cell Transplant for Relapsed and Refractory Hodgkin Lymphoma. Blood (ASH Annual Meeting Abstracts). 2013;122(21): Abstract 2099.
  30. Moskowitz AJ, Hamlin PA Jr, Perales M-A, et al. Phase II Study of Bendamustine in Relapsed and Refractory Hodgkin Lymphoma. J Clin Oncol. 2013;31(4):456–60. doi: 10.1200/jco.2012.45.3308.
  31. LaCasce A, Sawas A, Bociek RG, et al. A phase 1/2 single-arm, open-label study to evaluate the safety and efficacy of brentuximab vedotin in combination with bendamustine for patients with Hodgkin lymphoma in the first salvage setting: interim results. Biol Blood Marrow Transplant. 2014;20(2):S161. doi: 10.1016/j.bbmt.2013.12.257.
  32. Aparicio J, Segura A. Garcera S, et al. ESHAP is an Active Regimen for Relapsing Hodgkin’s Disease. Ann Oncol. 1999;10(5):593–5. doi: 10.1023/A:1026454831340.
  33. Garcia-Sanz R, Sureda A, Alonso-Alvarez S, et al. Evaluation of the Regimen Brentuximab Vedotin Plus ESHAP (BRESHAP) in Refractory or Relapsed Hodgkin Lymphoma Patients: Preliminary Results of a Phase I-II Trial from the Spanish Group of Lymphoma and Bone Marrow Transplantation (GELTAMO). Blood. 2015: Abstract 582.
  34. Bartlett NL, Chen R, Fanale MA, et al. Retreatment with brentuximab vedotin in CD30-positive hematologic malignancies. J Hematol Oncol. 2014;7(1):24. doi: 10.1186/1756-8722-7-24.
  35. Batlevi CL, Younes A. Novel therapy for Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2013;2013(1):394–9. doi: 10.1182/asheducation-2013.1.394.
  36. Majhail NS, Weisdorf DJ, Defor TE, et al. Long-term results of autologous stem cell transplantation for primary refractory or relapsed Hodgkin’s lymphoma. Biol Blood Marrow Transplant. 2006;12(10):1065–72. doi: 10.1016/j.bbmt.2006.06.006.
  37. Moskowitz CH, Paszkiewicz-Kozik E, Nadamanee A, et al. Analysis of primary-refractory Hodgkin lymphoma pts in a randomized, placebo-controlled study of brentuximab vedotin consolidation after autologous stem cell transplant. Hematol Oncol. 2015;33:165, abstr. 120.
  38. Moskowitz CH, Nademanee A, Masszi T, et Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62. doi: 10.1016/S0140-6736(15)60165-9.
  39. Walewski JA, Nademanee A, Masszi T, et al. Multivariate analysis of PFS from the AETHERA trial: a phase 3 study of brentuximab vedotin consolidation after autologous stem cell transplant for HL. J Clin Oncol. 2015;33(Suppl): Abstract 8519.
  40. Sweetenham JW, Walewski J, Nadamanee A, et al. Updated Efficacy and Safety Data from the AETHERA Trial of Consolidation with Brentuximab Vedotin after Autologous Stem Cell Transplant (ASCT) in Hodgkin Lymphoma Patients at High Risk of Relapse. Biol Blood Marrow Transplant. 2016;22(3):S19e–S481, abstr. 24. doi: 10.1016/j.bbmt.2015.11.315.
  41. Bonthapally V, Ma E, Viviani S, et al. Healthcare utilization in the AETHERA trial: phase 3 study of brentuximab vedotin in patients at increased risk of residual Hodgkin lymphoma post-ASCT. Hematol Oncol. 2015;33:193, abstr. 177.
  42. Kuruvilla J, Connors JM, Sawas A, et al. A phase 1 study of brentuximab vedotin (BV) and bendamustine (B) in relapsed or refractory Hodgkin lymphoma (HL) and anaplastic large T-cell lymphoma (ALCL). Hematol Oncol. 2015;33:148, abstr. 090.
  43. Theurich S, Malcher J, Wennhold K, et al. Brentuximab Vedotin Combined With Donor Lymphocyte Infusions for Early Relapse of Hodgkin Lymphoma After Allogeneic Stem-Cell Transplantation Induces Tumor-Specific Immunity and Sustained Clinical Remission. J Clin Oncol. 2013;31(5):e59–e63. doi: 10.1200/jco.2012.43.6832.
  44. Vaklavas C, Forero-Torres A. Safety and efficacy of brentuximab vedotin in patients with Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Ther Adv Hematol. 2012;3(4):209–25. doi: 10.1177/2040620712443076.

Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience

TT Valiev, AV Popa, AS Levashov, ES Belyaeva, NS Kulichkina, BV Kurdyukov, RS Ravshanova, GL Mentkevich

Scientific Research Institute of Pediatric Oncology and Hematology, NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Timur Teimurazovich Valiev, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-98-69; e-mail: timurvaliev@mail.ru

For citation: Valiev TT, Popa AV, Levashov AS, et al. Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience. Clinical oncohematology. 2016;9(4):420–37 (In Russ).

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-4-420-437


ABSTRACT

Background & Aims. Current polychemotherapeutic protocols based on differentiated and risk-adopted approaches permitted to consider non-Hodgkin’s lymphomas (NHL) potentially curable diseases although they had been considered fatal previously. The aim of this study is to summarize and analyze outcomes of NHL therapy over a 25-year period.

Methods. 246 patients were enrolled in the study. They were treated in the department of chemotherapy of hemoblastoses in the Scientific Research Institute of Pediatric Oncology and Hematology under the NN Blokhin Russian Cancer Research Center over the period of 25 years: from April 1, 1991, till June 1, 2016. B-NHL-BFM 90/95 protocols and a modified B-NHL-BFM 95 protocol (with rituximab) were used for B-cell NHLs (n = 130). Patients with lymphocytic leukemia (n = 75) were treated using ALL-mBFM 90/95 and ALL IC-BFM 2002 protocols. 21 patients with anaplastic large cell lymphomas (ALCL) received treatment according to the B-NHL-BFM 90/95 protocol, and 20 patients received the НИИ ДОГ-АККЛ-2007 protocol.

Results. Taking into account clinical and immunological characteristics of ALCL, the authors invented an original НИИ ДОГ-АККЛ-2007 protocol. Special attention was paid to potential modification of standard treatment regimens for B-cell NHL by adding rituximab. The article demonstrates the evolution in prescription of rituximab for B-cell NHL and possibilities for reduction of the total number of polychemotherapy cycles for late-stage tumors without deterioration of treatment outcomes.

Conclusion. The obtained results permit to conclude that introduction of achievements of oncoimmunology, molecular biology, and cytogenetics will become the basis for further modification of existing treatment options for NHL.

Keywords: Burkitt lymphoma, diffuse large B-cell lymphoma, anaplastic large-cell lymphoma, primary mediastinal (thymic) large B-cell lymphoma, T- and B-cell lymphoblastic lymphomas, treatment, children.

Received: June 12, 2016

Accepted: June 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 439.
  2. Burkhardt B, Zimmermann M, Oschlies I, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131(1):39–49. doi: 10.1111/j.1365-2005.05735.x.
  3. Hochberg J, Waxman IM, Kelly KM, et al. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. Br J Haematol. 2009;144(1):24–40. doi: 10.1111/j.1365-2008.07393.x.
  4. Baccarani M, Corbelli G, Amadori S, et al. Adolescent and adult lymphoblastic leukemia: prognostic features outcome of therapy. А study of 293 patients. Blood. 1982;60(3):677–84.
  5. Gill PS, Meyer PR, Pavlova Z, et al. B-cell acute lymphoblastic leukemia in adults: clinical, morphologic and immunologic findings. J Clin Oncol. 1986;4(5):737–43.
  6. Bernstein JI, Coleman CN, Strickler JG, et al. Combined modality therapy for adult with small noncleaved cell lymphoma (Burkitt and Burkitt-like type). J Clin Oncol. 1986;4(6):847–58.
  7. Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM-90. Blood. 1999;94(10):3294–306.
  8. Patte C, J. Michon, Frappaz D, et al. Therapy of Burkitt and other B-cell acute lymphoblastic leukaemia and lymphoma: experience with the LMB protocols of the SFOP (French Paediatric Oncology Society) in children and adults. Bail Clin Haematol. 1994;7(2):339–48. doi: 10.1016/s0950-3536(05)80206-
  9. Patte C, Philip T, Rodary C, et al. High survival rate in advanced-stage B-cell lymphomas and leukemias without CNS involvement with a short intensive polychemotherapy: results from the French Pediatric Oncology Society of a randomized trial of 216 children. J Clin Oncol. 1991;9(1):123–32.
  10. Sun XF, Su YS, Liu DG, et al. Comparing CHOP, CHOP+HD-MTX, and BFM-90 regimens in the survival rate of children and adolescents with B cell non-Hodgkin’s lymphoma. Ai Zheng. 2004;23(8):933–8.
  11. Muller J, Csoka M, Jakab Z, et al. Hungarian experience with non-Hodgkin’s lymphoma in childhood. Magy Onkol. 2006;50(3):253–9.
  12. Cairo MS, Sposto R, Gerrard M, et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (³ 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30(4):387–93. doi: 10.1200/jco.2010.33.3369.
  13. Schwenn M, Blattner S, Lynch E, et al. HiC-COM: a 2-month intensive chemotherapy regimen for children with stage III and IV Burkitt’s lymphoma and B-cell acute lymphoblastic leukemia. J Clin Oncol. 1991;9(1):133–8.
  14. Bowman WP, Shuster JJ, Cook B, et al. Improved survival for children with B-cell acute lymphoblastic leukemia and stage IV small noncleaved-cell lymphoma: a pediatric oncology group study. J Clin Oncol. 1996;14(4):1252–61.
  15. Magrath I, Adde M, Shad A, et al. Adults and children with small non-cleaved-cell lymphoma have similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol. 1996;14(3):925–34.
  16. Atra A, Gerrard M, Hobson R, et al. Improved cure rate in children with B-cell acute lymphoblastic leukemia and IV stage B-cell non-Hodgkin lymphoma – results of the UKCCSG 9003 protocol. Br J Cancer. 1998;77(12):2281–5. doi: 10.1038/bjc.1998.379.
  17. Burkhardt B, Oschlies I, Klapper W, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia. 2011;25(1):153–60. doi: 10.1038/leu.2010.245.
  18. Patte C, Auperin A, Michon J, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9. doi: 10.1182/blood.v97.11.3370.
  19. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  20. Laver JH, Kraveka JM, Hutchison RE, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541–7. doi: 10.1200/jco.2005.11.075.
  21. Woessmann W, Seidemann K, Mann G.et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58. doi: 10.1182/blood-2004-03-
  22. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–87. doi: 10.1111/j.1365-2008.07144.x.
  23. Seidemann K, Tiemann M, Lauterbach I, et al. Primary mediastinal large B-cell lymphoma with sclerosis in pediatric and adolescent patients: treatment and results from three therapeutic studies of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 2003;21(9):1782–19. doi: 10.1200/jco.2003.08.151.
  24. Akbayram S, Dogan M, Akgun C, et al. Use of rituximab in three children with relapsed/refractory Burkitt lymphoma. Target Oncol. 2010;5(4):291–4. doi: 10.1007/s11523-010-0161-
  25. Okur VF, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  26. Holmberg LA, Maloney D, Bensinger W. Immunotherapy with rituximab/interleukin-2 after autologous stem cell transplantation as treatment for CD20+ non-Hodgkin’s lymphoma. Clin Lymph Myel. 2006;7(2):135–9. doi: 10.3816/clm.2006.n.051.
  27. Cooney-Qualter E, Krailo M, Angiolillo A.et al. A Phase I Study of 90Yttrium-Ibritumomab-Tiuxetan in Children and Adolescents with Relapsed/Refractory CD20-Positive Non-Hodgkin’s Lymphoma: A Children’s Oncology Group study. Clin Cancer Res. 2007;13(Suppl 18):5652–60. doi: 10.1158/1078-ccr-07-1060.
  28. Richard H, Termuhlen A, Smith L, et al. Autologous peripheral blood stem cell transplantation in children with refractory or relapsed lymphoma: results of Children’s Oncology Group Study A5962. Biol Blood Marrow Transplant. 2011;17(2):249–58. doi: 10.1016/j.bbmt.2010.07.002.
  29. Pinkel D, Johnson W, Aur RJ. Non-Hodgkin’s lymphoma in children. Br J Cancer. 1975;2:298–23.
  30. Wollner N, Exelby PR, Lieberman PH. Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer. 1979;44(6):1990–9. doi: 10.1002/1097-0142(197912)44:6<1990::aid-cncr2820440605>3.0.co;2-
  31. Asselin BL, Devidas M, Wang C, et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118(4):874–83. doi: 10.1182/blood-2010-06-
  32. Wiernik P, Goldman J, Dutcher J. Neoplastic disease of the blood. Cambridge; 1216 p.
  33. Tubergen D, Krailo M, Meadows A, et al. Comparison of treatment regimens for pediatric lymphoblastic non-Hodgkin’s lymphoma: a Children’s Cancer Group study. J Clin Oncol Leuk. 1999;13(3):335–42.
  34. Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma; Pediatr Oncol Group study. Leukemia. 1999;13(3):335–42. doi: 1038/sj.leu.2401310.
  35. Patte C, Philip T, Rodary C, et al. Improved survival rate in children with stage III-IV B-cell non-Hodgkin lymphoma and leukemia using multiagent chemotherapy: results of a study of 114 children from the French Pediatric Oncology Society. J Clin Oncol. 1986;4(8):1219–26.
  36. Reiter A, Schrappe M, Ludwig WD, et al. Favorable outcome of B-cell acute lymphoblastic leukemia in childhood: a report of three consecutive studies of the BFM group. Blood. 1992;80(10):2471–8.
  37. Reiter A, Schrappe M, Parwaresch R, et al. Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage – a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 1995;13(2):359–72.
  38. Nachman J, Sather HN, Cherlow JM, et al. Response of children with high-risk acute lymphoblastic leukemia treated with and without cranial irradiation: a report from the Children’s Cancer Group. J Clin Oncol. 1998;16(3):920–30.
  39. Tang JY, Xue HL, Chen J, et al. Multi-center trial based on SCMC-ALL-2005 for children’s acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi. 2013;51(7):495–501.
  40. Tallen G, Ratei R, Mann G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28(14):2339–47. doi: 10.1200/jco.2009.25.1983.
  41. Dunsmore KP, Devidas M, Linda SB, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(22):2753–9. doi: 10.1200/jco.2011.40.8724.
  42. Lambe CU, Averett DR, Paff MT, et al. 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res. 1995;55(15):3352–6.
  43. Cooper TM, Razzouk BI, Gerbing R, et al. Phase I/II trial of clofarabine and cytarabine in children with relapsed/refractory acute lymphoblastic leukemia (AAML0523): a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2013;60(7):1141–7. doi: 10.1002/pbc.24398.
  44. Schroeder H, Garwicz S, Kristinsson J, et al. Outcome after first relapse in children with acute lymphoblastic leukemia: a population-based study of 315 patients from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Med Pediatr Oncol. 1995;25(5):372–8. doi: 10.1002/mpo.2950250503.
  45. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favourable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  46. Borgmann A, von Stackelberg A, Hartmann R, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. 2003;101(10):3835–9. doi: 10.1182/blood.v101.10.3835.
  47. Wheeler K, Richards S, Bailey C, et al. Comparison of bone marrow transplant and chemotherapy for relapsed childhood acute lymphoblastic leukaemia: the MRC UKALL X experience. Medical Research Council Working Party on Childhood Leukaemia. Br J Haematol. 1998;101(1):94–103. doi: 10.1046/j.1365-2141.1998.00676.x.
  48. Stein H, Mason DY, Gerdes J, et al. The expression of Hodgkin’s disease associated antigen Ki-1 in reactive and neoplasic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from avtivated lymphoid cells. Blood. 1985;66(4):848–58.
  49. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85(2):206–15. doi: 10.1016/j.critrevonc.2012.06.004.
  50. Sibon D, Fournier M, Briere J, et al. Prognostic Factors and Long Term Outcome of 138 Adults with Systemic Anaplastic Large-Cell Lymphoma: a Retrospective Study by the Groupe d’Etude Des Lymphomes De l’Adulte (GELA). Blood. 2010;116: Abstract 322.
  51. Park SJ, Kim S, Lee DH, et al. Primary Systemic Anaplastic Large Cell Lymphoma in Korean Adults: 11 Years’ Experience at Asan Medical Center. Yonsei Med J. 2008;49(4):601–9. doi: 10.3349/ymj.2008.49.4.601.
  52. Wang YF, Yang YL, Gao ZF, et al. Clinical and laboratory characteristics of systemic anaplastic large cell lymphoma in Chinese patients. J Hematol Oncol. 2012;5(1):38. doi: 10.1186/1756-8722-5-38.
  53. Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110(7):2259–67. doi: 10.1182/blood-2007-04-060715.
  54. Moreno L, Garzon L, Bautista FJ, et al. Diagnosis of paediatric anaplastic large-cell lymphoma: a historical perspective from a single institution. Clin Transl Oncol. 2009;11(5):318–21. doi: 10.1007/s12094-009-0360-
  55. Le Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560–6. doi: 10.1182/blood-2007-07-
  56. Pillon M, Gregucci F, Lombardi A, et al. Results of AIEOP LNH-97 protocol for the treatment of anaplastic large cell lymphoma of childhood. Pediatr Blood Cancer. 2012;59(5):828–33. doi: 10.1002/pbc.24125.
  57. Gascoyne RD, Aoun P, Wu D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.
  58. Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral Tcell Lymphoma Project. Blood. 2008;111(12):5496–504. doi: 10.1182/blood-2008-01-
  59. Abramov D, Oschlies I, Zimmermann M, et al. Expression of CD8 is associated with non-common type morphology and outcome in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2013;98(10):1547–53. doi: 10.3324/haematol.2013.085837.
  60. Damm-Welk C, Mussolin L, Zimmermann M, et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2014;123(3):334–7. doi: 10.1182/blood-2013-09-
  61. Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK+ CD30+ lymphoma cells by Hsp90 antagonist 17-allylamino, 17-demethoxygeldanamycin. Cancer Res. 2002;62(5):1559–66.
  62. Ergin M, Denning MF, Izban KF, et al. Inhibition of tyrosine kinase activity induces caspase-dependent apoptosis in anaplastic large cell lymphoma with NPM-ALK (p80) fusion protein. Exp Hematol. 2001;29(9):1082–90. doi: 10.1016/s0301-472x(01)00688-
  63. Han Y, Amin HM, Franko B, et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteasome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood. 2006;108(8):2796–803. doi: 10.1182/blood-2006-04-
  64. Ogura M, Tobinai K, Hatake K, et al. Phase I/II study of brentuximab vedotin in Japanese patients with relapsed or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large-cell lymphoma. Cancer Sci. 2014;105(7):840–6. doi: 10.1111/cas.12435.
  65. Mosse YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80. doi: 10.1016/s1470-2045(13)70095-
  66. Brugieres L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: a results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897–903. doi: 10.1200/jco.2008.18.1487.
  67. Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706. doi: 10.1182/blood.v97.12.3699.
  68. Woessmann W, Zimmermann M, Lenhard M, et al. Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study. J Clin Oncol. 2011;29(22):3065–71. doi: 10.1200/jco.2011.34.8417.
  69. Goldberg JD, Casulo C, Horwitz The role of hematopoietic stem cell transplantation in peripheral T-cell lymphomas. In: Non-Hodgkin Lymphoma Cancer Drug Discovery and Development. Springer; 2013. pp. 279–93. doi: 10.1007/978-1-4614-5851-7_16.
  70. Giulino-Roth L, Ricafort R, Kernan NA, et al. Ten-year follow-up of pediatric patients with non-Hodgkin lymphoma treated with allogeneic or autologous stem cell transplantation. Pediatr Blood Cancer. 2013;60(12):2018–24. doi: 10.1002/pbc.24722.
  71. Woessmann W, Peters C, Lenhard M. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents – a Berlin-Frankfurt-Munster group report. Br J Haematol. 2006;133(2):176–82. doi: 10.1111/j.1365-2141.2006.06004.x.
  72. Mori T, Takimoto T, Katano N, et al. Recurrent childhood anaplastic large cell lymphoma: a retrospective analysis of registered cases in Japan. Br J Haematol. 2006;132(5):594–7. doi: 10.1111/j.1365-2005.05910.x.
  73. Луговская С.А., Почтарь М.Е., Тупицын Н.Н. Иммунофенотипирование в диагностике гемобластозов. М.: Триада, 2005. 165 с.
    [Lugovskaya SA, Pochtar’ ME, Tupitsyn NN. Immunofenotipirovanie v diagnostike gemoblastozov. (Immunophenotyping in diagnosis of hemoblastoses.) Moscow: Triada Publ.; 2005. 165 p. (In Russ)]
  74. Курильников А.Я. Мабтера — первые моноклональные антитела в терапии неходжкинских лимфом. Современная онкология. 2002;4(1):25–8.
    [Kuril’nikov AYa. Mabtera: first monoclonal antibodies in therapy of non-Hodgkin’s lymphomas. Sovremennaya onkologiya. 2002;4(1):25–8. (In Russ)]
  75. Reff M, Carner C, Chambers K, et al. Depletion of B-cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.
  76. Okur FV, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  77. Marcus R, Hagenbeek A. The therapeutic use of rituximab in non-Hodgkin’s lymphoma. Eur J Haematol. 2007;78(s67):5–14. doi: 10.1111/j.1600-0609.2006.00789.x.
  78. Plosker GL, Figgitt DP. Rituximab. Drugs. 2003;63(8):803–43. doi: 10.2165/00003495-200363080-
  79. Михайлова Н.Б. Роль ритуксимаба в лечении неходжкинских лимфом (реферативный обзор рандомизированных клинических исследований). Современная онкология. 2009;11(3):28–31.
    [Mikhailova NB. Role of rituximab in treatment of non-Hodgkin’s lymphomas (abstract review of randomized clinical trials). Sovremennaya onkologiya. 2009;11(3):28–31. (In Russ)]
  80. Li X, Liu Z, Cao J, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in China: a 10-year retrospective follow-up analysis of 437 cases from Shanghai Lymphoma Research Group. Ann Hematol. 2012;91(6):837–45. doi: 10.1007/s00277-011-1375-
  81. Thomas DA, Faderl S, O’Brien S, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. 2006;106(7):1569–80. doi: 10.1002/cncr.21776.
  82. Fayad L, Thomas D, Romaguera J. Update of the M. D. Anderson Cancer Center experience with hyper-CVAD and rituximab for the treatment of mantle cell and Burkitt-type lymphomas. Clin Lymph Myel. 2007;8(2):57–62. doi: 10.3816/clm.2007.s.034.
  83. Meinhardt A, Burkhardt B, Zimmermann M, et al. Phase II Window Study on Rituximab in Newly Diagnosed Pediatric Mature B-Cell Non-Hodgkin’s Lymphoma and Burkitt Leukemia. J Clin Oncol. 2010;28(19):3115–21. doi: 10.1200/jco.2009.26.6791.
  84. Bilic E, Femenic R, Conja J, et al. CD20-positive childhood B-non-Hodgkin lymphoma: morphology, immunophenotype and a novel treatment approach: a single center experience. Coll Antropol. 2010;34(1):171–5.
  85. Смирнова Н.В., Мякова Н.В., Белогурова М.Б. и др. Лечение зрелоклеточных В-клеточных неходжкинских лимфом с использованием комбинированной иммунохимиотерапии: возможности оптимизации терапевтической стратегии. Онкогематология. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24.
    [Smirnova NV, Myakova NV, Belogurova MB, et al. Treatment of B-cells non-Hodgkin lymphomas with combined immunochemotherapy: ability to treatment optimization. Oncohematology. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24. (In Russ)]
  86. Miyamoto KI, Kobayashi Y, Maeshima AM, et al. Clinicopathological prognostic factors of 24 patients with B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Int J Hematol. 2016;103(6):693–702. doi: 1007/s12185-016-1989-z.
  87. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–7. doi: 10.1111/j.1365-2008.07144.x.
  88. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  89. Stary J, Zimmermann M, Campbell M, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32(3):174–84. doi: 10.1200/jco.2013.48.6522.

 

Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region

VI Bakhtina1,2, IV Demko2, AN Narkevich2, DS Gushchin3

1 Regional Clinical Hospital, 3а Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

2 Professor VF Voyno-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

3 Norilsk Inter-District Hospital No. 1, Solnechnyi pr-d, 7a Norilsk, Russian Federation, 663300

For correspondence: Varvara Ivanovna Bakhtina, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022; Tel: +7(923)357-57-77; е-mail: doctor.gem@mail.ru

For citation: Bakhtina VI, Demko IV, Narkevich AN, Gushchin DS. Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region. Clinical oncohematology. 2016;9(4):413–419 (In Russ).

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-4-413-419


ABSTRACT

Background & Aims. B-cellular chronic lymphocytic leukemia (CLL) is a disease with heterogeneous clinical manifestations and biological characteristics. The age of 70 % of patients is more than 65 years by the date of the diagnosis; most of them have several comorbidities. The aim of the study is to identify factors affecting the survival, as well as to determine causes of mortality in CLL patients (according to data from hematological hospitals of Krasnoyarsk Region).

Methods. In order to identify the most significant factors affecting the course and the outcome of CLL, a retrospective analysis of data on patients who died in hematological hospitals was carried out. 45 cases with the lethal outcome were registered within six years. All patients were under hematologist’s supervision after diagnosing the disease, and they were followed throughout the treatment period up to the lethal outcome.

Results. Тhe overall and progression-free survival depended, first of all, on the type of the first line therapy and its efficacy. The progression of the underlying disease and infectious complications became the main reason of the lethal outcome in CLL patients.

Conclusion. Most patients received ineffective treatment as first line therapy. The analysis of the comorbidities showed that a more effective chemotherapy could be performed with achievement of longer complete remissions.

Keywords: chronic lymphocytic leukemia, oncohematological diseases, comorbidities, survival, treatment.

Received: May 16, 2016

Accepted: June 17, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. Gribben JG. How I treat CLL up front. Blood. 2010;115(2):187– doi: 10.1182/blood-2009-08-207126.
  2. Lee JS, Dixon DO, Kantarjian H, et al. Prognosis of chronic lymphocytic leukemia: a multivariate regression analysis of 325 untreated patients. Blood. 1987;69(3):929–36.
  3. Molica S. Infections in chronic lymphocytic leukemia: risks factors and impact on survival and treatment. Leuk Lymphoma. 1994;13(3–4):203–14. doi: 10.3109/10428199409056283.
  4. Albertsen PC, Moore DF, Shih W, et al. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol. 2011;29(10):1335–41. doi: 10.1200/jco.2010.31.2330.
  5. Etienne A, Esterni B, Charbonnier A, et al. Comorbidity is an independent predictor of complete remission in elderly patients receiving induction chemotherapy for acute myeloid leukemia. Cancer. 2007;109(7):1376– doi: 10.1002/cncr.22537.
  6. Kos FT, Yazici O, Civelek B, et al. Evaluation of the effect of comorbidity on survival in pancreatic cancer by using “Charlson Comorbidity Index” and “Cumulative Illness Rating Scale”. Wien Klin Wochenschr. 2014;126(1–2):36– doi: 10.1007/s00508-013-0453-9.
  7. Della Porta MG, Malcovati L. Clinical relevance of extra-hematologic comorbidity in the management of patients with myelodysplastic syndrome. Haematologica. 2009;94(5):602– doi: 10.3324/haematol.2009.005702.
  8. Wang S, Wong ML, Hamilton N, et al. Impact of age and comorbidity on non-small-cell lung cancer treatment in older veterans. J Clin Oncol. 2012;30(13):1447–55. doi: 11200/jco.2011.39.5269.
  9. Strati P, Chaffe K, Achenbach S, et al. Comorbidity and cause of death in patients with chronic lymphocytic leukemia (CLL). Cancer Res. 2015;75(15): Abstract 5267. doi: 10.1158/1538-7445.am2015-5267.
  10. Goede V, Paula Cramer P, Busch R, et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. 2014;99(6):1095–100. doi: 10.3324/haematol.2013.096792.
  11. Thurmes P, Call T, Slager S, et al. Comorbid conditions and survival in unselected, newly diagnosed patients with chronic lymphocyticleukemia. Leuk Lymphoma. 2008;49(1):49–56. doi: 10.1080/10428190701724785.
  12. Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;16(5):622–6. doi: 10.1111/j.1532-5415.1968.tbx.
  13. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736.
  14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8.
  15. Anaissie EJ, Kontoyiannis DP, O’Brien S, et al. Infections in patients with chronic lymphocytic leukemia treated with fludarabine. Ann Intern Med. 1998;129(7):559– doi: 10.7326/0003-4819-129-7-199810010-00010.
  16. Badoux XC, Keating MJ, Wang X, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. 2011;117(11):3016–24. doi: 10.1182/blood-2010-08-304683.
  17. Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet. 2007;370(9583):230–9. doi: 10.1016/s0140-6736(07)61125-8.
  18. Bouvet E, Borel C, Oberic L, et al. Impact of dose intensity on outcome of fludarabine, cyclophosphamide, and rituximab regimen given in the first-line therapy for chronic lymphocytic leukemia. 2013;98(1):65–70. doi: 10.3324/haematol.2012.070755.
  19. Miller MD, Paradis CF, Houck PR, et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res. 1992;41(3):237–48. doi: 10.1016/0165-1781(92)90005-n.
  20. Parmlee PA, Thuras PD, Katz IR, et al. Validation of Cumulative Index Rating Scale in a geriatric residential population. J Am Geriatr Soc. 1995;43(2):130–7. doi: 10.1111/j.1532-5415.1995.tb06377.x.
  21. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 1016/0021-9681(87)90171-8.

 

Role of Positron-Emission Tomography in Prognosis of Outcomes of High-Dose Chemotherapy with Autologous Hematopoietic Stem Cell Transplantation in Hodgkin’s Lymphoma

VG Potapenko1,2, NB Mikhailova1, BI Smirnov4, IA Skorokhod2, DA Chaginskaya2, VV Ryabchikova2, IA Samorodova2, EI Podol’tseva2, VV Ipatov3, IV Boikov3, VN Semelev3, DA Gornostaev3, TG Potapenko5, TG Kulibaba5, NV Medvedeva2, BV Afanas’ev1

1 Academician IP Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

2 Municipal Hematological Center, Municipal Clinical Hospital No. 31, 3 Dinamo pr-t, Saint Petersburg, Russian Federation, 197110

3 SM Kirov Military Medical Academy, 6 Akademika Lebedeva str., Saint Petersburg, Russian Federation, 194044

4 VI Ul’yanov (Lenin) St. Petersburg State Electrotechnical University LETI, 5 Professora Popova str., Saint Petersburg, Russian Federation, 197376

5 St. Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, Russian Federation, 199034

For correspondence: Vsevolod Gennad’evich Potapenko, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel: +7(812)230-19-33; е-mail: potapenko.vsevolod@mail.ru

For citation: Potapenko VG, Mikhailova NB, Smirnov BI, et al. Role of Positron-Emission Tomography in Prognosis of Outcomes of High-Dose Chemotherapy with Autologous Hematopoietic Stem Cell Transplantation in Hodgkin’s Lymphoma. Clinical oncohematology. 2016;9(4):406–12 (In Russ).

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-4-406-412


ABSTRACT

Aim. To perform a comparative analysis of the prognostic significance of positron-emission tomography (PET) with other prognostic factors of the efficacy of high-dose chemotherapy (HDCT) with autologous hematopoietic stem cell transplantation (auto-HSCT) in patients with Hodgkin’s lymphoma.

Methods. Data on 84 patients with Hodgkin’s lymphoma receiving treatment over the period from October 2007 till November 2015 were analyzed. The median age was 26.6 years (range: 10–62). The median follow-up was 25 months (range: 1–81 months). The prognostic significance of sex, response to the initial chemotherapy, time to relapse, second-line chemotherapy regimen type, B-symptoms, tumor size (>5 cm in cases of relapse prior to the HDCT), serum LDH and albumin levels, CT findings, the number of chemotherapy lines, conditioning regimen before the auto-HSCT, and the metabolic activity before the HDCT (PET1, n = 82) and after auto-HSCT (PET2, n = 57) was analyzed.

Results. The two-year overall (OS) and event-free (EFS) survival rates were 70.6 % and 58.7%, respectively. Prognosis was the worst in patients with CT-confirmed lymphoma progression by the initiation of HDCT. In the presence of a CT-response, the PET status of lymphoma has a prognostic significance. The 2-year OS and EFS rates of PET1-negative and PET1-positive patients were 82 % vs. 62 % (= 0.056) and 74 % vs. 44 % (= 0.003), respectively. In PET2-negative and PET2-positive patients, the OS and EFS rates were 90 % vs. 65 % (= 0.013) and 72 % vs. 52 % (= 0.014), respectively. From the prognostic point of view, PET2 findings prevailed over PET1 findings. The multivariate analysis confirmed only PET2 significance for OS prediction.

Conclusion. The tumor sensitivity to the chemotherapy assessed by the CT is the most important prognostic factor. In case of a positive CT dynamics, the achievement of PET1 or PET2 negativity before or after HDCT/auto-HSCT is a favorable prognostic factor. The worst prognosis was observed in patients with tumor metabolic activity before or after HDCT/auto-HSCT.

Keywords: positron-emission tomography (PET), Hodgkin’s lymphoma, high-dose chemotherapy, auto-HSCT.

Received: June 23, 2016

Accepted: August 29, 2016

Read in PDF (RUS) pdficon


 

REFERENCES

  1. Жуков Н.В., Румянцев А.Г., Усс А.Л. и др. Эффективность и безопасность высокодозной химиотерапии с аутологичной трансплантацией гемопоэтических стволовых клеток у больных с неблагоприятным течением лимфомы Ходжкина. Опыт трансплантационных центров России, Украины и республики Беларусь. Вопросы гематологии, онкологии и иммунопатологии в педиатрии. 2014;13(1): 22–31.
    [Zhukov NV, Rumyantsev AG, Uss AL, et al. Efficacy and safety of high-dose chemotherapy with autologous hematopoietic stem cell transplantation in patients with unfavorable course of Hodgkin’s lymphoma. Experience of transplantation centers in Russia, Ukraine, and Belarus. Voprosy gematologii, onkologii i immunopatologii v pediatrii. 2014;13(1):22–31. (In Russ)]
  2. Федоренко Д.А., Мельниченко В.Я., Ионова Т.И. и др. Клиническая оценка эффективности аутологичной трансплантации кроветворных стволовых клеток при лимфомах. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2013;8(4):62–5.
    [Fedorenko DA, Mel’nichenko VYa, Ionova TI, et al. Clinical evaluation of efficacy of autologous hematopoietic stem cell transplantation in lymphomas. Vestnik Natsional’nogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova. 2013;8(4):62–5. (In Russ)]
  3. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58. doi: 10.1200/jco.2013.53.5229.
  4. Асланиди И.П., Мухортова О.В., Шурупова И.В. и др. Позитронно-эмиссионная томография: уточнение стадии болезни при злокачественных лимфомах. Клиническая онкогематология. 2010;3(2):119–29.
    [Aslanidis IP, Mukhortova OV, Shurupova IV, et al. Positron emission tomography for staging of patients with malignant lymphomas. Klinicheskaya onkogematologiya. 2010;3(2):119–29. (In Russ)]
  5. Moskowitz СH, Yahalom J, Zelenetz AD. High-dose chemo-radiotherapy for relapsed or refractory Hodgkin lymphoma and the significance of pre-transplant functional imaging. Br J Haematol. 2010;148(6):890–7. doi: 10.1111/j.1365-2141.2009.08037.x.
  6. Nieto Y, Popat U, Anderlini P, et al. Autologous stem cell transplantation for refractory or poor-risk relapsed Hodgkin’s lymphoma: effect of the specific high-dose chemotherapy regimen on outcome. Biol Blood Marrow Transplant. 2013;19(3):410–7. doi: 10.1016/j.bbmt.2012.10.029.
  7. Schot BW, Zijlstra JM, Sluiter WJ, et al. Early FDG-PET assessment in combination with clinical risk scores determines prognosis in recurring lymphoma. Blood. 2007;109(2):486–91. doi: 10.1182/blood-2005-11-006957.
  8. Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high dose chemotherapy and stem cell transplantation. Blood. 2003;102(1):53–9. doi: 10.1182/blood-2002-12-3842.
  9. Svoboda J, Andreadis C, Elstrom R, et al. Prognostic value of FDG-PET scan imaging in lymphoma patients undergoing autologous stem cell transplantation. Bone Marrow Transplant. 2006;38(3):211–6. doi: 10.1038/sj.bmt.1705416.
  10. Becherer A, Mitterbauer M, Jaeger U, et al. Positron emission tomography with [18F]2-fluoro-D-2-deoxyglucose (FDG-PET) predicts relapse of malignant lymphoma after high-dose therapy with stem cell transplantation. Leukemia. 2002;16(2):260–7. doi: 10.1038/sj.leu.2402342.
  11. Filmont JE, Czernin J, Yap C, et al. Value of F-18 fluorodeoxyglucose positron emission tomography for predicting the clinical outcome of patients with aggressive lymphoma prior to and after autologous stem-cell transplantation. Chest. 2003;124(2):608–13. doi: 10.1378/chest.124.2.608.
  12. Devillier R, Coso D, Castagna L, et al. Positron emission tomography response at the time of autologous stem cell transplantation predicts outcome of patients with relapsed and/or refractory Hodgkin’s lymphoma responding to prior salvage therapy. Haematologica. 2012;97(7):1073–9. doi: 10.3324/haematol.2011.056051.
  13. Arai S, Letsinger R, Wong RM, et al. Phase I/II trial of GN-BVC, a gemcitabine and vinorelbine-containing conditioning regimen for autologous hematopoietic cell transplantation in recurrent and refractory Hodgkin lymphoma. Biol Blood Marrow Transplant. 2010;16(8):1145–54. doi: 10.1016/j.bbmt.2010.02.022.
  14. Castagna L, Bramanti S, Balzarotti M, et al. Predictive value of early 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) during salvage chemotherapy in relapsing/refractory Hodgkin lymphoma (HL) treated with high-dose chemotherapy. Br J Haematol. 2009;145(3):369–72. doi: 10.1111/j.1365-2141.2009.07645.x.
  15. Akhtar S, Al-Sugair AS, Abouzied M, et al. Pre-transplant FDG-PET-based survival model in relapsed and refractory Hodgkin’s lymphoma: outcome after high-dose chemotherapy and auto-SCT. Bone Marrow Transplant. 2013;48(12):1530–6. doi: 10.1038/bmt.2013.88.
  16. Crocchiolo R, Canevari C, Assanelli A, et al. Pre-transplant 18FDG-PET predicts outcome in lymphoma patients treated with high-dose sequential chemotherapy followed by autologous stem cell transplantation. Leuk Lymphoma. 2008;49(4):727–33. doi: 10.1080/10428190701885545.
  17. Gentzler RD, Evens AM, Rademaker AW, et al. F-18 FDG-PET predicts outcomes for patients receiving total lymphoid irradiation and autologous blood stem-cell transplantation for relapsed and refractory Hodgkin lymphoma. Br J Haematol. 2014;165(6):793–800. doi: 10.1111/bjh.12824.
  18. Jabbour E, Hosing C, Ayers G, et al. Pretransplant positive positron emission tomography/gallium scans predict poor outcome in patients with recurrent/refractory Hodgkin lymphoma. Cancer. 2007;109(12):2481–9. doi: 10.1002/cncr.22714.
  19. Cohen JB, Hall NC, Ruppert AS, et al. Association of pre-transplantation positron emission tomography/computed tomography and outcome in mantle-cell lymphoma. Bone Marrow Transplant. 2013;48(9):1212–7. doi: 10.1038/bmt.2013.46.
  20. Dickinson M, Hoyt R, Roberts AW, et al. Improved survival for relapsed diffuse large B cell lymphoma is predicted by a negative pre-transplant FDG-PET scan following salvage chemotherapy. Br J Haematol. 2010;150(1):39–45. doi: 10.1111/j.1365-2141.2010.08162.x.
  21. Palmer J, Goggins T, Broadwater G, et al. Early post transplant (F-18) 2-fluoro-2-deoxyglucose positron emission tomography does not predict outcome for patients undergoing auto-SCT in non-Hodgkin and Hodgkin lymphoma. Bone Marrow Transplant. 2011;46(6):847–51. doi: 10.1038/bmt.2010.203.
  22. Alousi AM, Saliba RM, Okoroji GJ, et al. Disease staging with positron emission tomography or gallium scanning and use of rituximab predict outcome for patients with diffuse large B-cell lymphoma treated with autologous stem cell transplantation. Br J Haematol. 2008;142(5):786–92. doi: 10.1111/j.1365-2141.2008.07277.x.
  23. Bondly C, Johnston PB, Lowe V, et al. Positive positron emission tomography (PET) pre-autologous stem cell transplant (ASCT) in non-Hodgkin lymphoma (NHL) does not preclude successful outcome. Biol Blood Marrow Transplant. 2006;12(2):18–9. doi: 10.1016/j.bbmt.2005.11.060.
  24. Qiao W, Zhao J, Xing Y. Predictive value of [18F]fluoro-2-deoxy-D-glucose positron emission tomography for clinical outcome in patients with relapsed/refractory diffuse large B-cell lymphoma prior to and after autologous stem cell transplant. Leuk Lymphoma. 2014;55(2):276–82. doi: 10.3109/10428194.2013.797974.
  25. Sucak GT, Ozkurt ZN, Suyani E, et al. Early post-transplantation positron emission tomography in patients with Hodgkin lymphoma is an independent prognostic factor with an impact on overall survival. Ann Hematol. 2011;90(11):1329–36. doi: 10.1007/s00277-011-1209-0.
  26. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  27. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/jco.2006.09.2403.
  28. David G, Kleinbaum MK. Survival Analysis. A Self-Learning Text. 2nd edition. Springer; 2002. рр. 583. doi: 10.1111/j.1541-0420.2006.00540_18.x.
  29. Петрова Г.Д., Мелкова К.Н., Чернявская Т.З. и др. Первично-рефрактерное течение лимфомы Ходжкина и аутологичная трансплантация гемопоэтических стволовых клеток. Результаты одноцентрового проспективного исследования. Российский онкологический журнал. 2015;20(3):4–11.
    [Petrova GD, Melkova KN, Chernyavskaya TZ, et al. Primary refractory Hodgkin’s lymphoma and autologous stem cell transplantation: results of the single-center prospective study. Rossiiskii onkologicheskii zhurnal. 2015;20(3):4–11. (In Russ)]
  30. Crocchiolo R, Fallanca F, Giovacchini G, et al. Role of 18FDG-PET/CT in detecting relapse during follow-up of patients with Hodgkin’s lymphoma. Ann Hematol. 2009;88(12):1229–36. doi: 10.1007/s00277-009-0752-4.
  31. Gupta D, Lis ChG. Pretreatment Serum Albumin as a Predictor of Cancer Survival: A Systematic Review of the Epidemiological Literature. Nutrition J. 2010;9(1):69–116. doi: 10.1186/1475-2891-9-69.
  32. Демина Е.А. Лимфома Ходжкина: прогностические признаки сегодня. Современная онкология. 2006;4:4–7.
    [Demina EA. Hodgkin’s lymphoma: prognostic factors today. Sovremennaya onkologiya. 2006;4:4–7. (In Russ)]
  33. Czyz A, Lojko-Dankowska A, Dytfeld D, et al. Prognostic factors and long-term outcome of autologous haematopoietic stem cell transplantation following a uniform-modified BEAM-conditioning regimen for patients with refractory or relapsed Hodgkin lymphoma: a single-center experience. Med Oncol. 2013;30(3):611. doi: 10.1007/s12032-013-0611-y.
  34. Villa D, Seshadri T, Puig N, et al. Second-line salvage chemotherapy for transplant-eligible patients with Hodgkin’s lymphoma resistant to platinum-containing first-line salvage chemotherapy. Haematologica. 2012;97(5):751–7. doi: 10.3324/haematol.2011.047670.
  35. Colpo A, Hochberg E, Chen YB. Current status of autologous stem cell transplantation in relapsed and refractory Hodgkin’s lymphoma. Oncologist. 2012;17(1):80–90. doi: 10.1634/theoncologist.2011-0177.

Brentuximab Vedotin: New Possibilities for Treatment of Relapses and Refractory Hodgkin’s Lymphomas

EA Demina

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Elena Andreevna Demina, DSci, Professor, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7 (499)324-90-89; e-mail: drdemina@yandex.ru

For citation: Demina EA. Brentuximab Vedotin: New Possibilities for Treatment of Relapses and Refractory Hodgkin’s Lymphomas. Clinical oncohematology. 2016;9(4):398–405 (In Russ).

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-4-398-405


ABSTRACT

The concept of total curability of Hodgkin’s lymphoma was introduced as early as in 1970s. However, 10–30 % of patients develop relapses; in addition, resistant tumors cannot be excluded. A high-dose chemotherapy with autologous hematopoietic stem cell transplantation is a modern treatment standard for relapses and refractory Hodgkin’s lymphomas. However, long-term remissions are achieved only in a half of these patients. The toxicity of effective first-line treatment regimens and insufficient effectiveness of regimens prescribed for relapses and refractory disease are the reason for further search of new therapeutic options for this malignant tumor. Invention of an immunoconjugate, brentuximab vedotin, became one of the new steps in the treatment of Hodgkin’s lymphomas. This review presents data on the pharmacological properties of the drug, the mechanism of the anti-tumor effect, as well as results of large international, randomized clinical trials.

Keywords: brentuximab vedotin, Hodgkin’s lymphoma, relapse, treatment.

Received: June 14, 2016

Accepted: June 17, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. De Vita VT. The consequences of the chemotherapy of Hodgkin’s disease: the 10th David A. Karnofsky memorial lecture. Cancer. 1981;47(1):1–13. doi: 10.1002/1097-0142(19810101)47:1<1::AID-CNCR2820470102>3.0.co;2-2.
  2. Engert A, Younes A, eds. Hematologic malignancies: Hodgkin lymphoma. 2nd edition. A Comprehensive Update on Diagnostics and Clinics. Berlin Heidelberg: Springer; 2015. doi: 10.1007/978-3-319-12505-3.
  3. Horning S, Fanale M, deVos S, et al. Defining a population of Hodgkin lymphoma patients for novel therapeutics: An international effort. Ann Oncol. 2008;19(Suppl 4): Abstract 118.
  4. Falini B, Pileri S, Pizzolo G, et al. CD30 (Ki-1) molecule: A new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85(1):1–14.
  5. Matsumoto K, Terakawa M, Miura K, et al. Extremely rapid and intense induction of apoptosis in human eosinophils by anti-CD30 antibody treatment in vitro. J Immunol. 2004;172(4):2186–93. doi: 10.4049/jimmunol.172.4.2186.
  6. Ansell SM, Horwitz SM, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. J Clin Oncol. 2007;25(19):2764–9. doi: 10.1200/jco.2006.07.8972.
  7. Forero-Torres A, Leonard JP, Younes A, et al. A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146(2):171–9. doi: 10.1111/j.1365-2009.07740.x.
  8. Dosio F, Brusa P and Cattel L Immunotoxins and Anticancer Drug Conjugate Assemblies: The Role of the Linkage between Components. 2011;3(12):848–83. doi: 10.3390/toxins3070848.
  9. Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. 2003;102(4):1458–65. doi: 10.1182/blood-2003-01-0039.
  10. Sutherland MSK, Sanderson RJ, Gordon KA, et al. Lysosomal Trafficking and Cysteine Protease Metabolism Confer Target-specific Cytotoxicity by Peptide-linked Anti-CD30-Auristatin Conjugates. J Biol Chem. 2006;281(15):10540–7. doi: 10.1074/jbc.M510026200.
  11. Katz J, Janik JA, Yones A. Brentuximab vedotin (SGN-35). Clin Cancer Res. 2011;17(20):6428–36. doi: 10.1158/1078-0432.CCR-11-0488.
  12. Chen R, Gopal AK, Smith SE, et al. Five-year survival data demonstrating durable responses from a pivotal phase 2 study of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;126(Suppl 23): Abstract 2736. doi: 10.1182/blood-2016-02-699850.
  13. Gardai SJ, Epp A, Law C-L. Brentuximab vedotin-mediated immunogenic cell death. Cancer Res. 2015;75(15): Abstract 2469. doi: 10.1158/1538-7445.am2015-2469.
  14. Oflazoglu E, Stone IJ, Gordon KA. Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood. 2007;110(13):4370–2. doi: 10.1182/blood-2007-06-097014.
  15. Fu L, Xinqun Z, Kim E, et al. Relationship between in vivo antitumor activity of ADC and payload release in preclinical models. Cancer Res. 2014;74(19): Abstract 3694. doi: 10.1158/1538-am2014-3694.
  16. Kim YH, Tavallaee M, Sundram U, et al. Phase II Investigator-Initiated Study of Brentuximab Vedotin in Mycosis Fungoides and Sezary Syndrome With Variable CD30 Expression Level: A Multi-Institution Collaborative Project. J Clin Oncol. 2015;33(32):3750–8. doi: 10.1200/jco.2014.60.3969.
  17. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9. doi: 10.1200/jco.2011.38.0410.
  18. Arai S, Fanale M, DeVos S, et al. Defining a Hodgkin lymphoma population for novel therapeutics after relapse from autologous hematopoietic cell Leuk Lymphoma. 2013;54(11):2531–3. doi: 10.3109/10428194.2013.798868.
  19. Gopal AK, Chen R, Smith SE, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(8):1236–43. doi: 10.1182/blood-2014-08-595801.
  20. Lee JJ, Swain SM. Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol. 2006;24(10):1633–42. doi: 10.1200/jco.2005.04.0543.
  21. Swain SM, Arezzo JC. Neuropathy associated with microtubule inhibitors: Diagnosis, incidence, and management. Clin Adv Hematol Oncol. 2008;6(6):455–67.
  22. Zinzani PL, Corradini P, Gianni AM, et al. Brentuximab Vedotin in CD30-Positive Lymphomas: A SIE, SIES, and GITMO Position Paper. Clin Lymph Myel Leuk. 2015;15(9):507–13. doi: 10.1016/j.clml.2015.06.008.
  23. Rothe A, Sasse S, Goergen H, et al. Brentuximab vedotin for relapsed or refractory CD30 hematologic malignancies: the German Hodgkin Study Group experience. Blood. 2012;120(7):1470–2. doi: 10.1182/blood-2012-05-430918.
  24. Gibb A, Jones C, Bloor A, et al. Brentuximab vedotin in refractory CD30 lymphomas: a bridge to allogeneic transplantation in approximately one quarter of patients treated on a Named Patient Programme at a single UK center. Haematologica. 2013;98(4):611–4. doi: 10.3324/haematol.2012.069393.
  25. Zinzani PL, Viviani S, Anastasia A, et al. Brentuximab vedotin in relapsed/refractory Hodgkin’s lymphoma: the Italian experience and results of its use in daily clinical practice outside clinical trials. Haematologica. 2013;98(8):1232–6. doi: 10.3324/haematol.2012.083048.
  26. Perrot A, Monjanel H, Bouabdallah R, et al. Brentuximab vedotin as single agent in refractory or relapsed CD30-positive Hodgkin lymphoma: the French name patient program experience in 241 patients. Haematologica. 2014;99(s1):498, abstr. S1293.
  27. Perrot A, Monjanel H, Bouabdallah R, et al. Lymphoma Study Association (LYSA). Impact of post-brentuximab vedotin consolidation on relapsed/refractory CD30+ Hodgkin lymphomas: a large retrospective study on 240 patients enrolled in the French Named-Patient Program. 2016;101(4):466–73. doi: 10.3324/haematol.2015.134213. Epub 2016 Jan 14.
  28. Moskowitz CH, Yahalom J, Zelenetz AD, et al. High-Dose Chemo-Radiotherapy for Relapsed or Refractory Hodgkin Lymphoma and the Significance of Pre-transplant Functional Imaging. Br J Haematol. 2010;148(6):890–7. doi: 10.1111/j.1365-2141.2009.08037.x.
  29. Moskowitz AJ, Schoder H, Gerecitano JF. FDG-PET Adapted Sequential Therapy with Brentuximab Vedotin and Augmented ICE Followed By Autologous Stem Cell Transplant for Relapsed and Refractory Hodgkin Lymphoma. Blood (ASH Annual Meeting Abstracts). 2013;122(21): Abstract 2099.
  30. Moskowitz AJ, Hamlin PA Jr, Perales M-A, et al. Phase II Study of Bendamustine in Relapsed and Refractory Hodgkin Lymphoma. J Clin Oncol. 2013;31(4):456–60. doi: 10.1200/jco.2012.45.3308.
  31. LaCasce A, Sawas A, Bociek RG, et al. A phase 1/2 single-arm, open-label study to evaluate the safety and efficacy of brentuximab vedotin in combination with bendamustine for patients with Hodgkin lymphoma in the first salvage setting: interim results. Biol Blood Marrow Transplant. 2014;20(2):S161. doi: 10.1016/j.bbmt.2013.12.257.
  32. Aparicio J, Segura A. Garcera S, et al. ESHAP is an Active Regimen for Relapsing Hodgkin’s Disease. Ann Oncol. 1999;10(5):593–5. doi: 10.1023/A:1026454831340.
  33. Garcia-Sanz R, Sureda A, Alonso-Alvarez S, et al. Evaluation of the Regimen Brentuximab Vedotin Plus ESHAP (BRESHAP) in Refractory or Relapsed Hodgkin Lymphoma Patients: Preliminary Results of a Phase I-II Trial from the Spanish Group of Lymphoma and Bone Marrow Transplantation (GELTAMO). Blood. 2015: Abstract 582.
  34. Bartlett NL, Chen R, Fanale MA, et al. Retreatment with brentuximab vedotin in CD30-positive hematologic malignancies. J Hematol Oncol. 2014;7(1):24. doi: 10.1186/1756-8722-7-24.
  35. Batlevi CL, Younes A. Novel therapy for Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2013;2013(1):394–9. doi: 10.1182/asheducation-2013.1.394.
  36. Majhail NS, Weisdorf DJ, Defor TE, et al. Long-term results of autologous stem cell transplantation for primary refractory or relapsed Hodgkin’s lymphoma. Biol Blood Marrow Transplant. 2006;12(10):1065–72. doi: 10.1016/j.bbmt.2006.06.006.
  37. Moskowitz CH, Paszkiewicz-Kozik E, Nadamanee A, et al. Analysis of primary-refractory Hodgkin lymphoma pts in a randomized, placebo-controlled study of brentuximab vedotin consolidation after autologous stem cell transplant. Hematol Oncol. 2015;33:165, abstr. 120.
  38. Moskowitz CH, Nademanee A, Masszi T, et Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62. doi: 10.1016/S0140-6736(15)60165-9.
  39. Walewski JA, Nademanee A, Masszi T, et al. Multivariate analysis of PFS from the AETHERA trial: a phase 3 study of brentuximab vedotin consolidation after autologous stem cell transplant for HL. J Clin Oncol. 2015;33(Suppl): Abstract 8519.
  40. Sweetenham JW, Walewski J, Nadamanee A, et al. Updated Efficacy and Safety Data from the AETHERA Trial of Consolidation with Brentuximab Vedotin after Autologous Stem Cell Transplant (ASCT) in Hodgkin Lymphoma Patients at High Risk of Relapse. Biol Blood Marrow Transplant. 2016;22(3):S19e–S481, abstr. 24. doi: 10.1016/j.bbmt.2015.11.315.
  41. Bonthapally V, Ma E, Viviani S, et al. Healthcare utilization in the AETHERA trial: phase 3 study of brentuximab vedotin in patients at increased risk of residual Hodgkin lymphoma post-ASCT. Hematol Oncol. 2015;33:193, abstr. 177.
  42. Kuruvilla J, Connors JM, Sawas A, et al. A phase 1 study of brentuximab vedotin (BV) and bendamustine (B) in relapsed or refractory Hodgkin lymphoma (HL) and anaplastic large T-cell lymphoma (ALCL). Hematol Oncol. 2015;33:148, abstr. 090.
  43. Theurich S, Malcher J, Wennhold K, et al. Brentuximab Vedotin Combined With Donor Lymphocyte Infusions for Early Relapse of Hodgkin Lymphoma After Allogeneic Stem-Cell Transplantation Induces Tumor-Specific Immunity and Sustained Clinical Remission. J Clin Oncol. 2013;31(5):e59–e63. doi: 10.1200/jco.2012.43.6832.
  44. Vaklavas C, Forero-Torres A. Safety and efficacy of brentuximab vedotin in patients with Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Ther Adv Hematol. 2012;3(4):209–25. doi: 10.1177/2040620712443076.

 

Acute Leukemias: Immunophenotypic Differences between Blast Cells and Their Nonneoplastic Analogues in Bone Marrow

АM Popov1, ТYu Verzhbitskaya2,3, LG Fechina2, AV Shestopalov1,4, SA Plyasunova1

1 Dmitrii Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

2 Regional Children’s Hospital No. 1, 32 Serafimy Deryabinoi str., Yekaterinburg, Russian Federation, 620149

3 Institute of Medical Cell Technologies, 22a Karla Marksa str., Yekaterinburg, Russian Federation, 620026

4 N.I. Pirogov Russian National Research Medical University, 1 Samory Mashela str., Moscow, Russian Federation, 117997

For correspondence: Aleksandr Mikhailovich Popov, PhD, 1 Samory Mashela str., Moscow, Russian Federation, 117997; Tel.: +7(495)287-65-70; e-mail: uralcytometry@gmail.com

For citation: Popov AM, Verzhbitskaya TYu, Fechina LG, et al. Acute Leukemias: Immunophenotypic Differences between Blast Cells and Their Nonneoplastic Analogues in Bone Marrow. Clinical oncohematology. 2016;9(3):302-13 (In Russ).

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-3-302-313


ABSTRACT

Flow cytometry immunophenotyping of bone marrow tumor blasts is one of the principal methods used for acute leukemia (AL) diagnosing. Normal lymphopoietic and myelopoietic progenitors have very similar antigenic profile with leukemic cells, thus, making the AL diagnosing more difficult. Genetic disorders resulting in formation of a tumor clone contribute to development of an immunophenotype that differs from normal cells. Aberrant expression of markers detected in AL blast cells alone forms a so-called leukemia-associated immunophenotype. The leukemia-associated immunophenotype detection by multicolor flow cytometry permits distinguishing between normal and neoplastic cells. This requires simultaneous assessment of many markers on the same cells, which is possible only if multicolor flow cytometry with well-designed and well-established antibodies panels is used. Moreover, correct interpretation of the cell population location on dot plot requires adequate cytometer setup, standardized sample preparation and enough experienced personnel. That is why correct immunophenotyping is often possible only in large laboratories performing reference immunophenotyping within the frames of multicenter trials.

Keywords: acute leukemias, flow cytometry, antigenic expression, immunophenotype.

Received: February 19, 2016

Accepted: March 16, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Morike A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265–84. doi: 10.1038/leu.2009.257.
  2. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(5):551–65. doi: 10.1200/jco.2010.30.7405.
  3. Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012;120(6):1165–74. doi: 10.1182/blood-2012-05-
  4. Bene M, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.
  5. van Lochem EG, Wiegers YM, van den Beemd R, et al. Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia. 2000;14(4):688–95. doi: 10.1038/sj.leu.2401749.
  6. McKenna RW, Washington LT, Aquino DA, et al. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001;98(8):2498–507. doi: 10.1182/blood.v98.8.2498.
  7. Campana D, Coustan-Smith E. Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Hematol. 2002;15(1):1–19. doi: 1053/beha.2002.0182.
  8. Dworzak MN, Fritsch G, Fleischer C, et al. Comparative phenotype mapping of normal vs. malignant pediatric B-lymphopoiesis unveils leukemia-associated aberrations. Exp Hematol. 1998;26(4):305–13.
  9. Lucio P, Parreira A, van den Beemd MVM, et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia. 1999;13(3):419–27. doi: 1038/sj.leu.2401279.
  10. Lucio P, Gaipa G, van Lochem EG, et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. Leukemia. 2001;15(8):1185–92. doi: 10.1038/sj.leu.2402150.
  11. Dworzak MN, Fritsch G, Fleisher C, et al. Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow. Leukemia. 1997;11(8):1266–73. doi: 10.1038/sj.leu.2400732.
  12. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Аберрации иммунофенотипа, применимые для мониторинга минимальной остаточной болезни методом проточной цитометрии при CD10-позитивном остром лимфобластном лейкозе из В-линейных предшественников. Иммунология. 2010;31(6):299–304.
    [Popov AM, Verzhbitskaya TYu, Tsaur GA, et al. Immunophenotype aberrations used for monitoring of the minimal residual disease using flow cytometry in CD10-positive acute lymphoblastic leukemia from B-linear precursors. 2010;31(6):299–304. (In Russ)]
  13. Мовчан Л.В. Лейкоз-ассоциированный иммунофенотип опухолевых клеток у детей с острым лимфобластным лейкозом из предшественников В-лимфоцитов. Онкогематология. 2012;1:22–8.
    [Movchan LV. Leukemia-associated immunophenotype of tumor cells in childhood B-precursors acute lymphoblastic leukemia. Onkogematologiya. 2012;1:22–8. (In Russ)]
  14. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Алгоритм применения проточной цитометрии для мониторинга минимальной остаточной болезни при CD10-негативном остром лимфобластном лейкозе из B-линейных предшественников. Вопросы диагностики в педиатрии. 2012;4(5):31–5.
    [Popov AM, Verzhbitskaya TYu, Tsaur GA, et al. Methodology of flow cytometry application for minimal residual disease monitoring in childhood CD10-negative B-cell precursor acute lymphoblastic leukemia. Voprosy diagnostiki v pediatrii. 2012;4(5):31–5. (In Russ)]
  15. Ciudad J, Orfao A, Vidriales B, et al. Immunophenotypic analysis of CD19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection. Haematologica. 1998;83(12):1069–75.
  16. Veltroni M, De Zen L, Sanzari MC, et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica. 2003;88(11):1245–52.
  17. van Lochem EG, van der Velden VH, Wind HK, et al. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin Cytom. 2004;60B(1):1–13. doi: 10.1002/cyto.b.20008.
  18. Lee RV, Braylan RC, Rimsza LM. CD58 expression decreases as nonmalignant B cells mature in bone marrow and is frequently overexpressed in adult and pediatric precursor B-cell acute lymphoblastic leukemia. Am J Clin Pathol. 2005;123(1):119–24. doi: 1309/x5vv6fkjq6mublpx.
  19. Robillard N, Cave H, Mechinaud F, et al. Four-color flow cytometry bypasses limitations of IG/TCR polymerase chain reaction for minimal residual disease detection in certain subsets of children with acute lymphoblastic leukemia. Haematologica. 2005;90(11):1516–23.
  20. Seegmiller AC, Kroft SH, Karandikar NJ, McKenna RW. Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol. 2009;132(6):940–9. doi: 10.1309/AJCP8G5RMTWUEMUU.
  21. Sedek L, Bulsa J, Sonsala A, et al. The immunophenotypes of blast cells in B-cell precursor acute lymphoblastic leukemia: how different are they from their normal counterparts. Cytometry B Clin Cytom. 2014;86(5):329–39. doi: 10.1002/cyto.b.21176.
  22. Hulspas R, O’Gorman MRG, Wood BL, et al. Consideration for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom. 2009;76В(6):355–64. doi: 10.1002/cyto.b.20485.
  23. Hrusak O, Porwit-MacDonald A. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia. 2002;16(7):1233–58. doi: 10.1038/sj.leu.2402504.
  24. Попов А.М., Цаур Г.А., Вержбицкая Т.Ю. и др. Иммунофенотипическая характеристика острого лимфобластного лейкоза у детей первого года жизни. Онкогематология. 2012;7(2):14–24. doi: 17650/1818-8346-2012-7-2-14-24.
    [Popov AM, Tsaur GA, Verzhbitskaya TY, et al. Immunophenotypic investigation of infant acute lymphoblastic leukemia. Oncohematology. 2012;7(2):14–24. doi: 10.17650/1818-8346-2012-7-2-14-24. (In Russ)]
  25. Fuda FS, Karandikar NJ, Chen W. Significant CD5 expression on normal stage 3 hematogones and mature B-lymphocytes in bone marrow. Am J Clin Pathol. 2009;132(5):733–7. doi: 10.1309/AJCPU5E3NXEKLFIY.
  26. Gaipa G, Basso G, Maglia O, et al. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia. 2005;19(1):49–56. doi: 10.1038/sj.leu.2403559.
  27. Gaipa G, Basso G, Ratei R, et al. Reply to van der Sluijs-Gelling, et al. Leukemia. 2005;19(12):2351–2. doi: 10.1038/sj.leu.2403912.
  28. van der Sluijs-Gelling AJ, van der Velden VHJ, Roeffen ETJM, et al. Immunophenotypic modulation in childhood precursor-B-ALL can be mimicked in vitro and is related to the induction of cell death. Leukemia. 2005;19(10):1845–7. doi: 10.1038/sj.leu.2403911.
  29. Dworzak MN, Schumich A, Printz D, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood. 2008;112(10):3982–8. doi: 10.1182/blood-2008-06-
  30. Gaipa G, Basso G, Aliprandi S, et al. Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells. Cytometry B Clin Cytom. 2008;74B(3):150–5. doi: 10.1002/cyto.b.20408.
  31. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Изменения иммунофенотипа опухолевых бластов при CD10-позитивном остром лимфобластном лейкозе у детей к 15-му дню индукционной терапии по протоколу ALL-MB-2008. Иммунология. 2010;31(2):60–4.
    [Popov AM, Verzhbitskaya TYu, Tsaur GA, et al. Changes of tumor blast immunophenotype in CD10-positive acute lymphoblastic leukemia in children by the 15th day of induction therapy according to the ALL-MB-2008 protocol. Immunologiya. 2010;31(2):60–4. (In Russ)]
  32. Мовчан Л.В., Шман Т.В., Белевцев М.В. и др. Изменение иммунофенотипа лейкемических клеток на этапах индукционной терапии острого лимфобластного лейкоза из предшественников В-лимфоцитов у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2011;10(1):21–6. [Movchan LV, Shman TV, Belevtsev MV, et al. Immunophenotypic modulation of the leukemic cells during induction therapy in children with B-cell precursor acute lymphoblastic leukemia. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2011;10(1):21–6. (In Russ)]
  33. Dworzak MN, Gaipa G, Schumich A, et al. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group. Cytometry B Clin Cytom. 2010;78В(3):147–53. doi: 10.1002/cyto.b.20516.
  34. Borowitz MJ, Pullen DJ, Winick N, et al. Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the Children’s Oncology Group. Cytometry B Clin Cytom. 2005;68В(1):18–24. doi: 1002/cyto.b.20071.
  35. Liu YR, Chang Y, Fu JY, et al. Comparison of the immunophenotype of patients with B lineage acute lymphoblastic leukemia at diagnosis and relapse. Zhonghua Xue Ye Xue Za Zhi. 2006;27(5):335–8.
  36. Dworzak MN, Froschl G, Printz D, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952–8. doi: 10.1182/blood.v99.6.1952.
  37. Coustan-Smith E, Ribeiro RC, Stow P, et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood. 2006;108(1):97–102. doi: 1182/blood-2006-01-0066.
  38. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Ограниченная возможность применения упрощенного подхода для определения минимальной остаточной болезни методом проточной цитометрии у детей с острым лимфобластным лейкозом из B-линейных предшественников. Клиническая лабораторная диагностика. 2011;3:25–9.
    [Popov AM, Verzhbitskaya TYu, Tsaur GA, et al. Limited potential for use of simplified approach for determining minimal residual disease by means of flow cytometry in children with acute lymphoblastic leukemia from B-linear precursors. Klinicheskaya laboratornaya diagnostika. 2011;3:25–9. (In Russ)]
  39. Porwit-MacDonald A, Bjorklund E, Lucio P, et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia. 2000;14(5):816–25. doi: 1038/sj.leu.2401741.
  40. Dworzak MN, Fritsch G, Buchinger P, et al. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood. 1994;83(2):415–25.
  41. Dworzak MN, Fritsch G, Fleischer C, et al. CD99 (MIC2) expression in paediatric B-lineage leukaemia/lymphoma reflects maturation-associated patterns of normal B-lymphopoiesis. Br J Haematol. 1999;105(3):690–5. doi:1046/j.1365-2141.1999.01426.x.
  42. Dworzak MN, Froschl G, Printz D, et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia. 2004;18(4):703–8. doi:1038/sj.leu.2403303.
  43. Roshal M, Fromm JR, Winter S, et al. Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection. Cytometry B Clin Cytom. 2010;78В(3):139–46. doi: 10.1002/cyto.b.20511.
  44. Lund-Johansen F, Terstappen LW. Differential surface expression of cell adhesion molecules during granulocyte maturation. J Leuk Biol. 1993;54(1):47–55.
  45. Terstappen LW, Huang S, Picker LJ. Flow cytometric assessment of human T-cell differentiation in thymus and bone marrow. B 1992;79(3):666–77.
  46. Aalbers AM, van den Heuvel-Eibrink MM, Baumann I, et al. Bone marrow immunophenotyping by flow cytometry in refractory cytopenia of childhood. Haematologica. 2015;100(3):315–23. doi: 10.3324/haematol.2014.107706.
  47. Feng B, Verstovsek S, Jorgensen JL, Lin P. Aberrant myeloid maturation identified by flow cytometry in primary myelofibrosis. Am J Clin Pathol. 2010;133(2):314–20. doi: 10.1309/AJCPNC99DHXIOOTD.
  48. Loken MR, Chu S-Ch, Fritschle W, et al. Normalization of bone marrow aspirates for hemodilution in flow cytometric analyses. Cytometry B Clin Cytom. 2009;76В(1):27–36. doi: 10.1002/cyto.b.20429.
  49. Kussick SJ, Wood BL. Using 4-color flow cytometry to identify abnormal myeloid populations. Arch Pathol Lab Med. 2003;127(9):1140–7.
  50. Leandro MJ, Cooper N, Cambridge G, et al. Bone marrow B-lineage cells in patients with rheumatoid arthritis following rituximab therapy. Rheumatology (Oxford). 2007;46(1):29–36. doi: 10.1093/rheumatology/kel148.
  51. Rehnberg M, Amu S, Tarkowski A, et al. Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res Ther. 2009;11(4):R123. doi: 10.1186/ar2789.
  52. Nakou M, Katsikas G, Sidiropoulos P, et al. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Res Ther. 2009;11(4):R131. doi: 10.1186/ar2798.
  53. Borowitz MJ. Minimal residual disease detection in childhood ALL. Haematopoiesis Immunology. 2010;7(1):24–35.
  54. Вержбицкая Т.Ю., Попов А.М., Томилов А.Ф. и др. Определение опухолевых клеток в спинномозговой жидкости у детей с острыми лейкозами методом проточной цитометрии. Вопросы диагностики в педиатрии. 2012;5:31–5.
    [Verzhbitskaya TYu, Popov AM, Tomilov AF, et al. Detection of tumor cells in cerebrospinal fluid in children with acute leukemias using flow cytometry. Voprosy diagnostiki v pediatrii. 2012;5:31–5. (In Russ)]


Clinical Significance of Immunophenotyping of Bone Marrow Cells in Multiple Myeloma

OYu Yakimovich, OM Votyakova, NV Lyubimova, NN Tupitsyn

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Oksana Yur’evna Yakimovich, graduate student, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-28-54; e-mail: ronc_ramn@mail.ru

For citation: Yakimovich OYu, Votyakova OM, Lyubimova NV, Tupitsyn NN. Clinical Significance of Immunophenotyping of Bone Marrow Cells in Multiple Myeloma. Clinical oncohematology. 2016;9(3):296-301 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-296-301


ABSTRACT

Aim. To analyze the relationship between expression of aberrant CD45, CD19, CD56 markers on the plasma cells and clinical and laboratory findings and prognostically significant parameters in patients with multiple myeloma (MM).

Methods. This scientific research includes data on clinical investigation and immunophenotyping of bone marrow cells obtained from 64 MM patients treated in the N.N. Blokhin Russian Cancer Research Center over the period from 2004 to 2015. The three-color flow cytometry was performed using a direct immunofluorescence technique (CD38-PerCP, CD138-FITC monoclonal antibodies) and PE-conjugated monoclonal antibodies against CD45, CD19, and CD56.

Results. Comparison of average values of the total count of plasma cells, the number of plasmablasts, proplasmacyte and mature plasma cells (according to the myelogram) and comparison of these data with the level of expression of the CD19 marker demonstrated a significant relationship between the CD19 negative immunophenotype and both a higher level of the total count of plasma cells and immature plasma cells. There also was a significant correlation between the CD19 negative immunophenotype and a higher level of C-reactive protein, which is significant prognostic factor in MM. In addition, there was a significant relationship between the CD19 negative phenotype and a higher percentage of young neutrophils in blood, i.e. with a more frequent “left shift”. The CD56 negative phenotype is associated with plasmablastic morphology of plasma cells and with the presence of plasma cells in the peripheral blood. Plasma cell leukemia is more common in patients with СD56 negative phenotype of myeloma cells. The CD45 negative immunophenotype was associated with a higher level of k-type FLCs, Bence-Jones proteinuria and with a higher serum creatinine, than in the cases of CD45 positive phenotype.

Conclusion. The study of the immunophenotype of plasma cells in MM has important scientific and practical significance and requires further study.


Keywords: multiple myeloma, aberrant immunophenotype of malignant plasma cells, CD45, CD19, and CD56 markers, clinical and laboratory parameters.

Received: March 17, 2016

Accepted: April 1, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. Зуева Е.Е., Русанова Е.Б., Куртова А.В. Диагностика множественной миеломы и мониторинг эффективности терапии. Иммунология гемопоэза. 2008;5(2):44–56.
    [Zueva EE, Rusanova EB, Kurtova AV. Diagnosis of multiple myeloma and treatment efficacy monitoring. Immunologiya gemopoeza. 2008;5(2):44–56. (In Russ)]
  2. Bataille R, Jero G, Robillard N, et al. The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica. 2006;91(9):1234–40.
  3. de Tute RM, Jack AS, Child JA, et al. A single-tube six-colour flow cytometry screening assay for the detection of minimal residual disease in myeloma. Leukemia. 2007;21(9):2046–9. doi: 10.1038/sj.leu.2404815.
  4. Johnsen HE, Bogsted М, Klausen TW, et al. Multiparametric flow cytometry profiling of neoplastic plasma cells in multiple myeloma. Cytometry B Clin Cytom. 2010;78В(5):338–47. doi: 10.1002/cyto.b.20523.
  5. Manzanera GM, San Miguel Izquierdo JF, de Matos OA. Immunophenotyping of plasma cells in multiple myeloma. Meth Mol Med. 2005;113:5–24. doi: 10.1385/1-59259-916-8:5.
  6. Mateo G, Castellanos M, Rasillo A, et al. Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin Cancer Res. 2005;11(10):3661–7. doi: 10.1158/1078-0432.CCR-04-1489.
  7. Ocqueteau M, Orfao A, Almeida J, et al. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol. 1998;152(6):1655–65.
  8. Perez-Persona E, Vidriales MB, Mateo G, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smouldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110(7):2586–92. doi: 10.1182/blood-2007-05-088443.
  9. Rawstron AC, Davies FE, Das Gupta R, et al. Flow cytometric disease monitoring in multiple myeloma: The relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood. 2002;100(9):3095–100. doi: 10.1182/blood-2001-12-0297.
  10. Rawstron AC, Orfao A, Beksac M, et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93(3):431–8. doi: 10.3324/haematol.11080.
  11. Robillard N, Pellat-Deceunynck C, Bataille R. Phenotypic characterization of the human myeloma cell growth fraction. Blood. 2005;105(12):4845–8. doi: 10.1182/blood-2004-12-4700.
  12. San Miguel JF, Almeida J, Mateo G, et al. Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: A tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood. 2002;99(5):1853–6. doi: 10.1182/blood.v99.5.1853.
  13. Sezer O, Heider U, Zavrski I, Possinger K. Differentiation of monoclonal gammopathy of undetermined significance and multiple myeloma using flow cytometric characteristics of plasma cells. Haematologica. 2001;86(8):837–43.
  14. Moreau P, Robillard N, Avet-Loiseau H, et al. Patients with CD45 negative multiple myeloma receiving high-dose therapy have a shorter survival than those with CD45 positive multiple myeloma. Haematologica. 2004;89(5):547–51.
  15. Pellat-Deceunynck C, Barille S, Jego G, et al. The absence of CD56 (NCAM) on malignant plasma cells is a hallmark of plasma cell leukemia and of a special subset of multiple myeloma. Leukemia. 1998;12(12):1977–82. doi: 10.1038/sj.leu.2401211.
  16. Jego G, Avet-Loiseau H, Robillard N, et al. Reactive plasmacytoses in multiple myeloma during hematopoietic recovery with G- or GM-CSF. Leuk Res. 2000;24(7):627–30. doi: 10.1016/s0145-2126(00)00033-3.
  17. Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365–72.
  18. Ishikawa H, Tsuyama N, Abroun S, et al. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood. 2002;99(6):2172–8. doi: 10.1182/blood.v99.6.2172.
  19. Robillard N, Wuilleme S, Lode L, et al. CD33 is expressed on plasma cells of a significant number of myeloma patients, and may represent a therapeutic target. Leukemia. 2005;19(11):2021–2. doi: 10.1038/sj.leu.2403948.
  20. Tassone P, Goldmacher VS, Neri P, et al. Cytotoxic activity of the maytansinoid immunoconjugate B-B4- DM1 against CD138+ multiple myeloma cells. Blood. 2004;104(12):3688–96. doi: 10.1182/blood-2004-03-0963.
  21. Treon SP, Raje N, Anderson KC. Immunotherapeutic strategies for the treatment of plasma cell malignancies. Semin Oncol. 2000;27(5):598–613.
  22. Тупицын Н.Н. Иммунология клеток крови. В кн.: Гематология. Национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. С. 70–8.
    [Tupitsyn NN. Blood cell immunology. In: Rukavitsyn OA, ed. Gematologiya. Natsional’noe rukovodstvo. (Hematology. National guidelines.) Moscow: GEOTAR-Media Publ.; 2015. pp. 70–8. (In Russ)]
  23. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2014;59(приложение 3):1–37.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines for diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2014;59(Suppl. 3):1–37. (In Russ)]
  24. Lin Р. Плазмоклеточная миелома. Прогресс в лечении множественной миеломы. Best Clin Pract, русское издание. 2009;2:11–6.
    [Lin P. Plasma cell myeloma. Progress in treatment of multiple myeloma. Best Clin Pract, Russian edition. 2009;2:11–6 (In Russ)]
  25. Вотякова О.М., Любимова Н.В., Турко Т.А. и др. Клиническое значение исследования свободных легких цепей иммуноглобулинов при множественной миеломе. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2010;5(4):16–20.
    [Votyakova OM, Lyubimova NV, Turko TA, et al. Clinical implication of immunoglobulin free light chains study in patients with multiple myeloma. Vestnik RONTs im. N.N. Blokhina RAMN. 2010;5(4):16–20. (In Russ)]

Pathomorphological Diagnosis of Splenic Diffuse Red Pulp Small B-Cell Lymphoma

AM Kovrigina, SM Korzhova, LS Al’-Radi, UL Dzhulakyan, BV Biderman, IA Yakutik, AB Sudarikov

Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Alla Mikhailovna Kovrigina, DSci, Professor, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: 7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM, Korzhova SM, Al’-Radi LS, et al. Pathomorphological Diagnosis of Splenic Diffuse Red Pulp Small B-Cell Lymphoma. Clinical oncohematology. 2016;9(3):287-95 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-287-295


ABSTRACT

Background. Unclassifiable splenic B-cell lymphoma/leukemia is a rare and poorly studied disorder introduced in the WHO classification of hematopoietic and lymphoid tissue malignancies for the first time in 2008. This type of lymphoma requires differential diagnosing between hairy cell leukemia-variant (HCL-V) and splenic diffuse red pulp small B-cell lymphoma (SDRPL).

Aim. To develop criteria for diagnosis of SDRPL by comparison of bone marrow biopsies (BMB) and surgical specimens of the spleen.

Methods. In the Department of Morbid Anatomy of the Hematology Research Center, preoperative BMBs and surgical specimens of the spleen (2013–2015) were compared in 71 patients (men/women ratio 1:2.6, age range 44–81, median age 58 years) using morphological and extended immunohistochemical studies. Sanger sequencing and PCR assay were carried out to analyze the mutational status of IgHV and to identify mutations in MAP2K1, NOTCH, BRAF.

Results. SDRPL was diagnosed in 5 (7 %) of 71 patients. In 2 groups of patients (with normal and high WBC count), the morphological features of spleen tissue were similar to those of a neoplastic substrate of HCL-V. The immunohistochemical assay demonstrates monomorphic expression of CD20 and DBA.44 and heterogeneous expression of CD11c, TRAP, CD103, CD123 in all cases. In none of the 5 cases, expression of CD25, CD27, Cyclin D1, Annexin-1 was found. In bone marrow (unlike HCL and HCL-V), predominantly interstitial and intravascular scant CD20+ lymphoid infiltration (4 of 5 cases) was found without detectable nucleoli in nuclei of small lymphoid cells. In 1 case, there was a combined lymphoid infiltration: CD20+ microfocal-interstitial infiltration with an intravascular component. No persistent molecular mutations in the spleen tissue specimens were found.

Conclusion. SDRPL is diagnosed in 7 % of splenic B-cell lymphomas. It is a rare disorder, whose verification requires an integrated approach taking into account clinical and laboratory data, results of flow cytometry, cytological, morphological, extended IHC and molecular biological studies.


Keywords: immunohistochemistry, splenic diffuse red pulp small B-cell lymphoma, splenectomy, bone marrow biopsy.

Received: April 28, 2016

Accepted: April 29, 2016

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Kanellis G, Mollejo M, Montes-Moreno S, et al. Splenic diffuse red pulp small B-cell lymphoma: revision of a series of cases reveals characteristic clinico-pathological features. Haematologica. 2010;95(7):1122–9. doi: 10.3324/haematol.2009.013714.
  2. Traverse-Glehen A, Baseggio L, Callet-Bauchu E, et al. Hairy cell leukaemia-variant and splenic red pulp lymphoma: a single entity? Br J Haematol. 2010;150:113–5. doi: 10.1111/j.1365-2141.2010.08153.x.
  3. Raess PW, Mintzer D, Husson M, Nakashima MO. BRAF V600E is also seen in unclassifiable splenic B-cell lymphoma/leukemia, a potential mimic of hairy cell leukemia. Blood. 2013;122(17):84–5. doi: 10.1182/blood-2013-07-513523.
  4. Jain P, Pemmaraju N, Ravandi F. Update on the Biology and Treatment Options for Hairy Cell Leukemia. Curr Treat Opt Oncol. 2014;15(2):187–209. doi: 10.1007/s11864-014-0285-5.
  5. Naresh K. Grey zone lymphoid neoplasms with features overlapping between splenic marginal zone lymphoma and hairy cell leukaemia: splenic B-cell lymphoma/leukaemia, unclassifiable. J Haematopathol. 2011;4(2):93–100. doi: 10.1007/s12308-011-0092-x.
  6. Mollejo M, Algara P, Mateo MS, et al. Splenic small B-cell lymphoma with predominant red pulp involvement: a diffuse variant of splenic marginal zone lymphoma? Histopathology. 2002;40(1):22–30. doi: 10.1046/j.1365-2559.2002.01314.x.
  7. Traverse-Glehen A, Baseggio L, Bauchu EC, et al. Splenic red pulp lymphoma with numerous basophilic villous lymphocytes: a distinct clinicopathologic and molecular entity? Blood. 2008;111(4):2253–60. doi: 10.1182/blood-2007-07-098848.
  8. Behdad A, Bailey NG. Diagnosis of Splenic B-Cell Lymphomas in the Bone Marrow. Arch Pathol Lab Med. 2014;138(10):1295–301. doi: 10.5858/arpa.2014-0291-cc.
  9. Tiacci E, Trifonov V, Schiavoni G, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15. doi: 10.1056/nejmoa1014209.
  10. Xi L, Arons E, Navarro W, et al. Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood. 2012;119(14):3330–2. doi: 10.1182/blood-2011-09-379339.
  11. Bikos V, Darzentas N, Hadzidimitriou A, et al. Over 30% of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications. Leukemia. 2012;26(7):1638–46. doi: 10.1038/leu.2012.3.
  12. Якутик И.А., Аль-Ради Л.С., Бидерман Б.В. и др. Применение аллель-специфичной ПЦР-РВ для определения мутации B-RAF V600E у больных волосатоклеточным лейкозом. Гематология и трансфузиология 2014;59(2):16–9.
    [Yakutik IA, Al-Radi LS, Biderman BV, et al. Detection of В-RAF V600E mutation in patients with hairy cell leukemia by allele-specific RT-PCR. Gematologiya i transfuziologiya. 2014;59(2):16–9. (In Russ)]
  13. Якутик И.А., Аль-Ради Л.С., Джулакян У.Л. и др. Мутации в генах BRAF и MAP2K1 при волосатоклеточном лейкозе и селезеночной В-клеточной лимфоме из клеток маргинальной зоны. Онкогематология. 2016;11(1):34–6. doi: 10.17650/1818-8346-2016-11-1-34-36.
    [Yakutik IA, Al’-Radi LS, Julhakyan HL, et al. BRAF and MAP2K1 mutations in hairy cell leukemia and splenic marginal zone B-cell lymphoma. Oncohematology. 2016;11(1):34–6. doi: 10.17650/1818-8346-2016-11-1-34-36. (In Russ)]
  14. Бидерман Б.В., Никитин Е.А., Сергиенко Т.Ф. и др. Репертуар генов тяжелой цепи иммуноглобулинов при В-клеточном хроническом лимфолейкозе в России и Беларуси. Онкогематология. 2012;7(3):38–42.
    [Biderman BV, Nikitin EA, Sergienko TF, et al. The repertoire of heavy chain immunoglobulin genes in B-cell chronic lymphocytic leukemia in Russia and Belarus. Onkogematologiya. 2012;7(3):38–42. (In Russ)]
  15. Waterfall JJ, Arons E, Walker RL, et al. High prevalence of MAP2K1 mutations in variant and IGHV4-34–expressing hairy-cell leukemias. Nat Genet. 2014;46(1):8–10. doi: 10.1038/ng.2828.
  16. Martinez D, Navarro A, Martinez-Trillos A, et al. NOTCH1, TP53, and MAP2K1 Mutations in Splenic Diffuse Red Pulp Small B-cell Lymphoma Are Associated With Progressive Disease. Am J Surg Pathol. 2016;40(2):192–201. doi: 10.1097/pas.0000000000000523.
  17. Hockley SL, Giannouli S, Morilla A, et al. Insight into the molecular pathogenesis of hairy cell leukaemia, hairy cell leukaemia variant and splenic marginal zone lymphoma, provided by the analysis of their IGH rearrangements and somatic hypermutation patterns. Br J Haematol. 2010;148(4):666–9. doi: 10.1111/j.1365-2141.2009.07962.x.
  18. Navarro A, Clot G, Royo C, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 2012;72(20):5307–16. doi: 10.1158/0008-5472.can-12-1615.
  19. Джулакян У.Л., Бидерман Б.В., Гемджян Э.Г. и др. Молекулярный анализ генов иммуноглобулина в опухолевых В-клетках при лимфоме селезенки из клеток маргинальной зоны. Терапевтический архив. 2015;87(7):58–63.
    [Julakyan UL, Biderman BV, Gemdzhian EG, et al. Molecular analysis of immunoglobulin genes in the tumor B cells in splenic marginal zone lymphoma. Terapevticheskii arkhiv. 2015;87(7):58–63. (In Russ)]
  20. El-Habr EA, Levidou G, Trigka E-A, et al. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch. 2014;465:473–85. doi: 10.1007/s00428-014-1641-3.

Modern Aspects of Diagnosis and Treatment of Anaplastic Large Cell Lymphoma in Children (Literature Review)

AS Levashov1, TT Valiev1, AM Kovrigina2, AV Popa1, GL Mentkevich1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Andrei Sergeevich Levashov, scientific worker, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(916)233-05-75; e-mail: andreyslevashov@mail.ru

For citation: Levashov AS, Valiev TT, Kovrigina AM, et al. Modern Aspects of Diagnosis and Treatment of Anaplastic Large Cell Lymphoma in Children (Literature Review). Clinical oncohematology. 2016;9(2):199–207 (In Russ).

DOI: 10.21320/2500-2139-2016-9-2-199-207


ABSTRACT

Anaplastic large cell lymphoma (ALCL) includes different types of the disease that are heterogeneous according to clinical, morphological, immunological, cytogenetic and molecular biological features. The review demonstrates not only main clinical and morphoimmunological characteristics of ALCL, but also presents data about expression and prognostic significance of STAT3, pSTAT3tyr705, and survivin (transcription factor). It demonstrates the value of defining the minimal disseminated disease (the minimal disseminated disease is evaluated using the PCR test before initiation of the treatment, and the minimal residual disease is evaluated during the treatment and after its completion), and clinical and molecular biological prognostic factors are also identified. There is still no a standard therapeutic regimen for pediatric ALCL patients. However, the following therapeutic protocols are considered most effective: NHL-BFM 90/95, CCG5941, SFOP-LM 89/91, UKCCSG, ALCL99-Vinblastine, POG АРО 9315, AIEOP LNH-92/97. Treatment outcomes are presented in this paper. Particular attention is paid to different molecular biological markers that allow further improvement of patients’ stratification in risk groups and possible use of target medications (multikinase inhibitors and monoclonal antibodies) improving the therapy outcomes.


Keywords: anaplastic large cell lymphoma, diagnosis, treatment, children.

Received: February 3, 2016

Accepted: February 10, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Reiter A. Diagnosis and Treatment of Childhood Non-Hodgkin Lymphoma. 2007;2007(1):285–96. doi: 10.1182/asheducation-2007.1.285.
  2. Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. 1985;66(4):848–58.
  3. Piccaluga PP, Gazzola A, Mannu C, et al. Pathobiology of Anaplastic Large Cell Lymphoma. Adv Hematol. 2010:345053. doi:10.1155/2010/345053.
  4. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  5. Ковригина А.М., Пробатова Н.А. Лимфома Ходжкина и крупноклеточные лимфомы. М.: МИА, 2007. С. 212.[Kovrigina AM, Probatova NA. Limfoma Khodzhkina i krupnokletochnye limfomy. (Hodgkin’s lymphoma and large cell lymphomas.) Moscow: MIA Publ.; 2007. pp. 212. (In Russ)]
  6. Валиев Т.Т., Морозова О.В., Ковригина А.М. и др. Диагностика и лечение анапластических крупноклеточных лимфом у детей. Гематология и трансфузиология. 2012;51(1):3–9. [Valiev TT, Morozova OV, Kovrigina AM, et al. Diagnosis and treatment of anaplastic large-cell lymphomas in children. Gematologiya i transfuziologiya. 2012;51(1):3–9. (In Russ)]
  7. Lamant L, McCarthy K, d’Amore E, et al. Prognostic Impact of Morphologic and Phenotypic Features of Childhood ALK-Positive Anaplastic Large-Cell. Lymphoma: Results of the ALCL99 Study. J Clin Oncol. 2011;29(35):4669–76. doi: 10.1200/JCO.2011.36.5411.
  8. Calzado-Villarreal L, Polo-Rodriguez I, Ortiz-Romerob PL, et al. Primary Cutaneous CD30+ Lymphoproliferative Disorders. Actas Dermosifiliogr. 2010;101(2):119–28. doi: 10.1016/s1578-2190(10)70598-9.
  9. Brugieres L, Deley MC, Pacquement H, et al. CD30 Anaplastic Large-Cell Lymphoma in Children: Analysis of 82 Patients Enrolled in Two Consecutive Studies of the French Society of Pediatric Oncology. 1998;92(10):3591–8.
  10. Williams DM, Hobson R, Imeson J, et al. Anaplastic large cell lymphoma in childhood: analysis of 72 patients treated on The United Kingdom Children’s Cancer Study Group chemotherapy regimens. Br J Haematol. 2002;117(4):812–20. doi: 10.1046/j.1365-2141.2002.03482.x.
  11. Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. 2001;97(12):3699–706. doi: 10.1182/blood.v97.12.3699.
  12. Burkhardt В., Oschlies I, Klapper W, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. 2011;25(1):153–60. doi: 10.1038/leu.2010.245.
  13. Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. 2008;111(3):1560–6. doi: 10.1182/blood-2007-07-100958.
  14. Rosolen A, Pillon M, Garaventa A, et al. Anaplastic Large Cell Lymphoma Treated with a Leukemia-Like Therapy: Report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 Protocol. 2005;104(10):2133–40. doi: 10.1002/cncr.21438.
  15. Lowe EJ, Sposto R, Perkins SL, et al. Intensive Chemotherapy for Systemic Anaplastic Large Cell Lymphoma in Children and Adolescents: Final Results of Children’s Cancer Group Study 5941. Pediatr Blood Cancer. 2009;52(3):335–9. doi: 10.1002/pbc.21817.
  16. Laver JH, Kraveka JM, Hutchison RE, et al. Advanced-Stage Large-Cell Lymphoma in Children and Adolescents: Results of a Randomized Trial Incorporating intermediate-Dose Methotrexate and High-Dose Cytarabine in the Maintenance Phase of the APO Regimen: A Pediatric Oncology Group Phase III Trial. J Clin Oncol. 2005;23(3):541–7. doi: 10.1200/jco.2005.11.075.
  17. Pillon M, Gregucci F, Lombardi A, et al. Results of AIEOP LNH-97 Protocol for the Treatment of Anaplastic Large Cell Lymphoma of Childhood. Pediatr Blood Cancer. 2012;59(5):828–33. doi: 10.1002/pbc.24125.
  18. Jacobsen E. Anaplastic Large-Cell Lymphoma, T-/Null-Cell Type. The Oncologist. 2006;11(7):831–40. doi: 10.1634/theoncologist.11-7-831.
  19. Delsoll G, Brugieres L, Gaulard P, et al. Anaplastic large cell lymphoma, ALK-positive and anaplastic large cell lymphoma ALK-negative. Hematol Meet Rep. 2009;3(1):51–7.
  20. Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. 2002;21(7):1038–47. doi: 10.1038/sj.onc.1205152.
  21. Weinberg OK, Seo K, Arber DA. Prevalence of bone marrow involvement in systemic anaplastic large cell lymphoma: are immunohistochemical studies necessary? Hum Pathol. 2008;39(9):1331–40. doi: 10.1016/j.humpath.2008.01.005.
  22. Khoury JD, Medeiros LJ, Rassidakis GZ, et al. Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK- Anaplastic Large Cell Lymphoma. Clin Cancer Res. 2003;9:3692–9.
  23. Dourlat J, Liu W-Q, Florence S, et al. A novel non-phosphorylated potential antitumoral peptide inhibits STAT3 biological activity. 2009;91(8):996–1002. doi: 10.1016/j.biochi.2009.05.006.
  24. Schlette EJ, Medeiros LJ, Goy A, et al. Survivin Expression Predicts Poorer Prognosis in Anaplastic Large-Cell Lymphoma. J Clin Oncol. 2004;22(9):1682–8. doi: 10.1200/JCO.2004.10.172.
  25. Nasr MR, Laver JH, Chang M. Expression of Anaplastic Lymphoma Kinase, Tyrosine-Phosphorylated STAT3, and Associated Factors in Pediatric Anaplastic Large Cell Lymphoma. Am J Clin Pathol. 2007;127(5):770–8. doi: 10.1309/fny8y4h6pk1v2mge.
  26. Zhang J, Wang P, Wu F, et al. Aberrant expression of the transcriptional factor twist 1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signalling. 2012;24(4):852–8. doi: 10.1016/j.cellsig.2011.11.020.
  27. Huang W, Li X, Yao X, et al. Expression of ALK protein, mRNA and fusion transcripts in anaplastic large cell lymphoma. Exper Mol Pathol. 2009;86(2):121–6. doi:10.1016/j.yexmp.2008.11.012.
  28. Damm-Welk C, Klapper W, Oschlies I, et al. Distribution of NPM1-ALK and X-ALK fusion transcripts in paediatric anaplastic large cell lymphoma: a molecular-histological correlation. Br J Haematol. 2009;146(3):306–9. doi: 10.1111/j.1365-2141.2009.07754.x.
  29. Ait-Tahar K, Damm-Welk C, Burkhardt B, et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. 2010;115(16):3314–9. doi: 10.1182/blood-2009-11-251892.
  30. Damm-Welk C, Busch K, Burkhardt B, et al. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK–positive anaplastic large-cell lymphoma. 2007;110(2):670–7. doi: 10.1182/blood-2007-02-066852.
  31. Damm-Welk C, Mussolin L, Zimmermann M, et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. 2014;123(3):334–7. doi: 10.1182/blood-2013-09-526202.
  32. Jaffe ES. What’s new on the horizon in T-cell lymphoma. [Internet] Available from: http://www.ercongressi.it/t-cell-slide/April%2027,%202015/01.%20T-cell%20world/1%20-%20Jaffe.pdf. (accessed 18.04.2016).
  33. Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. 2014;124(9):1473–80. doi: 10.1182/blood-2014-04-571091.
  34. Wrobel G, Mauguen A, Rosolen A, et al. Safety Assessment of Intensive Induction Therapy in Childhood Anaplastic Large Cell Lymphoma: Report of the ALCL99 Randomised Trial. Pediatr Blood Cancer. 2011;56(7):1071– doi: 10.1002/pbc.22940.
  35. Woessmann W, Seidemann K, Mann G, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM group study NHL-BFM95. 2005;105(3):948–58. doi: 10.1182/blood-2004-03-0973.
  36. Le Deley MC, Rosolen A, Williams DM, et al. Vinblastine in Children and Adolescents With High-Risk Anaplastic Large-Cell Lymphoma: Results of the Randomized ALCL99-Vinblastine Trial. J Clin Oncol. 2010;28(25):3987–93. doi: 10.1200/JCO.2010.28.5999.
  37. Alexander S, Kraveka JM, Weitzman S, et al. Advanced stage anaplastic large cell lymphoma in children and adolescents: results of ANHL0131, a randomized Phase III Trial of APO versus a modified regimen with vinblastine: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2014;61(12):2236–42. doi: 10.1002/pbc.25187.
  38. Gross TG, Hale GA, He W, et al. Hematopoietic stem cell transplantation for refractory or recurrent non-Hodgkin lymphoma in children and adolescents. Biol Blood Marrow Transplant. 2010;16(2):223–30. doi: 10.1016/j.bbmt.2009.09.021.
  39. Brugieres L, Pacquement H, Le Deley MC, et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol. 2009;27(30):5056–61. doi: 10.1200/JCO.2008.20.1764.
  40. Mori T, Takimoto T, Katano N, et al. Recurrent childhood anaplastic large cell lymphoma: a retrospective analysis of registered cases in Japan. Br J Haematol. 2005;132(5):594–7. doi: 10.1111/j.1365-2141.2005.05910.x.
  41. Woessmann W, Zimmermann M, Lenhard M, et al. Relapsed or Refractory Anaplastic Large-Cell Lymphoma in Children and Adolescents After Berlin-Frankfurt-Muenster (BFM)-Type First-Line Therapy: A BFM-Group Study. J Clin Oncol. 2011;29(22):3065–71. doi: 10.1200/JCO.2011.34.8417.
  42. Forero-Torres A, Leonard JP, Younes A, et al. A phase II study of SGN30 (anti-CD30 mab) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146(2):171–9. doi: 10.1111/j.1365-2141.2009.07740.x.
  43. Ansell SM, Horwitz SM, Engert A, et al. Phase I/II Study of an Anti-CD30 Monoclonal Antibody (MDX-060) in Hodgkin’s Lymphoma and Anaplastic Large-Cell Lymphoma. J Clin Oncol. 2007;25(19):2764–9. doi 10.1200/jco.2006.07.8972.
  44. Pro B., Advani R, Brice P, et al. Brentuximab Vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6. doi: 10.1200/JCO.2011.38.0402.
  45. Younes A, Bartlett NL, Leonard JP, et al. Brentuximab Vedotin (SGN-35) for Relapsed CD30-Positive Lymphomas. N Engl J Med. 2010;363(19):1812–21. doi: 10.1056/NEJMoa1002965.
  46. Mosse YP. Safety and activity of crizotinib for pediatric patients with refractory solid tumors or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80. doi: 10.1016/s1470-2045(13)70095-0.
  47. Passerini CG, Farina F, Stasia A, et al. Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst. 2014;106(2):djt37 doi: 10.1093/jnci/djt378.
  48. National Cancer Insitute. A Randomized Phase II study of Brentuximab Vedotin (NSC# 749710) and Crizotinib (NSC# 749005) in Patients with Newly Diagnosed Anaplastic Large Cell Lymphoma (ALCL) IND #117117. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 [cited 2016 April 18]. Available from: https://clinicaltrials.gov/ct2/show/NCT01979536?term=NCT01979536&rank=1. NLM Identifier: NCT01979536.
  49. Greengard Е, Mosse Y, Liu X, et al. Safety and tolerability of crizotinib in combination with chemotherapy for relapsed or refractory solid tumors or anaplastic large cell lymphoma: a Children’s Oncology Group phase I consortium study. J Clin Oncol. 2015;33(Suppl): Abstract 10058.
  50. Geoerger B. Phase I study of ceritinib (Zycadia) in pediatric patients (Pts) with malignancies harboring a genetic alteration in ALK (ALK+): Safety, pharmacokinetic (PK), and efficacy J Clin Oncol. 2015;33(Suppl): Abstract 10005.
  51. Friboulet L, Li N, Katayama R, et al. The ALK Inhibitor Ceritinib Overcomes Crizotinib Resistance in Non–Small Cell Lung cancer. Cancer Discovery. 2014;4(6):662–73. doi: 10.1158/2159-8290.CD-13-0846.