Chronic Lymphocytic Leukemia: Prognostic Significance of Minimal Residual Disease and Potential of Modern Methods of Its Diagnosis and Therapy (Literature Review)

AYu Kuvshinov, SV Voloshin, IS Martynkevich, EV Kleina, MA Mikhaleva, KM Abdulkadyrov

Russian Scientific Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Sergei Vladimirovich Voloshin, PhD, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel.: +7(812)274-37-70; e-mail: kuvshinovmd@gmail.com

For citation: Kuvshinov AYu, Voloshin SV, Martynkevich IS, et al. Chronic Lymphocytic Leukemia: Prognostic Significance of Minimal Residual Disease and Potential of Modern Methods of Its Diagnosis and Therapy (Literature Review). Clinical oncohematology. 2016;9(2):191–8 (In Russ).

DOI: 10.21320/2500-2139-2016-9-2-191-198


ABSTRACT

Achieving a complete remission (CR) in patients with chronic lymphocytic leukemia (CLL) has become a feasible goal directly correlating with a prolonged survival. However, a certain number of tumor cells may be present in the patient’s body even when CR has been achieved, and this phenomenon is called a minimal residual disease (MRD). A lot of data confirming the necessity of MRD diagnosing and monitoring has emerged recently, since the MRD has a significant impact on the prognosis of CLL. Achieving MRD-negative remission is an independent predictor of long-term progression-free survival and overall survival. The occurrence of new diagnostic techniques has allowed to define the MRD and to develop standards for its assessment. This paper presents an overview of literature data about MRD, methods of its evaluation, prognostic significance, as well as the methods of eradication.


Keywords: chronic lymphocytic leukemia, minimal residual disease, flow cytometry.

Received: January 5, 2016

Accepted: January 10, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.
  2. Cave H, van der Werff ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer—Childhood Leukemia Cooperative Group. N Engl J Med. 1998;339(9):591–8. doi: 10.1056/nejm199808273390904.
  3. Andersen NS, Pedersen LB, Laurell A, et al. Preemptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma. J Clin Oncol. 2009;27(26):4365–70. doi: 10.1200/JCO.2008.21.3116.
  4. Grimwade D, Lo Coco F. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia. 2002;16(10):1959–73. doi: 10.1038/sj.leu.2402721.
  5. Vora A, Goulden N, Mitchell C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014;15(8):809–18. doi: 10.1016/S1470-2045(14)70243-8.
  6. Moreton P, Kennedy B, Lucas G, et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol. 2005;23(13):2971–9. doi: 10.1200/jco.2005.04.021.
  7. Ritgen M, Bottcher S, Stilgenbauer S, et al. Quantitative MRD monitoring identifies distinct GVL response patterns after allogeneic stem cell transplantation for chronic lymphocytic leukemia: results from the GCLLSG CLL3X trial. Leukemia. 2008;22(7):1377–86. doi: 10.1038/leu.2008.96.
  8. Del Poeta G, Del Principe MI, Buccisano F, et al. Consolidation and maintenance immunotherapy with rituximab improve clinical outcome in patients with B-cell chronic lymphocytic leukemia. Cancer. 2008;112(1):119–28. doi: 10.1002/cncr.23144.
  9. Rawstron AC, Kennedy B, Moreton P, et al. Early prediction of outcome and response to alemtuzumab therapy in chronic lymphocytic leukemia. Blood. 2004;103(6):2027–31. doi: 10.1182/blood-2002-10-3270.
  10. Bosch F, Ferrer A, Villamor N, et al. Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin Cancer Res. 2008;14(1):155–61. doi: 10.1158/1078-0432.CCR-07-1371.
  11. Kay NE, Geyer SM, Call TG, et al. Combination chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B chronic lymphocytic leukemia. Blood. 2007;109(2):405–11. doi: 10.1182/blood-2006-07-033274.
  12. Ritgen M, Lange A, Stilgenbauer S, et al. Unmutated immunoglobulin variable heavy-chain gene status remains an adverse prognostic factor after autologous stem cell transplantation for chronic lymphocytic leukemia. Blood. 2003;101(5):2049–53. doi: 10.1182/blood-2002-06-1744.
  13. Hillmen P, Skotnicki AB, Robak T, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007;25(35):5616–23. doi: 10.1200/jco.2007.12.9098.
  14. Robertson LE, Huh YO, Butler JJ, et al. Response assessment in chronic lymphocytic leukemia after fludarabine plus prednisone: clinical, pathologic, immunophenotypic, and molecular analysis. Blood. 1992;80:29–36.
  15. O’Brien SM, Kantarjian HM, Cortes J, et al. Results of the fludarabine and cyclophosphamide combination regimen in chronic lymphocytic leukemia. J Clin Oncol. 2001;19:1414–20.
  16. Tam CS, O’Brien S, Wierda W, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008;112(4):975–80. doi: 10.1182/blood-2008-02-140582.
  17. Robak T, Blonski JZ, Gora-Tybor J, et al. Cladribine alone and in combination with cyclophosphamide or cyclophosphamide plus mitoxantrone in the treatment of progressive chronic lymphocytic leukemia: report of a prospective, multicenter, randomized trial of the Polish Adult Leukemia Group (PALG CLL2). Blood. 2006;108(2):473–9. doi: 10.1182/blood-2005-12-4828.
  18. Moreno C, Villamor N, Colomer D, et al. Clinical significance of minimal residual disease, as assessed by different techniques, after stem cell transplantation for chronic lymphocytic leukemia. Blood. 2006;107(11):4563–9. doi: 10.1182/blood-2005-09-3634.
  19. Milligan DW, Fernandes S, Dasgupta R, et al. Results of the MRC pilot study show autografting for younger patients with chronic lymphocytic leukemia is safe and achieves a high percentage of molecular responses. Blood. 2005;105(1):397–404. doi: 10.1182/blood-2004-01-0298.
  20. Bottcher S, Ritgen M, Pott C, et al. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation. Leukemia. 2004;18(10):1637–45. doi: 10.1038/sj.leu.2403478.
  21. Rawstron AC, Kennedy B, Evans PA, et al. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood. 2001;98(1):29–35. doi: 10.1182/blood.v98.1.29.
  22. Maloum K, Sutton L, Baudet S, et al. Novel flow-cytometric analysis based on BCD5+ subpopulations for the evaluation of minimal residual disease in chronic lymphocytic leukaemia. Br J Haematol. 2002;119(4):970–5. doi: 10.1046/j.1365-2141.2002.03956.x.
  23. Никитин Е.А. Дифференцированная терапия хронического лимфолейкоза: Дис. ¼ д-ра мед. наук. М., 2014. 203 с.
    [Nikitin EA. Differentsirovannaya terapiya khronicheskogo limfoleikoza. (Differentiated therapy of chronic lymphocytic leukemia.) [dissertation] Moscow; 2014. 203 p. (In Russ)]
  24. Ripolles L, Ortega M, Ortuno F, et al. Genetic abnormalities and clinical outcome in chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2006;171(1):57–64. doi: 10.1016/j.cancergencyto.2006.07.006.
  25. Van Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. doi: 10.1038/sj.leu.2403202.
  26. Rawstron AC, Villamor N, Ritgen M, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007;21(5):956–64. doi: 10.1038/sj.leu.2404584.
  27. Keating MJ, O’Brien S, Albitar M, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol. 2005;23(18):4079–88. doi: 10.1200/jco.2005.12.051.
  28. Byrd JC, Peterson BL, Morrison VA, et al. Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: Results from Cancer and Leukemia Group B 9712 (CALGB 9712). Blood. 2003;101(1):6–14. doi: 10.1182/blood-2002-04-1258.
  29. Eichhorst BF, Busch R, Hopfinger G, et al. Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. Blood. 2006;107(3):885–91. doi: 10.1182/blood-2005-06-2395.
  30. Cheson BD, Bennett JM, Grever M, et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood. 1996;87:4990–7.
  31. Dreger P, Ritgen M, Bottcher S, et al. The prognostic impact of minimal residual disease assessment after stem cell transplantation for chronic lymphocytic leukemia: Is achievement of molecular remission worthwhile? Leukemia. 2005;19(7):1135–8. doi: 10.1038/sj.leu.2403800.
  32. Wendtner CM, Ritgen M, Schweighofer CD, et al. Consolidation with alemtuzumab in patients with chronic lymphocytic leukemia (CLL) in first remission–experience on safety and efficacy within a randomized multicenter phase III trial of the German CLL Study Group (GCLLSG). Leukemia. 2004;18(6):1093–101. doi: 10.1038/sj.leu.2403354.
  33. Montillo M, Tedeschi A, Miqueleiz S, et al. Alemtuzumab as consolidation after a response to fludarabine is effective in purging residual disease in patients with chronic lymphocytic leukemia. J Clin Oncol. 2006;24(15):2337–42. doi: 10.1200/jco.2005.04.6037.
  34. Rawstron AC, de Tute R, Jack AS, et al. Flow cytometric protein expression profiling as a systematic approach for developing disease-specific assays: identification of a chronic lymphocytic leukaemia-specific assay for use in rituximab-containing regimens. Leukemia. 2006;20(12):2102–10. doi: 10.1038/sj.leu.2404416.
  35. Hallek M, Fingerle-Rowson G, Fink A, et al. Immunochemotherapy with fludarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) versus fludarabine and cyclophosphamide (FC) improves response rates and progression-free survival (PFS) of previously untreated patients (pts) with advanced chronic lymphocytic leukemia (CLL). Blood. 2008;112: Abstract 325.
  36. Wierda W, O’Brien S, Wen S, et al. Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol. 2005;23(18):4070–8. doi: 10.1200/jco.2005.12.516.
  37. Bottcher S, Stilgenbauer S, Busch R, et al: Standardized MRD flow and ASO IGH RQ-PCR for MRD quantification in CLL patients after rituximab-containing immunochemotherapy: A comparative analysis. Leukemia. 2009;23(11):2007–17. doi: 10.1038/leu.2009.140.
  38. Ringelstein-Harlev S, Fineman R. Minimal Residual Disease Surveillance in Chronic Lymphocytic Leukemia by Fluorescence-Activated Cell Sorting. Rambam Maimonides Med J. 2014;5(4): e0027. doi: 10.5041/RMMJ.10161.
  39. Bottcher S, Ritgen M, Fischer K, et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012;30(9):980–8. doi: 10.1200/JCO.2011.36.9348.
  40. Kovacs G, Bottcher S, Bahlo J, et al. Value of minimal residual disease (MRD) negative status at response evaluation in chronic lymphocytic leukemia (CLL): combined analysis of two phase III studies of the German CLL Study Group (GCLLSG). ASH Annual Meeting Abstracts. 2014: Abstract 23.
  41. Eichhorst B, Fink AM, Busch R, et al. Frontline chemoimmunotherapy with fludarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) shows superior efficacy in comparison to bendamustine (B) and rituximab (BR) in previously untreated and physically fit patients (pts) with advanced chronic lymphocytic leukemia (CLL): Final analysis of an international, randomized study of the German CLL Study Group (GCLLSG) (CLL10 study). Proc ASH 2014: Abstract 19.
  42. Garifullin A, Kuvshinov A, Voloshin S, et al. The frequency of occurrence of minimal residual disease (MRD) into different prognostic groups of patients with chronic lymphocytic leukemia (CLL). Intern Hematol Club. [Internet] 2015 Nov 6–7 [cited 2016 April 18] Available from: http://www.comtecmed.com/IHC/2015/poster_list.aspx.
  43. Schweighofer CD, Ritgen M, Eichhorst BF, et al. Consolidation with alemtuzumab improves progression-free survival in patients with chronic lymphocytic leukaemia (CLL) in first remission: long-term follow-up of a randomized phase III trial of the German CLL Study Group (GCLLSG). Br J Haematol. 2009;144(1):95–8. doi: 10.1111/j.1365-2141.2008.07394.x.
  44. Wiernik PH, Adiga GU. Single-agent rituximab in treatment-refractory or poor prognosis patients with chronic lymphocytic leukemia. Curr Med Res Opin. 2011;27(10):1987–93. doi: 10.1185/03007995.2011.615307.
  45. Abrisqueta P, Villamor N, Terol MJ, et al. Rituximab maintenance after first-line therapy with rituximab, fludarabine, cyclophosphamide, and mitoxantrone (R-FCM) for chronic lymphocytic leukemia. Blood. 2013;122(24):3951–9. doi: 10.1182/blood-2013-05-502773.
  46. Shanafelt TD, Ramsay AG, Zent CS, et al. Long-term repair of T-cell synapse activity in a phase II trial of chemoimmunotherapy followed by lenalidomide consolidation in previously untreated chronic lymphocytic leukemia (CLL). Blood. 2013;121(20):4137–41. doi: 10.1182/blood-2012-12-470005.
  47. Dreger P, Dohner H, Ritgen M, et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood. 2010;116(14)2438–47. doi: 10.1182/blood-2010-03-275420.
  48. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/NEJMoa1215637.
  49. O’Brien S, Furman RR, Coutre SE, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15(1):48–58. doi: 10.1016/S1470-2045(13)70513-8.
  50. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007. doi: 10.1056/NEJMoa1315226.
  51. O’Brien S, Lamanna N, Kipps TJ, et al. Update on a Phase 2 Study of Idelalisib in Combination with Rituximab in Treatment-Naive Patients ³65 Years with Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL). Blood. 2014;124: Abstract 1994.

 

Role of Defects of Hematopoietic and Lymphoid Niches in Genesis of Chronic Lymphocytic Leukemia

NYu Semenova, SS Bessmel’tsev, VI Rugal’

Russian Scientific Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Natal’ya Yur’evna Semenova, PhD, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel.: +7(812)717-09-95; e-mail: sciencerugal@gmail.com

For citation: Semenova NYu, Bessmel’tsev SS, Rugal’ VI. Role of Defects of Hematopoietic and Lymphoid Niches in Genesis of Chronic Lymphocytic Leukemia. Clinical oncohematology. 2016;9(2):176–90 (In Russ).

DOI: 10.21320/2500-2139-2016-9-2-176-190


ABSTRACT

Background & Aims. Niche-forming elements of the bone marrow and lymphoid organs play an important role in the pathogenesis of chronic lymphocytic leukemias. The aim is to determine multifunctional characteristics of stromal elements of the hematopoietic and lymphoid microenvironment involved in formation of a niche of hematopoietic stem cells and lymphoid precursor cells.

Methods. Histological specimens of the bone marrow and lymph nodes of 112 CLL patients (64 men and 48 women) were investigated. 45 patients were included in the combined analysis group. The age median was 60 years. 50 volunteers were included in the control group: trepanobiopsy of the iliac area was performed in 30 healthy subjects, and lymph node biopsy was performed in 20 patients with reactive lymphadenopathy. Standard staining (hematoxylin-eosin, azure-II-eosin, silver impregnation, Masson stain) was used for histological studies. The immunohistochemical analysis was performed using the primary antibody panel and the polymer visualization system Dako according to staining protocol.

Results. While analyzing 96 trepanobioptates, we isolated three types of bone marrow infiltration: nodular (18.8 %, n = 18), interstitial (27 %, n = 26) and diffuse (54.2 %, n = 52). Nodular and interstitial bone marrow infiltrations reflect a more favorable course of CLL as compared to the diffuse type. The morphological characteristics of the bone marrow stroma of CLL patients may be caused by both primary impairment of the hematopoietic microenvironment, and cytokine disbalance resulting from the effect on the stroma of the leukemic clone. The morphological examination of lymph node bioptate of CLL patients demonstrated impairment of histoarchitectonics of lymphoid tissue elements in all cases. In lymph nodes of CLL patients, we demonstrated the increased number of small vessels on the background of decreased expression of extracellular matrix protein expression: IV type collagen, laminin, and desmin. Disintegration of lymph node follicular dendritic cells network was demonstrated.

Conclusion. Examination of the nature of the effect of stroma on hematopoiesis remains an urgent hematological problem. In order to solve the problem of regulatory influence, the use of morphological methods is recommended, including the immunohistochemical analysis.


Keywords: hematopoietic stem cell, bone marrow, hematopoietic stem cell niche, microenvironment, lymphoid niche, follicular dendritic cells.

Received: October 8, 2015

Accepted: January 10, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Ругаль В.И. Морфофункциональная характеристика стромы костного мозга в норме и при остром миелобластном лейкозе: Автореф. дис. ¼ д-ра мед. наук. Л., 1989.
    [Rugal’ VI. Morfofunkcionalnaja harakteristika stromy kostnogo mozga v norme i pri ostrom mieloblastnom lejkoze. (Morphofunctional characteristics of the bone marrow stroma in normal persons and in patients with acute mieloblastic leukemia.) [dissertation] Leningrad; 1989. (In Russ)]
  2. Krause D, Scadden D, Preffer L. The Hematopoietic Stem Cell Niche — Home for Friend and Foe. Clin Cytometry. 2012;58(7):7–20. doi: 10.1002/cyto.b.21066.
  3. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352(8):804–15. doi: 10.1056/nejmra041720.
  4. Rawstron AC, Bennett FL, O’Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359(6):575–83. doi: 10.1056/NEJMoa075290.
  5. Asplund SL, McKenna RW, Howard M, Croft SH. Immunophenotype does not correlate with lymph node gistology in chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Surg Pathol. 2002;26(5):624–9. doi: 10.1097/00000478-200205000-00008.
  6. Montillo M, Hamblin T, Hallek M, et al. Chronic lymphocytic leukemia: novel prognostic factors and their relevance for risk-adapted therapeutic strategies Haematologica. 2005;90(3):391–9.
  7. Бакиров Б.А. Клинико-патогенетическая характеристика и факторы прогноза в развитии и течении хронического лимфолейкоза: Автореф. ¼ д-ра мед. наук. СПб., 2013.
    [Bakirov BA. Kliniko-patogeneticheskaja harakteristika i faktory prognoza v razvitii i techenii hronicheskogo limfoleikoza. (Clinico-pathological characteristics and prognostic factors in development and course of chronic lymphocytic leukemia.) [dissertation] Saint Petersburg; 2013. (In Russ)]
  8. Hallek M, Cheson BD, Cotovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute Working Group 1996 guidelines. Blood. 2008;111(12):544–6. doi: 10.1182/blood-2007-06-093906.
  9. Бессмельцев С.С., Абдулкадыров К.М. Флударабин в терапии различных вариантов неходжкинских лимфом. Современная онкология. 2011;13(4):13–9.
    [Bessmeltsev SS, Abdulkadirov KM. Fludarabine in treatment different variants non-Hodgkin’s lymphoma. Sovremennaya onkologiya. 2011;13(4):13–9. (In Russ)]
  10. Бессмельцев С.С. Современные методы диагностики и лечения больных хроническим лимфолейкозом. Вестник гематологии. 2011;1:137–56.
    [Bessmel’tsev SS. Modern methods of diagnosis and treatment of patients with chronic lymphocytic leukemia. Vestnik gematologii. 2011;1:137–56. (In Russ)]
  11. Семенова Н.Ю. Морфологические особенности интрамедуллярных стромальных структур гемопоэтической ниши и элементов лимфоидной стромы при хроническом лимфолейкозе: Дис. ¼ канд. биол. наук. СПб., 2015.
    [Semenova NYu. Morfologicheskie osobennosti intramedullyarnykh stromal’nykh struktur gemopoeticheskoi nishi i elementov limfoidnoi stromy pri khronicheskom limfoleikoze. (Morphological features of intramedullary stromal structures of hematopoietic niche and elements of the lymphoid stroma in chronic lymphocytic leukemia.) [dissertation] Saint Petersburg; 2015. (In Russ)]
  12. Amin S, Parker A, Manu J. Zap 70 in chronic lymphocytic leukemia. Int J Biochem Cell Biol. 2008;40(9):1654–8. doi: 10.1016/j.biocel.2007.05.016.
  13. Wolowiec D, Wozniak Z, Potoczek S. Bone marrow angiogenesis and proliferation in B-cell chronic lymphocytic leukemia. Anal Quant Cytol Histol. 2004;26(5):263–70.
  14. Чертков И.Л., Гуревич О.А. Стволовая кроветворная клетка и ее микроокружение. М., 1984. 238 с.
    [Chertkov IL, Gurevich ОА. Stvolovaya krovetvornaya kletka i ee mikrookruzhenie. (Hematopoietic stem cell and its microenvironment). Мoscow; 1984. 238 p. (In Russ)]
  15. Mayani H, Guilbert LJ, Janowaska-Wieczorek A. Biology of the hemopoietic microenvironment. Eur J Haematol. 1992;49(5):225–33. doi: 10.1111/j.1600-0609.1992.tb00053.x.
  16. Gothard D, Greenhough J, Ralph E. Prospective isolation of human bone marrow stromal cell subsets: A comparative study between Stro-1-, CD146- and CD105-enriched populations. J Tissue Eng. 2014;5(0): doi: 10.1177/2041731414551763.
  17. Purton LE, Scadden DT. The hematopoietic stem cell niche. StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008. pp. 1–14. doi: 10.3824/stembook.1.28.1.
  18. Taichman RS, Reilly MJ, Emerson SG. The hematopoietic microenvironment: osteoblasts and the hematopoietic microenvironment. Hematology. 2000;4(5):421–6.
  19. Scadden DT. The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol. 2007;20(1):19–27. doi: 10.1016/j.beha.2006.11.001.
  20. Семенова Н.Ю., Бессмельцев С.С., Ругаль В.И. Биология ниши гемопоэтических стволовых клеток. Клиническая онкогематология. 2014;7(4):501–10.
    [Semenova NYu, Bessmel’tsev SS, Rugal’ VI. Biology of hematopoietic stem cell niche. Klinicheskaya onkogematologiya. 2014;7(4):501–10. (In Russ)]
  21. Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem. 2008;283(15):9499–503. doi: 10.1074/jbc.R700043200.
  22. Бессмельцев С.С. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть 1. Клиническая онкогематология. 2013;6(3):237–58.
    [Bessmeltsev SS. Multiple myeloma (pathogenesis, clinical features, diagnosis, differential diagnosis). Part I. Klinicheskaya onkogematologiya. 2013;6(3):237–58. (In Russ)]
  23. Ругаль В.И., Бессмельцев С.С., Семенова Н.Ю. и др. Структурные особенности паренхимы и стромы костного мозга больных множественной миеломой. Биомедицинский журнал Medline.ru. 2012;13:515–523.
    [Rugal VI, Bessmeltsev SS, Semenova NYu, et al. Parenchyma and stroma bone marrow structural features in patients with multiple myeloma. Biomeditsinskii zhurnal Medline.ru. 2012;13:515–23. (In Russ)]
  24. Duhrsen U, Hossfeld DK. Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol. 1996;73(2):53–70. doi: 10.1007/s002770050203.
  25. Weisberg E, Azab AK, Manley PW, et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia. 2012;26(5):985–90. doi: 10.1038/leu.2011.360.
  26. Белянин В.Л., Цыплаков Д.Э. Диагностика реактивных гиперплазий лимфатических узлов. СПб., Казань, 1999. 328 с.
    [Belyanin VL, Tsyplakov DE. Diagnostika reaktivnykh giperplazii limfaticheskikh uzlov. (Diagnosis of reactive hyperplasia of lymph nodes.) Saint Petersburg, Kazan; 1999. 328 p. (In Russ)]
  27. Киселева М.В. Морфо-функциональное состояние стромы лимфатических узлов при некоторых лимфопролиферативных заболеваниях: Автореф. дис. ¼ канд. мед. наук. СПб., 2001.
    [Kiseleva MV. Morfo-funktsionalnoe sostoyanie stromy limfaticheskikh uzlov pri nekotoryh limfoproliferativnykh zabolevaniyah. (Morphofunctional state of the stroma of lymph nodes in certain lymphoproliferative diseases.) [dissertation] Saint Petersburg; 2001. (In Russ)]
  28. Chen L, Apgar J, Huynh L, et al. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood. 2005;105(5):2036–41. doi: 10.1182/blood-2004-05-1715.
  29. Коган Е.А. Автономный рост и прогрессия опухолей. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2002;12(4):45–9.
    [Kogan EA. Autonomous growth and progression of tumors. Rossiiskii zhurnal gastroenterologii, gepatologii, koloproktologii. 2002;12(4):45–9. (In Russ)]
  30. Криволапов Ю.А., Леенман Е.Е. Морфологическая диагностика лимфом. СПб.: Коста, 2006. С. 45–8.
    [Krivolapov YuA, Leenman EE. Morfologicheskaya diagnostika limfom. (Morphological diagnostics of lymphomas.) Saint Petersburg: Kosta Publ.; 2006. pp. 45–8. (In Russ)]
  31. Мухина М.С., Пожарисский К.М., Леенман Е.Е. и др. Место дендритных клеток в микроокружении при лимфоме Ходжкина. Архив патологии. 2010;2:3–7.
    [Mukhina MS, Pozharisskii KM, Leenman EE, et al. Place of dendritic cells in the microenvironment in Hodgkin lymphoma. Arkhiv patologii. 2010;2:3–7. (In Russ)]
  32. Park CS, Choi YS. How do follicular dendritic cells interact intimately with B cells in the germinal centre. Immunology. 2005;114(1):2–10. doi: 10.1111/j.1365-2567.2004.02075.x.
  33. Herishanu Y, Perez-Galan P, Liu D, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563–74. doi: 10.1182/blood-2010-05-284984.
  34. Cordone I, Matutes E, Catovsky D. Monoclonal antibody Ki-67 identifies B and T cells in cycle in chronic lymphocytic leukemia: correlation with disease activity. Leukemia. 1992;6(9):902–6.
  35. Tavassoli M, Fridenstein A. Hemopoietic stromal microenvironment. Am J Hematol. 1983;15(2):195–203. doi: 10.1002/ajh.2830150211.
  36. Nagasawa T, Omatsu Y, Sugiyama T. Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol. 2011;32(7):315–20. doi: 10.1016/j.it.2011.03.009.
  37. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132(4):631–44. doi: 10.1016/j.cell.2008.01.025.
  38. Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116(5):1195–201. doi: 10.1172/jci28568.
  39. Wei J, Wunderlich M, Fox C, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell. 2008;13(6):483–95. doi: 10.1016/j.ccr.2008.04.020.
  40. Westen H, Beinton DF. Association of alkaline-phosphatase-positive reticulum cells in bone marrow granulocytic precursors. Exp Med. 1979;150(4):919–37. doi: 10.1084/jem.150.4.919.
  41. Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179(5):1677–82. doi: 10.1084/jem.179.5.1677.
  42. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–41. doi: 10.1038/nature02041.
  43. Tokoyoda K, Egawa T, Sugiyama T, et al. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity. 2004;20(6):707–18. doi: 10.1016/j.immuni.2004.05.001.
  44. Дризе Н.И. Различия между лейкозными и нормальными кроветворными стволовыми клетками. Онкогематология. 2006;1(2):5–9.
    [Drize NI. Difference between leukemic and normal hematopoietic stem cells. Onkogematologiya. 2006;1(2):5–9. (In Russ)]
  45. Mraz M, Zent CS, Church AK, et al. Bone marrow stromal cells protect lymphoma B-cells from rituximab-induced apoptosis and targeting integrin alpha-4-beta-1 (VLA-4) with natalizumab can overcome this resistance. Br J Haematol. 2011;155(1):53–64. doi: 10.1111/j.1365-2141.2011.08794.x.
  46. Papayannopoulou T, Scadden DT. Stem-cell ecology and stem cells in motion. Blood. 2008;111(8):3923–30. doi: 10.1182/blood-2007-08-078147.
  47. Saito Y, Uchida N, Tanaka S, et al. Induction of cell cycle entry eliminates human leukemia stem cells in s a mouse model of AML. Nat Biotechnol. 2010;28(3):275–80. doi: 10.1038/nbt.1607.
  48. Вартанян Н.Л., Бессмельцев С.С., Семенова Н.Ю., Ругаль В.И. Мезенхимальные стромальные клетки при апластической анемии, гемобластозах и негематологических опухолях. Бюллетень СО РАМН. 2014;34(6):17–26.
    [Vartanyan NL, Bessmel’tsev SS, Rugal’ VI, Semenova NYu. Mesenchymal stromal cells in aplastic anemia, hematological malignancies and non-hematological tumors. Byulleten’ SO RAMN. 2014;34(6):17–26. (In Russ)]
  49. Raaijmakers M, Mukherjee S, Guo SH, et al. Bone progenitor dysfunction induces myelodysplasia and leukemia. Nature. 2010;464(7290):852–7. doi: 10.1038/nature08851.
  50. Герасимова Л.П., Дризе Н.И., Лубкова О.Н. и др. Нарушение стромального микроокружения у больных с различными заболеваниями системы крови. Гематология и трансфузиология. 2008;53(5):59–62.
    [Gerasimova LP, Drize NI, Lybkova ON, et al. Stromal microenvironment impairment in patients with various hematological diseases. Gematologiya i transfuziologiya. 2008;53(5):59–62. (In Russ)]

 

Role of Patient’s Age and Comorbidities in Therapy of Chronic Lymphocytic Leukemia

VV Strugov1, EA Stadnik1,2, YuV Virts1, TO Silina1, AYu Zaritskii1,2

1 V.A. Almazov Federal North-West Medical Research Centre, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Vladimir Vladimirovich Strugov, scientific worker, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(906)277-86-64; e-mail: strugov@almazovcentre.ru

For citation: Strugov VV, Stadnik EA, Virts YuV, et al. Role of Patient’s Age and Comorbidities in Therapy of Chronic Lymphocytic Leukemia. Clinical oncohematology. 2016;9(2):162–75 (In Russ).

DOI: 10.21320/2500-2139-2016-9-2-162-175


ABSTRACT

Background & Aims. New schemes of the antitumor therapy of CLL resulted in improvement of survival of relatively young patients. However, the therapy outcomes of elderly patients are still unsatisfactory. Erroneous overestimation of expected toxicity of standard therapeutic regimens in some elderly patients may play a certain role, thus leading to prescription of less effective regimens. Therefore, the urgent problem is to find objective criteria for risk stratification in CLL. The aim of the study is to evaluate the prognostic significance of patient’s age and the CIRS-G index in elderly patients treated with fludarabine-containing regimens in first line treatment outside clinical trials.

Methods. A retrospective analysis of 90 elderly CLL patients, treated with standard FC and FCR regimens in the clinic of internal medicine of the First St. Petersburg State Medical University from 2001 till 2011. The age median was 59 years (range from 43 to 78 years). The comorbidity index was determined for each patient using the CIRS-G score.

Results. The overall response rate did not significantly differ between FC and FCR groups and was equal to 81.6 % and 93.4 %, respectively (= 0.109). Complete remissions were achieved in 72.3 % of FCR group patients and only in 46.5 % of FC group patients (= 0.018). The retrospective analysis of treatment tolerability in primary elderly patients with different CIRS-G scores in the routine clinical practice demonstrated that the index has no independent prognostic significance. Among all CIRS-G components (14 organs and systems), only renal and hepatic diseases demonstrated significant correlation with the overall survival rate (< 0.001 and = 0.028, respectively).

Conclusion. The creatinine clearance value in the beginning of treatment is the most important predictor of FC and FCR regimen efficacy in elderly patients. The use of the comorbidity index with a 6-score threshold as a contraindication for fludarabine-containing regimens proved to be unjustified.


Keywords: chronic lymphocytic leukemia, CLL, comorbidity index, CIRS-G, FCR.

Received: January 15, 2016

Accepted: February 3, 2016.

Read in PDF (RUS) pdficon


REFERENCES

  1. Del Giudice I, Mauro FR, Foa R. Chronic lymphocytic leukemia in less fit patients: “slow-go”. Leuk Lymphoma. 2011;52(12):2207–16. doi: 10.3109/10428194.2011.606386.
  2. Gribben JG. Chronic lymphocytic leukemia: planning for an aging population. Expert Rev Anticancer Ther. 2010;10(9):1389–94. doi: 10.1586/era.10.127.
  3. Ожидаемая продолжительность предстоящей жизни по Российской Федерации [электронный документ]. Доступно по: http://www.gks.ru/free_doc/new_site/population/generation/dem2.xlsx. Ссылка активна на 15.08.2015.
    [Ozhidaemaya prodolzhitel’nost’ predstoyashchei zhizni po Rossiiskoi Federatsii. (Life expectancy in the Russian Federation.) [Internet] Available from: http://www.gks.ru/free_doc/new_site/population/generation/dem2.xlsx. (accessed 15.08.2015) (In Russ)]
  4. Tam CS, O’Brien S, Wierda W, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008;112(4):975–80. doi: 10.1182/blood-2008-02-140582.
  5. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. The Lancet. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736(10)61381-5.
  6. Abrisqueta P, Pereira A, Rozman C, et al. Improving survival in patients with chronic lymphocytic leukemia (1980–2008): the Hospital Clinic of Barcelona experience. Blood. 2009;114(10):2044–50. doi: 10.1182/blood-2009-04-214346.
  7. Merli F, Mammi C, Ilariucci F. Integrating oncogeriatric tools into the management of chronic lymphocytic leukemia: current state of the art and challenges for the future. Curr Oncol Rep. 2015;17(7):31. doi: 10.1007/s11912-015-0454-0.
  8. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.
  9. Yancik R. Cancer burden in the aged: an epidemiologic and demographic overview. Cancer. 1997;80(7):1273–83. doi: 10.1002/(sici)1097-0142(19971001)80:7<1273::aid-cncr13>3.0.co;2-4.
  10. Thurmes P, Call T, Slager S, et al. Comorbid conditions and survival in unselected, newly diagnosed patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2008;49(1):49–56. doi: 10.1080/10428190701724785.
  11. Molica S, Brugiatelli M, Morabito F, et al. Treatment of elderly patients with chronic lymphocytic leukemia: an unmet clinical need. Expert Rev Hematol. 2013;6(4):441–9. doi: 10.1586/17474086.2013.814845.
  12. Goede V, Cramer P, Busch R, et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. Haematologica. 2014;99(6):1095–100. doi: 10.3324/haematol.2013.096792.
  13. Eichhorst B, Goede V, Hallek M. Treatment of elderly patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50(2):171–8. doi: 10.1080/10428190802688517.
  14. Miller M, Towers A. A manual of guidelines for scoring the cumulative illness rating scale for geriatrics (CIRS-G). May 1991. [Internet] Available from: http://www.anq.ch/fileadmin/redaktion/deutsch/20121211_CIRSG_Manual_E.pdf. (accessed 12.04.2016).
  15. Stilgenbauer S, Montillo M, Tadeusz R, et al. Prognostic Assessment In Patients With Chronic Lymphocytic Leukemia (CLL) In Clinical Practice: A European Research Initiative On CLL (ERIC) Survey. Blood. 2013;122(21): Abstract 4156.
  16. Никитин Е.А., Халлек М., Байков В.В. и др. Российские клинические рекомендации по диагностике и лечению хронического лимфолейкоза (версия 2012 г.). Клиническая онкогематология. 2013;6(1):99–109.
    [Nikitin EA, Khallek M, Baykov VV, et al. Russian clinical guidelines for diagnosis and treatment of chronic lymphocytic leukemia (version 2012). Klinicheskaya onkogematologiya. 2013;6(1):99–109. (In Russ)]
  17. Repetto L, Fratino L, Audisio RA, et al. Comprehensive geriatric assessment adds information to Eastern Cooperative Oncology Group performance status in elderly cancer patients: an Italian Group for Geriatric Oncology Study. J Clin Oncol. 2002;20(2):494–502. doi: 10.1200/jco.20.2.494.
  18. Bonanad S, De la Rubia J, Gironella M, et al. Development and psychometric validation of a brief comprehensive health status assessment scale in older patients with hematological malignancies: The GAH Scale. J Geriatr Oncol. 2015;6(5):353–61. doi 10.1016/j.jgo.2015.03.003.
  19. Стругов В.В., Стадник Е.А., Вирц Ю.В., Зарицкий А.Ю. Ретроспективное исследование результатов применения режимов FC/FCR в первой линии терапии хронического лимфолейкоза. Трансляционная медицина. 2012;6(17):104–15.
    [Strugov VV, Stadnik EA, Virts YuV, Zaritskii AYu. Retrospective studies of outcomes of FC/FCR regimens in first-line therapy if chronic lymphocytic leukemia. Translyatsionnaya meditsina. 2012;6(17):104–15. (In Russ)]
  20. Salvi F, Miller MD, Grilli A, et al. A manual of guidelines to score the modified cumulative illness rating scale and its validation in acute hospitalized elderly patients. J Am Geriatr Soc. 2008;56(10):1926–31. doi: 10.1111/j.1532-5415.2008.01935.x.
  21. Hwang JP, Somerfield MR, Alston-Johnson DE, et al. Hepatitis B Virus Screening for Patients With Cancer Before Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update. J Clin Oncol. 2015;33(19):2212–20. doi: 10.1200/JCO.2015.61.3745.
  22. Стадник Е.А., Никитин Е.А., Бидерман Б.В. и др. Ретроспективное сравнение эффективности и токсичности режимов лечения FC и FCR у первичных больных В-клеточным хроническим лимфолейкозом. Онкогематология. 2008;1–2:39–46.
    [Stadnik EA, Nikitin EA, Biderman BV, et al. Comparison of efficacy and toxicity of FC and FCR regimens in the treatment of primary B-cell chronic lymphocytic leukemia: a retrospective study. Onkogematologiya. 2008;1–2:39–46. (In Russ)]
  23. Wierda WG, O’Brien S, Wang X, et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood. 2007;109(11):4679–85. doi: 10.1182/blood-2005-12-051458.
  24. Pflug N, Bahlo J, Shanafelt TD, et al. Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood. 2014;124(1):49–62. doi: 10.1182/blood-2014-02-556399.
  25. Baumann T, Delgado J, Santacruz R, et al. Chronic lymphocytic leukemia in the elderly: clinico-biological features, outcomes, and proposal of a prognostic model. Haematologica. 2014;99(10):1599–604. doi: 10.3324/haematol.2014.107326.
  26. Coresh J, Astor BC, Greene T, et al. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003;41(1):1–12. doi: 10.1053/ajkd.2003.50007.
  27. Пигарева Ю.А., Авдошина С.В., Дмитрова Т.Б. и др. Распространенность хронической болезни почек среди пациентов терапевтического стационара. Клиническая нефрология. 2012;3:4–9.
    [Pigareva YuA, Avdoshina SV, Dmitrova TB, et al. Prevalence of chronic kidney disease in patients of clinic of internal diseases. Klinicheskaya nefrologiya. 2012;3:4–9. (In Russ)]
  28. Martell RE, Peterson BL, Cohen HJ, et al. Analysis of age, estimated creatinine clearance and pretreatment hematologic parameters as predictors of fludarabine toxicity in patients treated for chronic lymphocytic leukemia: a CALGB (9011) coordinated intergroup study. Cancer Chemother Pharmacol. 2002;50(1):37–45. doi: 10.1007/s00280-002-0443-5.
  29. Michallet AS, Cazin B, Bouvet E, et al. First immunochemotherapy outcomes in elderly patients with CLL: a retrospective analysis. J Geriatr Oncol. 2013;4(2):141–7. doi: 10.1016/j.jgo.2013.01.002.
  30. Kolibaba KS, Sterchele JA, Joshi AD, et al. Demographics, treatment patterns, safety, and real-world effectiveness in patients aged 70 years and over with chronic lymphocytic leukemia receiving bendamustine with or without rituximab: a retrospective study. Ther Adv Hematol. 2013;4(3):157–71. doi: 10.1177/2040620713478629.
  31. Eichhorst B, Fink AM, Busch R, et al. Frontline chemoimmunotherapy with fludarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) shows superior efficacy in comparison to bendamustine (B) and rituximab (BR) in previously untreated and physically fit patients (pts) with advanced chronic lymphocytic leukemia (CLL): final analysis of an international, randomized study of the German CLL study group (GCLLSG) (CLL10 study). Blood. 2014;124(21): Abstract 19.
  32. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10. doi: 10.1056/NEJMoa1313984.
  33. O’Brien S, Furman RR, Coutre SE, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15(1):48–58. doi: 10.1016/S1470-2045(13)70513-8.
  34. Zelenetz AD, Gordon LI, Wierda WG, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma, version 1.2015. J Natl Compr Canc Netw. 2015;13(3):326–62.

Biopsy of Lungs and Pleura in Hematologic Center

SR Karagyulyan, KI Danishyan, VS Shavlokhov, MA Silaev, GM Galstyan, AV Tochenov, LA Kuz’mina, IV Efimov, SA Shutov, YuV Pliskunova, IA Shupletsova, AM Kovrigina

Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Maksim Anatol’evich Silaev, PhD, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-61-91; e-mail: max-blood@mail.ru

For citation: Karagyulyan SR, Danishyan KI, Shavlokhov VS, et al. Biopsy of Lungs and Pleura in Hematologic Center. Clinical oncohematology. 2016;9(1):42–7 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-42-47


ABSTRACT

Background & Aims. Morphological, immunohistochemical, immunophenotypic, cytogenetic, molecular and genetic and other examinations of tissues affected by oncohematological diseases are obligatory. The aim of this paper is to evaluate findings of lung and pleura biopsies in different medical conditions using two basic techniques: thoracoscopy and diagnostic thoracotomy.

Methods. Results of morphological examination of lung lesions in patients hospitalized in the Hematology Research Center under the Ministry of Health of the Russian Federation are presented. From 2004 till 2014, 76 biopsies of lung and/or parietal pleura were performed in 73 patients aged 19–77 years via thoracoscopic (48) and/or thoracotomic (28) approach.

Results. No thoracoscopy- and thoracotomy-related complications were observed. Bioptate examinations proved to be informative in 66 (86.7%) patients. Lung lesions were most common in lymphoproliferative diseases. Lung involvement in cancer or metastases was twice as common as it has been expected before the biopsy. On the contrary, expected tuberculosis nature of lung lesions in 5 patients was confirmed only in 2 of them. In 18 cases (23.7 %), the cause of lung lesion was other than the expected one, and appropriate adjustments of the therapy were made.

Conclusion. New less invasive methods of biopsy combined with complex laboratory diagnosing comply with current requirements and permit making a correct diagnosis of a pathological process located in lungs.


Keywords: lung biopsy, thoracoscopy, lung lesion, morphological verification, acute respiratory insufficiency.

Received: August 28, 2015

Accepted: December 26, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Атлас. Опухоли лимфатической системы. Под ред. А.И. Воробьева, А.М. Кременецкой. М.: Ньюдиамед, 2007. 294 с.
    [Vorob’eva AI, Kremenetskaya AM, eds. Atlas. Opukholi limfaticheskoi sistemy. (Atlas. Neoplasms of the lymphatic system.) Moscow: Newdiamed Publ.; 2007. 294 p. (In Russ)]
  2. Галстян Г.М. Септический шок и острая дыхательная недостаточность в гематологической клинике: Дис. ¼ д-ра мед. наук. М., 2003.
    [Galstyan GM. Septicheskii shok i ostraya dykhatel’naya nedostatochnost’ v gematologicheskoi klinike. (Septic shock and acute respiratory insufficiency in hematologic clinic.) [dissertation] Moscow; 2003. (In Russ)]
  3. Шулутко Е.М., Городецкий В.М., Галстян Г.М. и др. Биопсия легкого в диагностике причин поражений легких у больных гемобластозами. Терапевтический архив. 2003;10:57–64.
    [Shulutko EM, Gorodetskii VM, Galstyan GM, et al. Lung biopsy in diagnosing causes of lung lesions in patients with hemoblastoses. Terapevticheskii arkhiv. 2003;10:57–64. (In Russ)]
  4. Городецкий В.М., Галстян Г.М., Савченко В.Г. и др. Поражения легких при острой дыхательной недостаточности у больных с депрессиями кроветворения. Терапевтический архив. 2002;4:25–35.
    [Gorodetskii VM, Galstyan GM, Savchenko VG, et al. Lung lesions in acute respiratory insufficiency in patients with suppressed hemapoiesis. Terapevticheskii arkhiv. 2002;4:25–35. (In Russ)]
  5. Patriarca F, Skert C, Sperotto A, et al. Incidence, outcome, and risk factors of late-onset noninfectious pulmonary complications after unrelated donor stem cell transplantation. Bone Marrow Transplant. 2004;33:751–8. doi: 10.1038/sj.bmt.1704426.
  6. Савченко В.Г., Паровичникова Е.Н. Лечение острых лейкозов. М.: МЕДпресс-информ, 2004. С. 95.
    [Savchenko VG, Parovichnikova EN. Lechenie ostrykh leikozov. (Treatment of acute leukemias.) Moscow: MEDpress-inform Publ.; 2004. p. 95. (In Russ)]
  7. Frankel SR, Fardley A, Lawers G, et al. The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann Intern Med. 1992;117(4):292–6. doi: 10.7326/0003-4819-117-4-292.
  8. Larson RS, Tallman MS. Retinoic acid syndrome: manifestations, pathogenesis, and treatment. Best Pract Res Clin Haematol. 2003;16(3):453–61. doi: 10.1016/s1521-6926(03)00043-4.
  9. De Botton S, Dombret H, Sanz M. Incidence, clinical features, and outcome of all trans-retinoic acid syndrome in 413 cases of newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood. 1998;92(8):2712–8.
  10. Montesinos P, Sanz MA. The Differentiation Syndrome in Patients with Acute Promyelocytic Leukemia: Experience of the Pethema Group and Review of the Literature. Mediterr J Hematol Infect Dis. 2011;3(1):e2011059. doi: 10.4084/mjhid.2011.059.
  11. Шавлохов В.С. Хирургические вмешательства в диагностике и терапии лимфатических опухолей средостения и легких: Дис. ¼ д-ра мед. наук. М., 2009.
    [Shavlokhov VS. Khirurgicheskie vmeshatel’stva v diagnostike i terapii limfaticheskikh opukholei sredosteniya i legkikh. (Surgical interventions in diagnosing and therapy of lymphatic neoplasms in mediastinum and lungs.) [dissertation] Moscow; 2009. (In Russ)]
  12. Баркаган З.С. Геморрагические заболевания и синдромы. М.: Медицина, 1988. 528 с.
    [Barkagan ZS. Gemorragicheskie zabolevaniya i sindromy. (Hemorrhagic diseases and syndromes.) Moscow: Meditsina Publ.; 1988. 528 p. (In Russ)]
  13. Freudenberger TD, Madtes DK, Curtis JR, et al. Association between acute and chronic graft-versus-host disease and bronchiolitis obliterans organizing pneumonia in recipients of hematopoietic stem cell transplants. Blood. 2003;102:3822–8. doi: 10.1182/blood-2002-06-1813.
  14. Holbro A, Lehmann T, Girsberger S, et al. Lung histology predicts outcome of bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19:973–80. doi: 10.1016/j.bbmt.2013.03.017.

 

Video-Assisted Thoracoscopic Surgery in Diagnosing Lymphomas

IG Komarov1,2, SYu Sletina1, MI Komarov2, АА Sukhov1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Russian Medical Academy of Postgraduate Education, 23 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Igor’ Gennad’evich Komarov, DSci, Professor, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-12-70; e-mail: komarovig@mail.ru

For citation: Komarov IG, Sletina SYu, Komarov MI, Sukhov AA. Video-Assisted Thoracoscopic Surgery in Diagnosing Lymphomas. Clinical oncohematology. 2016;9(1):30–41 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-30-41


ABSTRACT

This article continues a series of papers dwelling on endo-surgery techniques in diagnosing lymphomas. It describes the history of the thoracoscopic surgery and its potential and current use when malignant lymphoproliferative diseases with involvement of chest organs and tissues. It provides brief description of basic instruments, equipment and technique of surgical interventions via the thoracic access. It lists indications and contraindications for the thoracoscopic surgery. In addition, the paper presents analysis of video-assisted thoracoscopic surgeries in 178 patients with suspected malignant lymphoproliferative diseases. During these surgeries, samples for further morphological assessment were obtained from all patients. Lymphomas were confirmed in 120 patients. The article contains two case reports on the video-assisted thoracoscopic interventions performed.


Keywords: lymphoma, diagnostics, video-assisted surgery, thoracoscopy.

Received: November 6, 2015

Accepted: December 24, 2015

Read in PDF (RUS) pdficon


REFERENCES

  1. Jacobeus HC. The practical importance of thoracoscopy in surgery of the chest. Surg Gynecol Obstet. 1921;4:289–96. doi: 10.1007/978-3-662-01566-7_7.
  2. Кобаладзе М.Г. История развития эндоскопии. История науки и техники. 2004;5:18–23.
    [Kobaladze MG. History of endoscopy. Istoriya nauki i tekhniki. 2004;5:18–23. (In Russ)]
  3. Roviaro G, Rebuffat C, Varoli F, et al. Videoendoscopic pulmonary lobectomy for cancer. Surg Laparosc Endosc. 1992;2(3):244–7.
  4. Сигал Е.И. Первый опыт торакоскопических операций. Казанский медицинский журнал. 1994;6:74–81.
    [Sigal EI. The first experience of thorascopic surgeries. Kazanskii meditsinskii zhurnal. 1994;6:74–81. (In Russ)]
  5. Комаров И.Г., Степаненкова С.С., Комаров М.И. Видеолапароскопические операции в диагностике лимфом. Клиническая онкогематология. 2014;7(4):540–50.
    [Komarov IG, Stepanenkova SS, Komarov MI. Video-Assisted Laparoscopic Surgeries in Diagnosing Lymphomas. Klinicheskaya onkogematologiya. 2014;7(4):540–50. (In Russ)]

Relation between Genomic DNA Breakpoints in MLL Gene and Treatment Outcome in Infants with Acute Leukemia

GA Tsaur1,2,3, C Meyer4, TO Riger1,2, AM Kustanovich5, EV Fleischman6, YuV Ol’shanskaya7, AM Popov7, OI Sokova6, EA Matveeva7, OV Nikulina1,2, AE Drui1,2, OR Arakaev1,2, OV Streneva1,2, SA Rumyantsev7, EV Shorikov1,2, AG Solodovnikov2, LI Savel’ev1,2, R Marschalek4, LG Fechina1

 1 Regional Children’s Clinical Hospital No. 1, 32 Serafimy Deryabinoi str., Ekaterinburg, Russian Federation, 620149

2 Research Institute of Medical Cell Technologies, 22a K. Marksa str., Ekaterinburg, Russian Federation, 620026

3 First President of Russia B.N. Yeltsin Ural Federal University , 19 Mira str., Ekaterinburg, Russian Federation, 620002

4 Diagnostic Center of Acute Leukemia, Institute of Pharmaceutical Biology/ZAFES, Goethe-University of Frankfurt, N230, Max-von-Laue Str. 9, Frankfurt am Main Deutschland, 60438

5 Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, 43 Frunzenskaya str., Borovlyany, Minsk District, Belarus, 223053

6 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

7 Dmitrii Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117198

For correspondence: Grigorii Anatol’evich Tsaur, PhD, 32 Serafimy Deryabinoi str., Ekaterinburg, Russian Federation, 620149; Tel.: +7(343)216-25-17; e-mail: tsaur@mail.ru

For citation: Tsaur GA, Meyer C, Riger TO, et al. Relation between Genomic DNA Breakpoints in MLL Gene and Treatment Outcome in Infants with Acute Leukemia. Clinical oncohematology. 2016;9(1):22–9 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-22-29


ABSTRACT

Aim. To evaluate the relation between genomic DNA breakpoints in MLL and translocation partner genes (TPG) and clinical parameters of infant AL.

Methods. 68 infants (29 boys and 39 girls with median age of 4.8 mo) with MLL-rearranged acute lymphoblastic leukemia (ALL) (n = 46), acute myeloid leukemia (AML) (n = 20) and mixed phenotype acute leukemia (MPAL) (n = 2) were included in the current study.

Results. 5-year EFS was significantly lower in patients with breakpoints in intron 11 (n = 29) in comparison to patients with breakpoint localized from intron 7 to exon 11 (n = 17) (0.16 ± 0.07 vs 0.38 ± 0.14, = 0.039). While cumulative incidence of relapse was remarkably higher in the first group of patients (0.74 ± 0.09 vs 0.52 ± 0.17, = 0.045). Although in Cox regression model including breakpoint location in intron 11 together with age, immunophenotype, initial white blood cell count, initial CNS involvement, type of MLL rearrangements, absolute blast number at day 8 of dexamethasone profase, minimal residual disease (MRD) at time point 4 (TP4) of MLL-Baby protocol, the only significant covariate was the presence of MRD at TP4 (HR 5.994, 95% CI 2.209–16.263, < 0.001). In 22 AML patients there was not any correlation between breakpoint location and treatment outcome.

Conclusion. Breakpoints in intron 11 of MLL gene led to significantly worse outcome in infants with ALL, treated by MLL-Baby protocol, although this parameter was overcome by MRD-positivity at TP4. The latter was the only independent covariate in multivariate analysis. Our data provide additional information of molecular genetic features of MLL-rearranged infant AL.


Keywords: acute leukemia, infants, 11q23/MLL rearrangements, MLL-Baby, treatment outcome.

Received: September 14, 2015

Accepted: October 20, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Moorman A, Richards S, Robinson H, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–30. doi: 10.1182/blood-2006-08-040436.
  2. Moorman A, Ensor H, Richards S, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. 2010;11(5):429–38. doi: 10.1016/s1470-2045(10)70066-8.
  3. Fischer U, Forster M, Rinaldi A, et al. Genomics and drug profiling of fatal TCF3-HLF–positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet. 2015;47(9):1020–9. doi: 10.1038/ng.3362.
  4. Creutzig U, van den Heuvel-Eibrink M, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187–205. doi: 10.1182/blood-2012-03-362608.
  5. Kuiper R, Waanders E, van der Velden V, et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia. 2010;24(7):1258–64. doi: 10.1038/leu.2010.87.
  6. Dorge P, Meissner B, Zimmermann M, et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica. 2013;98(3):428–32. doi: 10.3324/haematol.2011.056135.
  7. den Boer M, van Slegtenhorst M, de Menezes R, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. doi: 10.1016/s1470-2045(08)70339-5.
  8. Iwai T, Yokota S, Nakao M, et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children’s Cancer and Leukemia Study Group, Japan. Leukemia. 1999;13(1):38–43. doi: 10.1038/sj.leu.2401241.
  9. Reaman G. Biology and treatment of infant leukemias. In: Pui C-H, ed. Treatment of acute leukemias: new directions for clinical research. Totowa: Humana Press; 2003. p. 75–83.
  10. Pieters R. Biology and treatment of infant leukemias. In: Pui C-H, ed. Treatment of acute leukemias: new directions for clinical research. Totowa: Humana Press; 2003. p. 61–73.
  11. Pieters R. Infant acute lymphoblastic leukemia: Lessons learned and future directions. Curr Hematol Malig Rep. 2009;4(3):167–74. doi: 10.1007/s11899-009-0023-4.
  12. Pieters R, Schrappe M, de Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. The Lancet. 2007;370:240–50. doi: 10.1016/s0140-6736(07)61126-x.
  13. Popov A, Buldini B, de Lorenzo P, et al. Identification of low risk group in infants with acute lymphoblastic leukemia by flow cytometric minimal residual disease measurement at day 15 of Interfant-99 and Interfant-06 protocols treatment. Blood (ASH Annual Meeting Abstracts). 2013;122(21): Abstract 1333.
  14. van der Velden V, Corral L, Valsecchi M-G, et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia. 2009;23(6):1073–9. doi: 10.1038/leu.2009.17.
  15. Pui C-H, Raimondi S, Srivastava D, et al. Prognostic factors in infants with acute myeloid leukemia. Leukemia. 2000;14(4):684–7. doi: 10.1038/sj.leu.2401725.
  16. Tomizawa D, Koh K, Sato T, et al. Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group. Leukemia. 2007;22(11):2258–63. doi: 10.1038/sj.leu.2404903.
  17. Stam R, Schneider P, de Lorenzo P, et al. Prognostic significance of high-level FLT3 expression in MLL-rearranged infant acute lymphoblastic leukemia. Blood. 2007;110(7):2774–5. doi: 10.1182/blood-2007-05-091934.
  18. Ho P, Alonzo T, Gerbing R, et al. High EVI1 expression is associated with MLL rearrangements and predicts decreased survival in paediatric acute myeloid leukaemia: a report from the children’s oncology group. Br J Haematol. 2013;162(5):670–7. doi: 10.1111/bjh.12444.
  19. Stam R, Schneider P, Hagelstein J, et al. Gene expression profiling–based dissection of MLL translocated and MLL germ-line acute lymphoblastic leukemia in infants. Blood. 2010;115(14):2835–44. doi: 10.1182/blood-2009-07-233049.
  20. Zangrando A, Dell’orto M, te Kronnie G, Basso G. MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specific signatures. BMC Med Genom. 2009;2:36. doi: 10.1186/1755-8794-2-36.
  21. Emerenciano M, Meyer C, Mansur M, et al. The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia. Br J Haematol. 2013;161(2):224–36. doi: 10.1111/bjh.12250.
  22. Roessler T, Marschalek R. An alternative splice process renders the MLL protein either into a transcriptional activator or repressor. Pharmazie. 2013;86:601–7. doi: 10.1055/s-0033-1343653.
  23. Bennett J, Catovsky D, Daniel M, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8. doi: 10.1111/j.1365-2141.1976.tb03563.x.
  24. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.
  25. Bene MC, Nebe T, Bettelheim P, et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10. Leukemia. 2011;25(4):567–74. doi: 10.1038/leu.2010.312.
  26. Vardiman J, Thiele J, Arber D, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51. doi: 10.1182/blood-2009-03-209262.
  27. Цаур Г.А., Наседкина Т.В., Попов А.М. и др. Время достижения молекулярной ремиссии как фактор прогноза у детей первого года жизни острым лимфобластным лейкозом. Онкогематология. 2010;2:46–54.
    [Tsaur GA, Nasedkina TV, Popov AM, et al. Time to molecular remission as prognostic factor in infant acute lymphoblastic leukemia. Onkogematologiya. 2010;2:46–54. (In Russ)]
  28. Цаур Г.А., Флейшман Е.В., Попов А.М. и др. Цитогенетическая и молекулярно-генетическая характеристика острых лейкозов у детей первого года жизни. Клиническая онкогематология. 2011;4(2):134–41.
    [Tsaur GA, Fleischman EV, Popov AM, et al. Cytogenetics and molecular genetics of acute leukemias in infants. Klinicheskaya onkogematologiya. 2011;4(2):134–41. (In Russ)]
  29. Цаур Г.А., Плеханова О.М., Гиндина Т.Л. и др. Применение метода флуоресцентной гибридизации in situ для выявления перестроек гена MLL при острых лейкозах у детей первого года жизни. Медицинская генетика. 2012;7(121):35–45.
    [Tsaur GA, Plekhanova OM, Gindina TL, et al. Use of fluorescence in situ hybridization technique to detect MLL gene rearrangements in acute leukemias in infants. Meditsinskaya genetika. 2012;7(121):35–45. (In Russ)]
  30. Meyer C, Schneider B, Reichel M, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA. 2005;102(2):449–54. doi: 10.1073/pnas.0406994102.
  31. Цаур Г.А., Meyer C., Попов А.М. и др. Исследование структуры химерных генов с участием гена MLL при острых лейкозах у детей первого года жизни. Гематология и трансфузиология. 2014;59(1):29–37.
    [Tsaur GA, Meyer C, Popov AM, et al. Evaluation of structure of chimeric genes involving MLL gene in infant acute leukemia. Gematologiya i transfuziologiya. 2014;59(1):29–37. (in Russ)]
  32. Nilson I, Lochner K, Siegler G, et al. Exon/intron structure of ALL1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukemias. Br J Haematol. 1996;94(4):966–72. doi: 10.1046/j.1365-2141.1996.d01-1748.x.
  33. Gabert J, Beillard E, van der Velden V, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program. Leukemia. 2003;17(12):2318–57. doi: 10.1038/sj.leu.2403135.
  34. Jansen M, van der Velden V, van Dongen J. Efficient and easy detection of MLL-AF4, MLL-AF9 and MLL-ENL fusion gene transcripts by multiplex real-time quantitative RT-PCR in TaqMan and LightCycler. Leukemia. 2005;19(11):2016. doi: 10.1038/sj.leu.2403939.
  35. Цаур Г.А., Друй А.Е., Попов А.М. и др. Возможность использования микроструйных биочипов для оценки качества и количества РНК у детей с онкологическими и онкогематологическими заболеваниями. Вестник Уральской медицинской академической науки. 2011;4:107–11.
    [Tsaur GA, Druy АЕ, Popov АМ, et al. Microfluidic biochips for RNA quantity and quality evaluation in children with oncological and oncohematological disorders. Vestnik Ural’skoi meditsinskoi akademicheskoi nauki. 2011;4:107–11. (In Russ)]
  36. Fechina L, Shorikov E, Tsaur G, et al. Contribution of all-trans retinoic acid to improved early relapse-free outcome in infant acute lymphoblastic leukemia comparing to the chemotherapy alone. Blood (ASH Annual Meeting Abstracts). 2007;110(11): Abstract 832А.
  37. Fechina L, Shorikov E, Streneva O, et al. Does ATRA confirm to play a role in the better relapse free survival of infants with acute lymphoblastic leukemia? Blood (ASH Annual Meeting Abstracts). 2011;118(21): Abstract 1515.
  38. Цаур Г.А., Попов А.М., Алейникова О.В. и др. Характеристика перестроек 11q23 (MLL) у детей первого года жизни с острым лимфобластным лейкозом. Онкогематология. 2011;3:57–64.
    [Tsaur GA, Popov AM, Aleinikova OV, et al. Detection of 11q23 (MLL) rearrangements in infant acute lymphoblastic leukemia. Onkogematologiya. 2011;3:57–64. (In Russ)]
  39. Reaman GH, Sposto R, Sensel M, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol. 1999;17(2):445–55.
  40. Conter V, Bartram C, Valsecchi M-G, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFMALL 2000 study. Blood. 2010;115(16):3206–14. doi: 10.1182/blood-2009-10-248146.
  41. Basso G, Veltroni M, Valsecchi M-G, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74. doi: 10.1200/jco.2008.20.8934.
  42. Campana D. Minimal residual disease in acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program). 2010;2010:7–12. doi: 10.1182/asheducation-2010.1.7.
  43. Цаур Г.А., Попов A.M., Наседкина Т.В. и др. Прогностическое значение минимальной остаточной болезни, определенной путем выявления химерных транскриптов у детей первого года жизни, больных острым лимфобластным лейкозом, получающих терапию по протоколу MLL-Baby. Гематология и трансфузиология. 2012;57(4):12–22.
    [Tsaur GA, Popov AM, Nasedkina TV, et al. Prognostic significance of minimal residual disease detected by PCR for fusion gene transcripts in infant acute lymphoblastic leukemia treated by MLL-baby protocol. Gematologiya i transfuziologiya. 2012;57(4):12–22. (In Russ)]
  44. Burmeister T, Marschalek R, Schneider B, et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia. 2006;20(3):451–7. doi: 10.1038/sj.leu.2404082.

Treatment of Relapsed and Refractory Hodgkin’s Lymphoma in Children

NS Kulichkina, ES Belyaeva, GL Mentkevich, VK Boyarshinov, AS Levashov, IV Glekov, AV Popa

Scientific Research Institute of Pediatric Oncology and Hematology, N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Aleksandr Valentinovich Popa, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-55-03; e-mail: apopa@list.ru

For citation: Kulichkina NS, Belyaeva ES, Mentkevich GL, et al. Treatment of Relapsed and Refractory Hodgkin’s Lymphoma in Children. Clinical oncohematology. 2016;9(1):13–21 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-13-21


ABSTRACT

Background & Aims. Most children with Hodgkin’s lymphoma (HL) can be cured irrespective of the disease stage using modern risk adapted protocols. But 3–5 % of children develop relapse of the disease or refractoriness to the treatment performed. The aim of the study was to perform a comparative analysis of ViGePP vs ICE antitumor treatment regimens in patients with relapsed and refractory Hodgkin’s lymphoma, as well as to evaluate the need in auto-HSCT and the site for a combined chemoradiation therapy in this patient population.

Methods. From June, 2003, till December, 2014, 35 patients with relapsed (18) and refractory (17) HL received chemotherapy based on two regimes: ICE (n = 14; 40 %) and ViGePP (n = 14; 40 %). 7 (20 %) children were switched to another regimen due to a poor antitumor response to the first two courses of chemotherapy.

Results. The direct effectiveness of the therapy was significantly higher in patients on ViGePP as compared to ICE irrespective of the disease status (relapsed or refractory). A complete response was achieved more often in those children with relapse HL whose initial treatment included radiation therapy. Higher survival rates were registered in girls, as well as in children with a complete overall response to the antirelapse therapy. In case of relapses, delayed treatment effects (disease free survival and overall survival) were higher in children treated with 4 courses of ViGePP than 2 courses of ICE. High-dose chemotherapy with subsequent auto-HSCT is not able to overcome refractoriness to the chemotherapy.

Conclusion. Children with relapsed and refractory HL need an intensive antirelapse chemotherapy with subsequent HDC and auto-HSCT to achieve CR.


Keywords: Hodgkin’s lymphoma, children, relapse, refractoriness, auto-HSCT.

Received: November 9, 2015

Accepted: December 25, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Беляева Е.С. Современные подходы к лечению детей с распространенными стадиями лимфомы Ходжкина: Автореф. дис. … канд. мед. наук. М., 2009. С. 1–29.
    [Belyaeva ES. Sovremennye podkhody k lecheniyu detei s rasprostranennymi stadiyami limfomy Khodzhkina. (Modern approaches to treatment of children with advanced Hodgkin’s lymphoma.) [dissertation] Moscow; 2009. p. 1–29. (In Russ)]
  2. Schellong G, Dorfell W, Claviez A, et al. Salvage therapy of progressive and recurrent Hodgkin’s disease: results from a multicenter study of the pediatric DAL/GPOH-HD study group. J Clin Oncol. 2005;23:6181–9. doi: 10.1200/JCO.2005.07.930.
  3. Behrend H, Van Buningen BN, Van Leeuwen EF. Treatment of Hodgkin’s disease in children with or without radiotherapy. Cancer. 1987;59:1870–3. doi: 10.1002/1097-0142(19870601)59:11<1870::aid-cncr2820591105>3.0.co;2-d.
  4. Hudson MM, Krasin M, Link MP, et al. Risk-adapted combined-modality therapy with VAMP/COP and response-based, involved-field radiation for unfavorable pediatric Hodgkin’s disease. J Clin Oncol. 2004;22:4541–50. doi: 10.1200/jco.2004.02.139.
  5. Gorde-Grosjean S, Oberlin O, Leblanc T, et al. Outcome of children and adolescents with recurrent/refractory classical Hodgkin lymphoma, a study from the Societe Francaise de Lutte contre le Cancer des Enfants et des Adolescents (SFCE). Br J Haematol. 2012;158(5):649–56. doi: 10.1111/j.1365-2141.2012.09199.x.
  6. Metzger ML, Hudson MM, Rrasin MJ, et al. Initial Response to Salvage Therapy Determines Prognosis in Relapsed Pediatric Hodgkin Lymphoma Patient. Cancer. 2010;116(18):4376–84. doi: 10.1002/cncr.25225.
  7. Schellong G, Dorfell W, Clavez A, et al. Salvage therapy of progressive and recurrent Hodgkin’s disease: results from multicenter study of the pediatric DAL/GPOH-HD study group. J Clin Oncol. 2005;23:6181–9. doi: 10.1200/jco.2005.07.930.
  8. Stoneham S, Ashley S, Pincerton CR, et al. Outcome after autologous stem cell transplantation in relapse or refractory childhood Hodgkin’s disease. J Pediatr Hematol Oncol. 2004;26:740–5. doi: 10.1097/00043426-200411000-00010.
  9. Brice P, Bouabdallah R, Moreau P, et al. Prognostic factors for survival after high-doses therapy and autologous stem cell transplantation for patients with relapsing Hodgkin’s lymphoma: analysis of 280 patients from the French registry. Society Francaise de Greefe de Moelle. Bone Marrow Transplant. 1997;20:21–6. doi: 10.1038/sj.bmt.1700838.
  10. Harris RT, Termuhlen AM, Smith LM, et al. Autologous Stem Cell Transplantation in Children with Refractory and Relapsed Lymphoma: Results of Children’s Oncology Group Study A5962. Biol Blood Marrow Transplant. 2011;17(2):249–58. doi: 10.1016/j.bbmt.2010.07.002.
  11. Morschhauser F, Brice P, Ferme C, et al. Risk-Adapted Salvage Treatment With Single or Tandem Autologous Stem-Cell Transplantation for First Relapse/Refractory Hodgkin’s Lymphoma: Results of the Prospective Multicenter H96 Trial by the GELA/SFGM Study Group. J Clin Oncol. 2008;26(36):5980–7. doi: 10.1200/jco.2007.15.5887.
  12. Claviez A, Canals C, Dierickx D, et al. Allogenic Hematopoietic Stem Sells Transplantation in Children and Adolescents with Recurrent and Refractory Hodgkin Lymphoma: an Analysis of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(10):2060–7. doi: 10.1182/blood-2008-11-189399.
  13. Shafer JA, Heslop HE, Brenner MK, et al. Outcome of hematopoietic stem cell transplant as salvage therapy for Hodgkin’s lymphoma in adolescents and young adults at a single institution. Leuk Lymphoma. 2010;51(4):664–70. doi: 10.3109/10428190903580410.
  14. Okeley NM, Miyamoto JB, Zhang X, et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody–drug conjugate. Clin Cancer Res. 2010;163:888–97. doi: 10.1158/1078-0432.ccr-09-2069.
  15. Bonthapally V, Yang H, Ayyagari R, et al. Brentuximab Vedotin Compared with Other Therapies in Relapsed/Refractory Hodgkin Lymphoma Post ASCT: Median Overall Survival Meta-Analysis. Curr Med Res Opin. 2015;7:1–48. doi: 10.1185/03007995.2015.1048208.

Prognostic Significance of Thymidine Kinase-1 versus β2-Microglobulin and Lactate Dehydrogenase in Lymphoproliferative Diseases

N.K. Parilova1, N.S. Sergeeva1,2, N.V. Marshutina1, N.G. Tyurina1, I.S. Meisner2

1 P.A. Hertzen Moscow Cancer Research Institute, a branch of the National Medical Research Radiological Center under the Ministry of Health of the Russian Federation, 3 Botkinskii pr-d, Moscow, Russia 125284

2 N.I. Pirogov Russian National Research Medical University under the Ministry of Health of the Russian Federation, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Natal’ya Konstantinovna Parilova, junior researcher, 3 2nd Botkinskii pr-d, Moscow, Russia, 125284; Tel.: + 7(495)945-74-15; e-mail: parilochka@mail.ru.

For citation: Parilova NK, Sergeeva NS, Marshutina NV, et al. Prognostic Significance of Thymidine Kinase-1 versus b2-Microglobulin and Lactate Dehydrogenase in Lymphoproliferative Diseases. Clinical oncohematology. 2016;9(1):6–12 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-6-12


ABSTRACT

Background & Aims. Lactate dehydrogenase (LDH) and b2-microglobulin (b2-MG) are usually detected as serological tumor markers (TM) in malignant lymphoproliferative diseases (LPD); however, their use in monitoring of chemotherapy (CT) is limited due to their low sensitivity and specificity. The aim of this paper is to evaluate the prognostic value of baseline levels of thymidine kinase-1 (TK-1) versus b2-MG and LDH in patients with non-Hodgkin’s lymphomas (NHL) and Hodgkin’s lymphoma (HL) and to assess their clinical significance of changes in these parameters during CT as criteria of its effectiveness.

Methods. TK-1, b2-MG and LDH levels were evaluated in 61 NHL patients and 34 HL patients at baseline and after each subsequent CT cycle. The average age of patients enrolled in the study was 42.5 years (range 18–77 years). Of them 45 were men and 50 were women. Marker levels were determined in serum using the following tests: enzyme-linked immunosorbent assay (ELISA) for TK-1, immunoturbidimetry for b2-MG, and biochemical method for LDH. Discriminatory levels specified by test-system manufacturers were used in calculations: 50 DU/l for TK-1, 800–2400 mg/l for b2-MG, and 225–450 U/l for LDH.

Results. The study demonstrated that lower baseline levels of all three TM were associated with higher probability of complete or partial remission, and the statistical difference was higher. Baseline levels of TK-1 < 150 DU/l and b2-MG < 2200 mg/l may serve as prognostic factors of higher probability of achievement of complete or partial remission.

Conclusion. 4-fold increase in TK-1 serum activity from baseline after the 1st course of CT can predict the effectiveness of antitumor therapy. At the same time, no significant associations between b2-MG and LDH serum levels changes during the treatment and efficacy of the treatment were found.


Keywords: thymidine kinase-1, b2-microglobulin, lactate dehydrogenase, Hodgkin’s lymphoma, non-Hodgkin’s lymphomas.

Received: June 17, 2015

Accepted: November 3, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Павлова О.А., Тюрина Н.Г. Лимфома Ходжкина. Лимфопролиферативные опухоли. В кн.: Онкология. Клинические рекомендации. Под ред. В.И. Чиссова, С.Л. Дарьяловой. 2-е изд., испр. и доп. М.: ГЭОТАР-Медиа, 2009. С. 829–88.
    [Pavlova OA, Tyurina NG. Hodgkin’s lymphoma. Lymphoproliferative diseases. In Chissov VI, Dar’yalova SL, eds. Onkologiya. Klinicheskie rekomendatsii. (Oncology. Clinical recommendations.) 2nd revised edition. Moscow: GEOTAR-Media Publ.; 2009. p. 829–88. (In Russ)]
  2. Долгов В.В., Козлов А.В., Раков С.С. Лабораторная энзимология. М.: Витал Диагностикс, 2002. С. 104–18.
    [Dolgov VV, Kozlov AV, Rakov SS. Laboratornaya enzimologiya. (Laboratory methods in enzymology.) Moscow: Vital Diagnostiks Publ.; 2002. p. 104–18. (In Russ)]
  3. Bien E, Balcerska A. Serum soluble interleukin-2 receptor, beta2-microglobulin, lactate dehydrogenase and erythrocyte sedimentation rate in children with Hodgkin’s lymphoma. Scand J Immunol. 2009;70(5):490–500. doi: 10.1111/j.1365-3083.2009.02313.x.
  4. Shipp MA, Harrington DP, Andersen JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoms. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/nejm199309303291402.
  5. Дати Ф., Метцманн Э. Белки. Лабораторные тесты и их клиническое применение: Пер. с англ. М.: Лабора, 2007. 560 с.
    [Dati F, Metzman E. Proteins. Laboratory testing and clinical use. Holzheim; 2005. (Russ. ed.: Dati F, Metzman E. Belki. Laboratornye testy i ikh klinicheskoe primenenie. Moscow: Labora Publ.; 2007. 560 p.)]
  6. Votava T, Topolcan O, Holubec L Jr, et al. Changes of serum thymidine kinase in children with acute leukemia. Anticancer Res. 2007;27(4A):1925–8.
  7. Chen F, Tang L, Xia T, et al. Serum thymidine kinase 1 levels predict cancer-free survival following neoadjuvant, surgical and adjuvant treatment of patients with locally advanced breast cancer. Mol Clin Oncol. 2013;1(5):894–902. doi: 10.3892/mco.2013.149.
  8. Chen Y, Ying M, Chen YS, et al. Serum thymidine kinase 1 correlates to clinical stages and clinical reactions and monitors the outcome of therapy of 1,247 cancer patients in routine clinical settings. Int J Clin Oncol. 2010;15(4):359–68. doi: 10.1007/s10147-010-0067-4.
  9. Pan ZL, Ji XY, Shi YM, et al. Serum thymidine kinase 1 concentration as a prognostic factor of chemotherapy-treated non-Hodgkin’s lymphoma patients. J Cancer Res Clin Oncol. 2010;136(8):1193–9. doi: 10.1007/s00432-010-0769-z.
  10. Парилова Н.К., Сергеева Н.С., Тюрина Н.Г. и др. Сывороточные уровни тимидинкиназы-1 (ТК-1) у больных с лимфопролиферативными заболеваниями. Онкология. Журнал им. П.А. Герцена. 2012;1:33–8.
    [Parilova NK, Sergeeva NS, Tyurina NG, et al. Serum thymidine kinase 1 (TK-1) levels in patients with lymphoproliferative disorders. Onkologiya. Zhurnal im PA Gertsena. 2012;1:33–8. (In Russ)]
  11. Bogni A, Cortinois A, Grasseli G, et al. Thymidine kinase (TK) activity as a prognostic parameter of survival in lymphoma patients. J Biol Regul Homeost Agents. 1994;8(4):10.
  12. Nisman B, Nechushtan H, Biran H, et al. Serum thymidine kinase 1 activity in the prognosis and monitoring of chemotherapy in lung cancer patients: a brief report. J Thorac Oncol. 2014;9(10):1568–72. doi: 10.1097/jto.0000000000000276.
  13. Nisman B, Nchushtan H, Biran H, et al. Serum thymidine kinase 1 activity in prognosis and monitoring chemotherapy in lung cancer patients. Tumor Biol. 2014;35(1):22–3. doi: 10.1097/jto.0000000000000276.

 

New Aspects of Pathophysiology and Pathomorphology of Renal Lesions in Malignant Tumors

B.T. Dzhumabaeva, L.S. Biryukova

Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Boldukyz Tolgonbaevna Dzhumabaeva, DSci, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)613-24-68; e-mail: bola.blood@yandex.ru

For citation: Dzhumabaeva BT, Biryukova LS. New Aspects of Pathophysiology and Pathomorphology of Renal Lesions in Malignant Tumors. Clinical oncohematology. 2015;8(4):390–396 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-390-396


ABSTRACT

Glomerular injuries associated with malignancy are rare and they are morphologically heterogeneous. Although the pathophysiologic interrelations between a tumor and glomerulopathy are not clear, molecular mechanisms of paraneoplastic glomerulopathies and pathologic features of renal lesions in solid tumors, lymphoproliferative and myeloproliferative disorders have been discovered over recent decades.


Keywords: membranous nephropathy, immunotactoid glomerulopathy, minimal-change glomerulopathy, fibrillary glomerulonephritis, renal failure, anti-PLA2R1 antibody, c-mip protein.

Received: March 19, 2015

Accepted: October 23, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Klein U, Dalla-Favera R. New insights into the pathogenesis of chronic lymphocytic leukemia. Semin Cancer Biol. 2010;20:377–83. doi: 10.1016/j.semcancer.2010.10.012.
  2. Barcos M, Lane W, Gomez GA, et al. An autopsy study of 1206 acute and chronic leukemias (1958 to 1982). Cancer. 1987;60:827–37. doi: 10.1002/1097-0142(19870815)60:4<827::aid-cncr2820600419>3.0.co;2-a.
  3. Norris HJ, Wiener J. The renal lesions in leukemia. Am J Med Sci. 1961;241:512–8. doi: 10.1097/00000441-196104000-00016.
  4. Schwartz JB, Shamsuddin AM. The effects of leukemic infiltrates in various organs in chronic lymphocytic leukemia. Hum Pathol. 1981;12:432–40. doi: 10.1016/s0046-8177(81)80023-8.
  5. Puolijoki H, Mustonen J, Pettersson E, et al. Proteinuria and haematuria are frequently present in patients with lung cancer. Nephrol Dial Transplant. 1989;4:947–50. doi: 10.1016/0169-5002(90)90194-q.
  6. Sawyer N, Wadsworth J, Wijnen M, Gabriel R. Prevalence, concentration, and prognostic importance of proteinuria in patients with malignancies. Br Med J. (Clin Res Ed) 1988;296:1295–8. doi: 10.1136/bmj.296.6632.1295.
  7. Da’as N, Polliack A, Cohen Y, et al. Kidney involvement and renal manifestations in non-Hodgkin’s lymphoma and lymphocytic leukemia: a retrospective study in 700 patients. Eur J Haematol. 2001;67:158–64. doi: 10.1034/j.1600-0609.2001.5790493.x.
  8. Lee JC, Yamauchi H, Hopper J Jr. The association of cancer and the nephrotic syndrome. Ann Intern Med. 1966;64:41–51. doi: 10.7326/0003-4819-64-1-41.
  9. Birkeland SA, Storm HH. Glomerulonephritis and malignancy: A population-based analysis. Kidney Int. 2003;63:716–21. doi: 10.1046/j.1523-1755.2003.00771.x.
  10. Jorgensen L, Heuch I, Jenssen T, Jacobsen BK. Association of albuminuria and cancer incidence. J Am Soc Nephrol. 2008;19:992–8. doi: 10.1681/asn.2007060712.
  11. Eagen JW. Glomerulopathies of neoplasia. Kidney Int. 1977;11:297–303. doi: 10.1038/ki.1977.47.
  12. Lefaucheur C, Stengel B, Nochy D, et al. GN-PROGRESS Study Group. Membranous nephropathy and cancer: Epidemiologic evidence and determinants of high-risk cancer association. Kidney Int. 2006;70:1510–7. doi: 10.1038/sj.ki.5001790.
  13. Bacchetta J, Juillard L, Cochat P, Droz JP. Paraneoplastic glomerular diseases and malignancies. Crit Rev Oncol Hematol. 2009;70:39–58. doi: 10.1016/j.critrevonc.2008.08.003.
  14. Ronco PM. Paraneoplastic glomerulopathies: new insights into an old entity. Kidney Int. 1999;56:355–77. doi: 10.1046/j.1523-1755.1999.00548.x.
  15. Bjorneklett R, Vikse BE, Svarstad E, et al. Long-term risk of cancer in membranous nephropathy patients. Am J Kidney Dis. 2007;50:396–403. doi: 10.1053/j.ajkd.2007.06.003.
  16. Burstein DM, Korbet SM, Schwartz MM. Membranous glomerulonephritis and malignancy. Am J Kidney Dis. 1993;22:5–10. doi: 10.1016/s0272-6386(12)70160-9.
  17. Alpers CE, Cotran RS. Neoplasia and glomerular injury. Kidney Int. 1986;30:465–73. doi: 10.1038/ki.1986.209.
  18. Beck LH Jr. Membranous nephropathy and malignancy. Semin Nephrol. 2010;30:635–44. doi: 10.1016/j.semnephrol.2010.09.011.
  19. Beck LH Jr, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361:11–21. doi: 10.1056/nejmoa0810457.
  20. Ohtani H, Wakui H, Komatsuda A, et al. Distribution of glomerular IgG subclass deposits in malignancy-associated membranous nephropathy. Nephrol Dial Transplant. 2004;19:574–9. doi: 10.1093/ndt/gfg616.
  21. Qin W, Beck LH Jr, Zeng C, et al. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J Am Soc Nephrol. 2011;22:1137–43. doi: 10.1681/asn.2010090967.
  22. Vindrieux D, Augert A, Girard CA, et al. PLA2R1 mediates tumor suppression by activating JAK2. Cancer Res. 2013;73(20):6334–45. doi: 10.1158/0008-5472.can-13-0318.
  23. Kowalewska J, Nicosia RF, Smith KD, et al. Patterns of glomerular injury in kidneys infiltrated by lymphoplasmacytic neoplasms. Hum Pathol. 2011;42:896–903. doi: 10.1016/j.humpath.2010.09.009.
  24. Sun J, Yang Q, Lu Z, et al. Distribution of lymphoid neoplasms in China: analysis of 4,638 cases according to the World Health Organization classification. Am J Clin Pathol. 2012;138:429–34. doi: 10.1309/ajcp7yltqpusdq5c.
  25. Cohen LJ, Rennke HG, Laubach JP, Humphreys BD. The spectrum of kidney involvement in lymphoma: a case report and review of the literature. Am J Kidney Dis. 2010;56:1191–6. doi: 10.1053/j.ajkd.2010.07.009.
  26. Rault R, Holley JL, Banner BF, el-Shahawy M. Glomerulonephritis and non-Hodgkin’s lymphoma: a report of two cases and review of the literature. Am J Kidney Dis. 1992;20:84–9. doi: 10.1016/s0272-6386(12)80323-4.
  27. Stokes MB, Wood B, Alpers CE. Membranoproliferative glomerulonephritis associated with low-grade B cell lymphoma presenting in the kidney. Clin Nephrol. 2002;57:303–9. doi: 10.5414/cnp57303.
  28. Канин В.С., Молоствова В.З., Езерский Д.В. и др. Случай развития острой почечной недостаточности при лимфобластной лимфосаркоме. Проблемы гематологии и переливания крови. 1997;3:39–42.
    [Kanin VS, Molostvova VZ, Ezerskii DV, et al. Case of acute renal failure associated with lymphoblast lymphosarcoma. Problemy gematologii i perelivaniya krovi. 1997;3:39–42. (In Russ)]
  29. Malbrain ML, Lambrecht GT, Daelemans R, et al. Acute renal failure due to bilateral lymphomatous infiltrates. Primary extranodal non-Hodgin’s lymphoma of the kidney: does it really exist? Clin Nephrol. 1994;42:163–9.
  30. O’Riordan E, Reeve R, Hougton JB, et al. Primary bilateral T-cell renal lymphoma presenting with sudden loss of renal function. Nephrol Dial Transplant. 2001;16:1487–9. doi: 10.1093/ndt/16.7.1487.
  31. Truong LD, Soroka S, Sheth AV, et al. Primary renal lymphoma presenting as acute renal failure. Am J Kidney Dis. 1987;16:502–6. doi: 10.1016/s0272-6386(87)80077-x.
  32. Джумабаева Б.Т., Бирюкова Л.С., Гемджян Э.Г. и др. Опыт терапии хронического лейкоза, сопровождающегося почечной недостаточностью. Терапевтический архив. 2014;12:37–41.
    [Dzhumabaeva BT, Biryukova LS, Gemdzhyan EG, et al. Experience of treatment of chronic leukemia accompanied with renal failure. Terapevticheskii arkhiv. 2014;12:37–41. (In Russ)]
  33. Джумабаева Б.Т., Никитин Е.А., Капланская И.Б. и др Хронический лимфолейкоз и рак почки: обзор литературы и собственные клинические наблюдения. Клиническая онкогематология. 2013;6(1):68–73.
    [Dzhumabaeva BT, Nikitin EA, Kaplanskaya IB, et al. Chronic lymphocytic leukemia and renal cancer: literature review and own clinical observations. Klinicheskaya onkogematologiya. 2013;6(1):68–73. (In Russ)]
  34. Shi SF, Zhou FD, Zou WZ, Wang HY. Acute kidney injury and bilateral symmetrical enlargement of the kidneys as first presentation of B-cell lymphoblastic lymphoma. Am J Kidney Dis. 2012;60:1044–8. doi: 10.1053/j.ajkd.2012.05.023.
  35. Yeo SC, Chuah KL, Lee HY, Liew A. An unusual case of glomerulonephritis in a patient with non-Hodgkin mucosal associated lymphoid tissue (MALT) B-cell lymphoma. BMC Nephrol. 2013;14:158. doi: 10.1186/1471-2369-14-158.
  36. Eisterer W, Neyer U, Hilbe W, et al. Effect of cyclosporin A in a patient with refractory nephrotic syndrome associated with B chronic lymphocytic leukemia. Nephron. 1996;72(3):468–71. doi: 10.1159/000188915.
  37. Moulin B, Ronco PM, Mougenot B, et al. Glomerulonephritis in chronic lymphocytic leukemia and related B-cell lymphomas. Kidney Int. 1992;42(1):127–35. doi: 10.1038/ki.1992.270.
  38. Mallouk A, Pham PT, Pham PC. Concurrent FSGS and Hodgkin’s lymphoma: case report and literature review on the link between nephrotic glomerulopathies and hematological malignancies. Clin Exp Nephrol. 2006;10(4):284–9. doi: 10.1007/s10157-006-0437-4.
  39. Hanada K, Shirai S, Ito T, et al. Three cases of nephrotic syndrome associated with hematological malignancies characterized by glomerular endocapillary proliferation and massive inflammatory cell infiltration. Clin Nephrol. 2014;81(4):277–82. doi: 10.5414/cn107744.
  40. Nasr SH, Fidler ME, Cornell LD, et al. Immunotactoid glomerulopathy: clinicopathologic and proteomic study. Nephrol. Dial Transplant. 2012;27(11):4137–46. doi: 10.1093/ndt/gfs348.
  41. Monti G, Galli M, Invernizzi F, et al. Cryoglobulinaemias: a multi-centre study of the early clinical and laboratory manifestations of primary and secondary disease. GISC. Italian Group for the Study of Cryoglobulinaemias. QJM. 1995;88:115–26.
  42. Nasr SH, Markowitz GS, Stokes MB, et al. Proliferative glomerulonephritis with monoclonal IgG deposits: A distinct entity mimicking immune-complex glomerulonephritis. Kidney Int. 2004;65:85–96. doi: 10.1111/j.1523-1755.2004.00365.x.
  43. Plager J, Stutzman L. Acute nephrotic syndrome as a manifestation of active Hodgkin’s disease. Report of four cases and review of the literature. Am J Med. 1971;50:56–66. doi: 10.1016/0002-9343(71)90205-1.
  44. Kramer P, Sizoo W, Twiss EE. Nephrotic syndrome in Hodgkin’s disease. Report of five cases and review of the literature. Nethrol J Med. 1981;24:114–9.
  45. Kofman T, Zhang SY, Copie-Bergman C. et. al. Minimal change nephrotic syndrome associated with non-Hodgkin lymphoid disorders: a retrospective study of 18 cases. Medicine. 2014;93(24):350–8. doi: 10.1097/md.0000000000000206.
  46. Audard V, Larousserie F, Grimbert P, et al. Minimal change nephrotic syndrome and classical Hodgkin’s lymphoma: Report of 21 cases and review of the literature. Kidney Int. 2006;69:2251–60. doi: 10.1038/sj.ki.5000341.
  47. Moorthy AV, Zimmerman SW, Burkholder PM. Nephrotic syndrome in Hodgkin’s disease. Evidence for pathogenesis alternative to immune complex deposition. Am J Med. 1976;61:471–7. doi: 10.1016/0002-9343(76)90349-1.
  48. Shalhoub RJ. Pathogenesis of lipoid nephrosis: A disorder of T-cell function. The Lancet. 1974;2:556–60. doi: 10.1016/s0140-6736(74)91880-7.
  49. Grimbert P, Valanciute A, Audard V, et al. Truncation of C-mip (Tc-mip), a new proximal signaling protein, induces c-maf Th2 transcription factor and cytoskeleton reorganization. J Exp Med. 2003;198:797–807. doi: 10.1084/jem.20030566.
  50. Audard V, Zhang SY, Copie-Bergman C, et al. Occurrence of minimal change nephrotic syndrome in classical Hodgkin lymphoma is closely related to the induction of c-mip in Hodgkin-Reed Sternberg cells and podocytes. Blood. 2010;115:3756–62. doi: 10.1182/blood-2009-11-251132.
  51. Zhang SY, Kamal M, Dahan K, et al. C-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci Signal. 2010;3:39. doi: 10.1126/scisignal.2000678.
  52. Randall RE, Williamson WC Jr, Mullinax F, et al. Manifestations of systemic light chain deposition. Am J Med. 1976;60:293–9. doi: 10.1016/0002-9343(76)90440-x.
  53. Bridoux F, Hugue V, Coldefy O, et al. Fibrillary glomerulonephritis and immunotactoid (microtubular) glomerulopathy are associated with distinct immunologic features. Kidney Int. 2002;62:1764–75. doi: 10.1046/j.1523-1755.2002.00628.x.
  54. Galesic K, Horvatic I, Tisljar M, et al. Fibrillary glomerulonephritis and immunotactoid glomerulopathy: case reports. Lijec Vjesn. 2011;133(9–10):315–9.
  55. Fogo A, Qureshi N, Horn RG. Morphologic and clinical features of fibrillary glomerulonephritis versus immunotactoid glomerulopathy. Am J Kidney Dis. 1993;22(3):367–77. doi: 10.1016/s0272-6386(12)70138-5.
  56. Da’as N, Kleinman Y, Polliack A, et al. Immunotactoid glomerulopathy with massive bone marrow deposits in a patient with IgM kappa monoclonal gammopathy and hypocomplementemia. Am J Kidney Dis. 2001;38:395–9. doi: 10.1053/ajkd.2001.26108.
  57. Garcia-Pacheco I, Khan A, Venkat KK. Rapidly progressive glomerulonephritis in a patient with Waldenstrom’s macroglobulinemia. Clin Nephrol. 2005;64:396–9. doi: 10.5414/cnp64396.
  58. Nakamoto Y, Imai H, Hamanaka S, et al. IgM monoclonal gammopathy accompanied by nodular glomerulosclerosis, urine-concentrating defect, and hyporeninemic hypoaldosteronism. Am J Nephrol. 1985;5:53–8. doi: 10.1159/000166905.
  59. Audard V, Georges B, Vanhille P, et al. Renal lesions associated with IgM-secreting monoclonal proliferations: Revisiting the disease spectrum. Clin J Am Soc Nephrol. 2008;3:1339–49. doi: 10.2215/cjn.01600408.
  60. Morel-Maroger L, Basch A, Danon F, et al. Pathology of the kidney in Waldenstrom’s macroglobulinemia. Study of sixteen cases. N Engl J Med. 1970;283:123–9. doi: 10.1056/nejm197007162830304.
  61. Au WY, Chan KW, Lui SL, et al. Focal segmental glomerulosclerosis and mesangial sclerosis associated with myeloproliferative disorders. Am J Kidney Dis. 1999;34:889–93. doi: 10.1016/s0272-6386(99)70047-8.
  62. Said SM, Leung N, Sethi S, et al. Myeloproliferative neoplasms cause glomerulopathy. Kidney Int. 2011;80:753–9. doi: 10.1038/ki.2011.147.
  63. Мухин Н.А., Хасабов Н.Н. Паранеопластические нефропатии. В кн.: Нефрология. Руководство для врачей. Под ред. И.Е. Тареевой. М.: Медицина, 2000.
    [Mukhin NA, Khasabov NN. Paraneoplastic nephropathies. In: Tareeva IE, ed. Nefrologiya. Rukovodstvo dlya vrachei. (Nephrology. Manual for physicians.) Moscow: Meditsina Publ.; 2000. (In Russ)]
  64. Козловская Л.В., Туганбекова С.К., Сейсенбеков Т.З. и др. Паранеопластическое поражение почек при солидных опухолях. Нефрология и диализ. 2002;2:76–82.
    [Kozlovskaya LV, Tuganbekova SK, Seisenbekov TZ, et al. Paraneoplastic renal lesions associated with solid tumors. Nefrologiya i dializ. 2002;2:76–82. (In Russ)]

 

Pomalidomide for Treatment of Relapsed and Refractory Multiple Myeloma

S.V. Semochkin

N.I. Pirogov Russian National Research Medical University under the Ministry of Health of the Russian Federation, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Sergei Vyacheslavovich Semochkin, DSci, Professor, 1 Ostrovityanova str., Moscow, Russian Federation, 117997; Tel.: +7(495)653-14-78; e-mail: s.semochkin@gmail.com

For citation: Semochkin SV. Pomalidomide for Treatment of Relapsed and Refractory Multiple Myeloma. Clinical oncohematology. 2015;8(4):379–389 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-379-389


ABSTRACT

Pomalidomide is a third-generation immunomodulatory drug recommended for patients with multiple myeloma refractory to lenalidomide and bortezomib. The safety profile is optimized for application in patients with intensive and continuous anti-tumor treatment. Pomalidomide was approved by the Food and Drug Administration (FDA) and by the European Medicines Agency (EMA) in 2013 for use in patients with relapsed and refractory MM who have received at least two prior therapies, including lenalidomide and bortezomib, and have demonstrated disease progression on their last therapy or within 60 days after completion of the last therapy. Registration of pomalidomide for similar indications in Russia is pending in 2015. Pomalidomide has a similar mechanism of action with the other immunomodulators. The drug produces a direct cytostatic effect and causes an indirect effect by affecting the bone marrow microenvironment and T/NK-cells immunity. The recommended starting dose of pomalidomide is 4 mg daily (1–21/28) combined with low-dose dexamethasone 40 mg weekly for young patients or 20 mg for patients older than 75 years. The treatment should be performed till disease progression or unacceptable toxicity. This review summarizes current recommendations for dose adjustment depending on tolerance and prevention of thrombotic complications. The article presents author’s own clinical experience of successful application of pomalidomide for the management of a patient at high cytogenetic risk with «double» refractoriness to lenalidomide and bortezomib and preceding intensive anti-tumor treatment. The life expectancy was about 16 months after initiation of pomalidomide; this fact is consistent with literature data.


Keywords: pomalidomide, immunomodulatory drugs, multiple myeloma.

Received: April 8, 2015

Accepted: October 20, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Менделеева Л.П., Вотякова О.М., Покровская О.М. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2014;1(приложение 3):2–24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OM, et al. National clinical guidelines for diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2014;1(Suppl. 3):2–24. (In Russ)]
  2. Бессмельцев С.С. Множественная миелома (лечение рецидивов и рефрактерных форм): обзор литературы и собственные данные. Часть III. Клиническая онкогематология. 2014;7(2):137–74.
    [Bessmel’tsev SS. Multiple myeloma (treatment of relapsed and refractory forms): literature review and own data. Part III. Klinicheskaya onkogematologiya. 2014;7(2):137–74. (In Russ)]
  3. Rajkumar SV. Multiple myeloma: 2014 Update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89(10):999–1009. doi: 10.1002/ajh.23810.
  4. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26(1):149–57. doi: 10.1038/leu.2012.15.
  5. Kumar A, Porwal M, Verma A, Mishra AK. Impact of pomalidomide therapy in multiple myeloma: a recent survey. J Chemother. 2014;26(6):321–7. doi: 10.1179/1973947814y.0000000201.
  6. Семочкин С.В. Биологические основы применения иммуномодулирующих препаратов в лечении множественной миеломы. Онкогематология. 2010;1:21–31.
    [Semochkin SV. Biological fundamentals of application of immunomodulatory agents in treatment of multiple myeloma. Onkogematologiya 2010;1:21–31. (In Russ)]
  7. Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012;26(11):2326–35. doi: 10.1038/leu.2012.119.
  8. Zhu YX, Braggio E, Shi CX, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118(18):4771–9. doi: 10.1182/blood-2011-05-356063.
  9. Heintel D, Rocci A, Ludwig H, et al. High expression of cereblon (CRBN) is associated with improved clinical response in patients with multiple myeloma treated with lenalidomide and dexamethasone. Br J Haematol. 2013;161(5):695–700. doi: 10.1111/bjh.12338.
  10. Schuster SR, Kortuem KM, Zhu YX, et al. The clinical significance of cereblon expression in multiple myeloma. Leuk Res. 2014;38(1):23–8. doi: 10.1016/j.leukres.2013.08.015.
  11. Chamberlain PP, Lopez-Girona A, Miller K, et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol. 2014;21(9):803–9. doi: 10.1038/nsmb.2874.
  12. Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305–9. doi: 10.1126/science.1244917.
  13. Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4 (CRBN). Br J Haematol. 2014;164(6):811–21. doi: 10.1111/bjh.12708.
  14. Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5. doi: 10.1126/science.124485.
  15. Shi ChX, Zhu YuX, Jedlowski P, et al. Ikaros Degradation Efficiency Correlates with Response of Multiple Myeloma (MM) Cells to IMiD Therapy and Is Blocked By Proteasome Inhibitors. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 2247.
  16. Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood. 2002;99(11):4079–86. doi: 10.1182/blood.v99.11.4079.
  17. Zhu YX, Kortuem KM, Stewart AK. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma. 2013;54(4):683–7. doi: 10.3109/10428194.2012.728597.
  18. Li S, Pal R, Monaghan SA, et al. IMiD immunomodulatory compounds block C/EBPb translation through eIF4E down-regulation resulting in inhibition of MM. Blood. 2011;117(19):5157–65. doi: 10.1182/blood-2010-10-314278.
  19. Huang X, Di Liberto M, Jayabalan D, et al. Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4. Blood. 2012;120(5):1095–106. doi: 10.1182/blood-2012-03-415984.
  20. Corral LG, Haslett PA, Muller GW, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. 1999;163(1):380–6.
  21. Anderson G, Gries M, Kurihara N, et al. Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood. 2006;107(8):3098–105. doi: 10.1182/blood-2005-08-3450.
  22. Haslett PA, Corral LG, Albert M, Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med. 1998;187(11):1885–92. doi: 10.1084/jem.187.11.1885.
  23. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98(1):210–6. doi: 10.1182/blood.V98.1.210.
  24. Galustian C, Meyer B, Labarthe MC, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol. Immunother. 2009;58(7):1033–45. doi: 10.1007/s00262-008-0620-4.
  25. Schey SA, Fields P, Bartlett JB, et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol. 2004;22(16):3269–76. doi: 10.1200/jco.2004.10.052.
  26. Streetly MJ, Gyertson K, Daniel Y, et al. Alternate day pomalidomide retains anti-myeloma effect with reduced adverse events and evidence of in vivo immunomodulation. Br J Haematol. 2008;141(1):41–51. doi: 10.1111/j.1365-2141.2008.07013.x
  27. Richardson PG, Siegel D, Baz R, et al. Phase 1 study of pomalidomide MTD, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood. 2013;121(11):1961–7. doi: 10.1182/blood-2012-08-450742.
  28. Leleu X, Attal M, Arnulf B, et al. Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: intergroupe Francophone du Myelome 2009-02. Blood. 2013;121(11):1968–75. doi: 10.1182/blood-2012-09-452375.
  29. Pegourie B, Petillon MO, Karlin L, et al. Long-Term Exposure to Pomalidomide-Dexamethasone in Pts with Refractory Myeloma. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 3466.
  30. Lacy MQ, Allred JB, Gertz MA, et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood. 2011;118(11):2970–5. doi: 10.1182/blood-2011-04-348896.
  31. Richardson PG, Siegel DS, Vij R, et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized phase II study. Blood. 2014;123(12):1826–32. doi: 10.1182/blood-2014-04-566661.
  32. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, Phase III trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/s1470-2045(13)70380-2.
  33. Dimopoulos M, Palumbo A, Weisel K, et al. Safety and Efficacy in the Stratus (MM-010) Trial, a Single-Arm Phase 3b Study Evaluating Pomalidomide + Low-Dose Dexamethasone in Patients with Refractory or Relapsed and Refractory Multiple Myeloma. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 80.
  34. Richardson P, Hofmeister CC, Siegel D, et al. MM-005: A phase I trial of pomalidomide, bortezomib, and low-dose dexamethasone (PVD) in relapsed and/or refractory multiple myeloma (RRMM). ASCO Meet Abstr. 2013;31:8584.
  35. Shah JJ, Edward A, Stadtmauer EA, et al. Phase I/II Dose Expansion Of a Multi-Center Trial Of Carfilzomib and Pomalidomide With Dexamethasone (Car-Pom-d) In Patients With Relapsed/Refractory Multiple Myeloma. Blood. 2013;122:690.
  36. Dimopoulos MA, Leleu X, Palumbo A, et al. Expert panel consensus statement on the optimal use of pomalidomide in relapsed and refractory multiple myeloma. Leukemia. 2014;28(8):1573–9. doi: 10.1038/leu.2014.60.
  37. Palumbo A, Palladino C. Venous and arterial thrombotic risks with thalidomide: evidence and practical guidance. Ther Adv Drug Saf. 2012;3(5):255–66. doi: 10.1177/2042098612452291.
  38. Palumbo A, Cavo M, Bringhen S, et al. Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: a phase III, open-label, randomized trial. J Clin Oncol. 2011;29(8):986–93. doi: 10.1200/jco.2010.31.6844.
  39. Kasserra C, Assaf M, Hoffmann M, et al. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug-drug interaction potential in vitro and in healthy subjects. J Clin Pharmacol. 2015;55(2):168–78. doi: 10.1002/jcph.384.
  40. Khalafallah A, Maiwald M, Cox A, et al. Effect of immunoglobulin therapy on the rate of infections in multiple myeloma patients undergoing autologous stem cell transplantation or treated with immunomodulatory agents. Mediterr J Hematol Infect Dis. 2010;2(1):e2010005. doi: 10.4084/mjhid.2010.005.
  41. Palumbo A, Dimopoulos MA, Weisel K, et al. Outcomes for Older Patients in Stratus (MM-010), a Single-Arm, and Phase 3b Study of Pomalidomide + Low-Dose Dexamethasone in Refractory or Relapsed and Refractory Multiple Myeloma. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 4770.
  42. Weisel K, Dimopoulos MA, Cavo M, et al. Pomalidomide + Low-Dose Dexamethasone in Patients with Refractory or Relapsed and Refractory Multiple Myeloma and Renal Impairment: Analysis of Patients from the Phase 3b Stratus Trial (MM-010). Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 4755.
  43. Rossi CA, Aneja E, Boyer A, et al. Effect of Renal and Hepatic Function on Pomalidomide Dose in Patients with Relapsed/Refractory Multiple Myeloma. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 4754.
  44. Short KD, Rajkumar SV, Larson D, et al. Incidence of extramedullary disease in patients with multiple myeloma in the era of novel therapy, and the activity of pomalidomide on extramedullary myeloma. Leukemia. 2011;25(6):906–8. doi: 10.1038/leu.2011.29.
  45. Leleu X, Karlin L, Macro M, et al. Pomalidomide plus low-dose dexamethasone in relapsed or refractory multiple myeloma (RRMM) with deletion (del)17p and/or translocation t(4;14). Blood (ASH Annual Meeting Abstracts). 2013;122(21): Abstract 689.
  46. Leleu X, Karlin L, Macro M, et al. Pomalidomide plus low-dose dexamethasone in multiple myeloma with deletion 17p and/or translocation (4;14): IFM 2010-02 trial results. Blood. 2015;125(9):1411–7. doi: 10.1182/blood-2014-11-612069.
  47. Hanaizi Z, Flores B, Hemmings R, et al. The European Medicines Agency Review of Pomalidomide in Combination with Low-Dose Dexamethasone for the Treatment of Adult Patients with Multiple Myeloma: Summary of the Scientific Assessment of the Committee for Medicinal Products for Human Use. The Oncologist. 2015;20(3):329–34. doi: 10.1634/theoncologist.2014-0073.