Diagnostic Strategy for Detection of Typical and Atypical BCR-ABL Fusion Gene Transcripts in Chronic Myeloid Leukemia

OV Nikulina1,2, GA Tsaur1,2,3, TO Riger1,2, YuA Yakovleva1,2, AS Demina1,2, ER Semenikhina1, TV Spilnik3, LI Savelev1,2,3, LG Fechina1,2

1 Regional Children’s Hospital No. 1, 32 Serafimy Deryabinoy str., Yekaterinburg, Russian Federation, 620149

2 Research Institute of Medical Cell Technologies, 22a K. Marksa str., Yekaterinburg, Russian Federation, 620026

3 Ural State Medical University, 3 Repina str., Yekaterinburg, Russian Federation, 620219

For correspondence: Grigorii Anatol’evich Tsaur, PhD, 32 Serafimy Deryabinoy str., Yekaterinburg, Russian Federation, 620149; Tel.: +7(343)216-25-17; e-mail: tsaur@mail.ru

For citation: Nikulina O.V., Tsaur G.A., Riger T.O., Yakovleva Yu.A., Demina A.S., Semenikhina E.R., Spil’nik T.V., Savel’ev L.I., Fechina L.G. Diagnostic Strategy for Detection of Typical and Atypical BCR-ABL Fusion Gene Transcripts in Chronic Myeloid Leukemia. Klin. Onkogematol. 22015;8(2):161–8 (In Russ.).


ABSTRACT

Background & Aims. The diagnosis of chronic myeloid leukemia (CML) is confirmed when t(9;22)(q34;q11) translocation is found by the cytogenetic test method and/or chimeric BCR-ABL transcript is detected by the reverse transcription polymerase chain reaction (RT-PCR). It is known that two most common types of chimeric BCR-ABL transcript are determined in CML patients: e13a2 (b2a2) и e14a2 (b3a2). However, rare types of chimeric BCR-ABL transcript have been described and they may be overlooked. Moreover, timely diagnosing and detection of different types of the chimeric transcript are very important, because the clinical course of the disease and efficacy of the therapy with tyrosine kinases inhibitors depend on the structure of chimeric BCR-ABL gene. Since in some cases CML may be diagnosed without the standard cytogenetic test and be confirmed by RT-PCR alone, we consider it important to develop a diagnostic algorithm which might permit to determine almost any type of chimeric BCR-ABL transcript.

Methods. Over the period from January, 2004, till December, 2013, in the laboratory of molecular biology of the department of pediatric oncology and hematology in Regional Children’s Hospital No. 1 (Yekaterinburg), the diagnosis of CML was confirmed in 1082 patients: 531 (49 %) males and 551 (51 %) females. The median age was 50 years (range 5–88 years). All patients underwent standard cytogenetic and molecular genetic tests. Primers which are complementary to nucleotide ABL gene sequence are localized in 2 and 3 ABL exons and are used for detection of all transcript types. Primers which are complementary to nucleotide BCR gene sequence are localized either in 12 and 13 exons for detection of most typical e13a2 and e14a2 (M-bcr) transcripts or in exon 1 for detection of e12a (m-bcr) transcript. While detecting amplicons which size differs from that of e13a2, e14a2, and e1a2, their direct paired-end sequencing is performed using primers (applied during the second round of RT-PCR) and a Big Dye Terminator 3.1 kit.

Results. After having analyzed 1082 patients with confirmed CML, we have developed a diagnostic algorithm for detecting common and rare types of chimeric BCR-ABL transcript in CML using RT-PCR. We detected common chimeric BCR-ABL transcripts, e14a2 and e13a2, in 62.53 % and 35.89 % of cases, respectively, using this algorithm. Rare transcripts, e13a3, e14a3, e19a2, e1a2, e3a2, e6a2, and e8a2, were detected in 1.57 % of cases.

Conclusion. Therefore, the proposed diagnostic algorithm proved to be effective for detection of common and rare types of chimeric BCR-ABL transcripts in CML patients.


Keywords: chronic myeloid leukemia, molecular diagnostics, chimeric BCR-ABL transcript.

Received: December 31, 2014

Accepted: February 4, 2015

Read in PDF (RUS) pdficon


REFERENCES

  1. Nowell P.C., Hungerford D.A. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 1960; 25: 85–109.
  2. Rowley J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973; 243: 290–3.
  3. Телегеев Г.Д., Дубровская А.Н., Дыбков М.В. и др. Роль белка BCR-ABL в лейкогенезе. Экспериментальная онкология. 1999; 21: 182–94. [Telegeev G.D., Dubrovskaya A.N., Dybkov M.V. et al. The role of BCR-ABL protein in leukomogenesis. Eksperimental’naya onkologiya. 1999; 21: 182–94. (In Russ.)]
  4. Туркина А.Г., Челышева Е.Ю. Стратегия терапии хронического ми- елолейкоза: возможности и перспективы. Терапевтический архив. 2013; 85(7): 4–9. [Turkina A.G., Chelysheva E.Yu. Therapeutic strategy for chronic myeloid leukemia: potentials and prospects. Terapevticheskii arkhiv. 2013; 85(7): 4–9. (In Russ.)]
  5. Dongen van J.J.M., Macintyre E.A., Gabert J.A. et al. Standardized RTPCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia. 1999; 13(12): 1901–28.
  6. Verma D., Kantarjian H.M., Jones D. et al. Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood. 2009; 114: 2232–5.
  7. Beel K.A., Lemmens J., Vranckx H. et al. CML with e6a2 BCR-ABL1 transcript: an aggressive entity? Ann. Hematol. 2011; 90: 1241–3.
  8. Demehri S., Paschka P., Schultheis B. et al. e8a2 BCR–ABL: more frequent than other atypical BCR–ABL variants? Leukemia. 2005; 19: 681–4.
  9. Martin S.E., Sausen M., Joseph A., Kingham B.F. Chronic myeloid leukemia with e19a2 atypical transcript: early Imatinib resistance and complete response to dasatinib. Cancer Gen. Cytogen. 2010; 201(2): 133–4.
  10. Langabeer S.E., McCarron S.L., Carrol P. et al. Molecular response to first line nilotinib in a patient with e19a2 BCR-ABL 1 chronic myeloid leukemia. Leuk. Res. 2011; 35: 169–70.
  11. Baccarani M., Deininger M., Rosti G. et al. European Leukemia Net Recommendations for the Management of Chronic Myeloid Leukemia: 2013. Blood. 2013; 122(6): 872–84.
  12. Цаур Г.А., Друй А.Е., Попов А.М. и др. Возможность использования микроструйных биочипов для оценки качества и количества РНК у па- циентов с онкологическими и онкогематологическими заболеваниями. Вестник Уральской медицинской академической науки. 2011; 4(37): 107–11. [Tsaur G.A., Drui А.Е., Popov А.М. et al. Microfluidic biochips for RNA quantity and quality evaluation in patients with oncological and oncohematological disorders. Vestnik Ural’skoi meditsinskoi akademicheskoi nauki. 2011; 4(37): 107–11. (In Russ.)]
  13. Tabassum N., Saboor M., Moinuddin M. et al. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan. Pakist. J. Med. Sci. 2014; 30(4): 850–3.
  14. Yaghmaie M., Seyed H., Ghaffari H. et al. Frequency of BCR-ABL fusion transcripts in Iranian patients with chronic myeloid leukemia. Arch. Iran. Med. 2008; 11(3): 247–51.
  15. Goh H.-G., Hwang J.-Y., Kim S.-H. et al. Comprehensive analysis of BCRABL transcript types in Korean CML patients using a newly developed multiplex RT-PCR. Transl. Res. 2006; 148(5): 249–56.
  16. Ito T., Tanaka H., Tanaka K. et al. Insertion of a genomic fragment of chromosome 19 between BCR intron 19 and ABL intron 1a in a chronic myeloid leukaemia patient with BCR-ABL (e19a2) transcript. Br. J. Hematol. 2004; 126: 750–5.
  17. Bennour A., Ouahchi I., Achour B. et al. Analysis of the clinico-hematological relevance of the breakpoint location within M-BCR in chronic myeloid leukemia. Med. Oncol. 2013; 30: 348.
  18. Pane F., Frigeri F., Sindona M. et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR-ABL with C3/A2 Junction). Blood 1996; 88 (7): 2410-2414.
  19. Vefring H.K., Gruber F.X.E., Wee L. et al. Chronic myelogenous leukemia with the e6a2 BCR-ABL and lacking Imatinib response: presentation of two cases. Acta Haematol. 2009; 122: 11–6.
  20. Schnittger S., Bacher U., Kern W. et al. A new case with rare e6a2 BCR– ABL fusion transcript developing two new resistance mutations during imatinib mesylate, which were replaced by T315I after subsequent dasatinib treatment. Leukemia. 2008; 22: 856–88.
  21. Breccia M., Cannella L., Diverio D. et al. Isolated thrombocytosis as first sign of chronic myeloid leukemia with e6a2 BCR/ABL fusion transcript, JAK2 negativity and complete response to Imatinib. Leuk. Res. 2008; 32: 177–80.
  22. Schultheis B., Wang L., Clark R.E. et al. BCR-ABL with an e6a2 fusion in a CML patient diagnosed in blast crisis. Leukemia. 2003; 17: 2054–5.
  23. Popovici C., Cailleres S., David M. et al. e6a2 BCR-ABL fusion with BCR exon 5-deleted transcript in a Philadelphia positive CML responsive to Imatinib. Leuk. Lymphoma. 2005; 46(9): 1375–7.
  24. Roti G., Starza R., Gorello P. et al. e6a2 BCR/ABL1 fusion with cryptic der(9)t(9;22) deletions in a patient with chronic myeloid leukemia. Haematologica. 2005; 90: 1139–41.
  25. Branford S., Rudzki Z., Hughes T.P. A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron I b in a patient with Philadelphia-positive chronic myeloid leukaemia. Br. J. Hematol. 2000; 109: 635–7.
  26. Cayuela J.-M., Rousselot P., Nicolini F. et al. Identification of a rare e8a2 BCR-ABL fusion gene in three novel chronic myeloid leukemia patients treated with Imatinib. Leukemia. 2005; 19: 2234–6.
  27. Tchirkov A., Couderc J.-L., Perissel B. et al. Major molecular response to imatinib in a patient with chronic myeloid leukemia expressing a novel form of e8a2 BCR-ABL transcript. Leukemia. 2006; 20: 167–8.
  28. Sugimoto T., Ijima K., Hisatomi H. et al. Second case of CML with aberrant BCR-ABL fusion transcript (e8/a2) with insertion of an inverted ABL intron 1b sequence. Am. J. Hematol. 2004; 77: 164–6.
  29. Martinelli G., Terragna C., Amabile M. et al. Alu and translisin recognition site sequences flank translocation sites in a novel type of chimeric BCR-ABL transcript and suggest a possible general mechanism for BCR-ABL breakpoints. Haematologica. 2000; 85: 40–6.
  30. How G., Lim L., Kulkarni S. et al. Two patients with novel BCR/ABL fusion transcripts (e8/a2 and e13/a2) resulting from translocation breakpoints within BCR exons. Br. J. Haematol. 1999; 105: 434–6.
  31. Qin Y.Z., Jiang B., Jiang Q. et al. Imatinib mesylate resistance in a chronic myeloid leukemia patient with a novel e8a2 BCR-ABL transcript variant. Acta Haematol. 2008; 120: 146–9.
  32. Park I.J., Lim Y.A., Lee W.G. et al. A case of chronic myelogenous leukemia with e8a2 fusion transcript. Cancer Gen. Cytogen. 2008; 185: 106–8.
  33. Burmeister T., Reinhardt R. A multiplex PCR for improved detection of typical and atypical BCR-ABL fusion transcripts. Leuk. Res. 2008; 32: 579–85.
  34. Дубина М.В., Куевда Д.А., Хомякова Т.Е. и др. Молекулярный мони- торинг эффективности терапии больных хроническим миелолейкозом в России (по материалам Всероссийской научно-практической конфе- ренции, Иркутск, 3–4 сентября 2010 г.). Современная онкология. 2010; 4: 9–15. [Dubina M.V., Kuevda D.A., Khomyakova T.E. et al. Molecular monitoring of the treatment efficacy in patients with chronic myeloid leukemia in Russia (Materials of Russian Theoretical and Practical Conference, Irkutsk, September 3–4, 2010). Sovremennaya onkologiya. 2010; 4: 9–15. (In Russ.)]
  35. Hughes T., Deininger M., Hochhaus A. et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors — review and recommendations for ‘harmonizing’ current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006; 108: 28–37.
  36. Schliben S., Borkhardt A., Reinisch J. et al. Incidence and clinical outcome of children with BCR-ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-FM-90 and CoALL-05-92. Leukemia. 1996; 10: 957–63.

Complex Karyotype in Pediatric Acute Myeloid Leukemia

EV Fleishman1, OI Sokova1, AV Popa1, II Kalinina2, LN Konstantinova1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Dmitrii Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology under the Ministry of Health of the Russian Federation, 1 Samory Mashela str., Moscow, Russian Federation, 117997

For correspondence: Elena Vol’fovna Fleischman, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)323-57-22; e-mail: flesok@yandex.ru

For citation: Fleishman EV, Sokova OI, Popa AV, et al. Complex Karyotype in Pediatric Acute Myeloid Leukemia. Clinical oncohematology. 2015;8(2):151–60 (In Russ).


ABSTRACT

Objective. To evaluate the clinical relevance of the complex karyotype in pediatric practice.

Methods. In this study, we investigated the karyotype of 521 patients with de novo AML (299 children and 222 adults). Among them 34 pediatric patients and 25 adults had various complex karyotypes.

Results. Certain differences of complex karyotypes between pediatric and adult AML were revealed. Some peculiarities of marker sets were also found: in children, such high-risk markers as monosomy 5 and del(5q) as well as monosomy 7 and del(7q) were less frequent than in adults. Monosomal complex karyotypes were less common in children. Specific distribution of blast cell morphological types was observed in pediatric AML with complex karyotypes. Unlike AML with noncomplex karyotype, where the M2 type was found in almost a half (47.9 %) of patients, in patients with 3 and more chromosome aberrations its incidence was 11.8 % only (= 0,000). However, incidence of M5 and rare M0 and M7 types in patients with complex karyotype was higher than in the others. RFS in patients with a complex karyotype was similar to that of remaining patients in the high-risk group: 38.4 ± 9.9 % and 30.6 ± 8.8 %, respectively. The OS rate of patients with a complex karyotype was practically identical to that of intermediate-risk group patients: 48.0 ± 10.0 % and 48.0 ± 10.0 %, respectively. There was a comparatively high 10-year survival rate (RFS and OS were higher than 30 %) in the pediatric high-risk group. Ten of 25 (40 %) patients with complex karyotype survived five years and 7 of them persisted in complete remission for more than 10 years. Five-year survival in adults from high-risk group is up to 15 %.

Conclusion. Analysis of data on survival of pediatric AML does not answer a question in which prognostic group (high or intermediate-risk) cases of AML with complex karyotypes without high-risk chromosome markers must be included.

Keywords: pediatric acute myeloid leukemia, chromosome aberrations, complex karyotype.


Received: November 26, 2014

Accepted: February 2, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML10 trial. Blood. 1998;92(7):2322–33.
  2. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36. doi: 10.1182/blood-2002-03-0772.
  3. Mitelman F. Catalog of chromosome aberrations in cancer. 5th edition. Willey-Liss; 1995.
  4. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  5. Grimwade D. The changing paradigm of prognostic factors in acute myeloid leukemia. Best Pract Res Clin Haematol. 2012;25(4):419–25. doi: 10.1016/j.beha.2012.10.004.
  6. Mrozek K. Acute myeloid leukemia with a complex karyotype. Semin Oncol. 2013;35(4):365–77. doi: 10.1053/j.seminoncol.2008.04.007.
  7. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents; recommendations from an international expert panel. Blood. 2012;120(16):3187–205. doi: 10.1182/blood-2012-03-362608.
  8. von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromosomal aberrations in large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol. 2010;28(16):2682–8. doi: 10.1200/jco.2009.25.6321.
  9. Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML10 and 12. J Clin Oncol. 2010;28(16):2674–81. doi: 10.1200/jco.2009.24.8997.
  10. Флейшман Е.В., Сокова О.И., Кириченко О.П. и др. Сложные аномалии кариотипа при остром миелоидном лейкозе детей. Вестник РАМН. 2008;5:3–7.
    [Fleishman EV, Sokova OI, Kirichenko OP, et al. Complex karyotype abnormalities in pediatric acute myeloid leukemia. Vestnik RAMN. 2008;5:3–7. (In Russ)]
  11. Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United kingdom Medical Research Council trials. Blood. 2010;116(3):354–65. doi: 10.1182/blood-2009-11-254441.
  12. Баранова О.Ю., Волкова М.А., Френкель М.А. и др. Анализ результатов различных программ терапии острых нелимфобластных лейкозов с М0-М2, М4-М7 ФАБ-вариантами (по данным Российского онкологического научного центра им. Н.Н. Блохина, РАМН). Гематология и трансфузиология. 2003;48(2):3–10.
    [Baranova OYu, Volkova MA, Frenkel’ MA, et al. Analysis of outcomes of different treatment regimens for acute non-lymphoblastic leukaemia with M0-M2, M4-M7 FAB-variants (according to data of the N.N. Blokhin Russian Cancer Research Center). Gematologiya i transfuziologiya. 2003;48(2):3–10. (In Russ)]
  13. Shaffer LG, et al, eds. ISCN-2013: An International System for Human Cytogenetic Nomenclature. Basel: Karger; 2013.
  14. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–81. doi: 10.2307/2281868.
  15. Stark B, Jeison M, Glazer G, et al. Classical and molecular cytogenetic abnormalities and outcome of childhood acute myeloid leukemia: a report from a referral center in Israel. Br J Haematol. 2004;126(3):320–37. doi: 10.1111/j.1365-2141.2004.05038.x.
  16. Gibson BES, Webb DKH, Howman AJ, et al. Results of randomized trial in children with acute myeloid leukemia: Medical research Council AML 12 trial. Br J Haematol. 2011;155(3):366–77. doi: 10.1111/j.1365-2141.2011.08851.x.
  17. Kelly MG, Horan JT, Alonzo TA, et al. Comparable survival for pediatric acute myeloid leukemia with poor-risk cytogenetics following chemotherapy, matched related donor, or unrelated donor transplantation. Pediatr Blood Cancer. 2014;61(2):269–375. doi: 10.1002/pbc.24739.
  18. Slovak ML, Kopecku KJ, Kassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology group study. Blood. 2000;96(13):4075–83.
  19. Schoch C, Haferlach T, Haase D, et al. Patients with de novo acute myeloid leukemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol. 2001;112(1):118–26. doi: 10.1046/j.1365-2141.2001.02511.x.
  20. Schoch C, Kern W, Schnittger S, et al. The influence of age on prognosis of de novo acute myeloid leukemia differs according to cytogenetic subgroups. Haematologica. 2004;89(9):1082–90.
  21. Breems DA, van Putten DL, de Greef GE, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26(29):4791–7. doi: 10.1200/jco.2008.16.0259.

Mixed-Phenotype Acute Leukemia: Clinical and Laboratory Features, and Prognosis

AS Antipova1, OYu Baranova1, MA Frenkel’1, NN Tupitsyn1, NA Kupryshina1, TN Obukhova2, AD Shirin1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Ol’ga Yur’evna Baranova, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-28-64; e-mail: baranova-crc@mail.ru

For citation: Antipova AS, Baranova OYu, Frenkel’ MA, et al. Mixed-Phenotype Acute Leukemia: Clinical and Laboratory Features, and Prognosis. Clinical oncohematology. 2015;8(2):136–50 (In Russ).


ABSTRACT

Objective. To determine clinical and laboratory features and prognosis of mixed-phenotype acute leukemia (MPAL).

Methods. Of 208 AL patients treated in the N.N. Blokhin Russian Cancer Research Center over past 14 years, MPAL was diagnosed in 5 cases (2.4 %). In total 13 patients were enrolled in this study; these patients were hospitalized in the N.N. Blokhin Russian Cancer Research Center (n = 5) and in four other hematological hospitals of Moscow (n = 8). The disease was diagnosed in accordance with the 2008 WHO classification. The median age was 48 years (ranged from 20 to 75 years).

Results. В/М-phenotype was diagnosed in most patients (n = 11) and Т/М only in 2 patients. Translocation t(9;22)(q34;q11) was the most common chromosome aberration diagnosed in 5 (55.5 %) patients. BCR-ABL chimeric gene was in 8 of 9 patients. Treatment strategy was determined by molecular biological and cytogenetic MPAL profiles. Patients with t(9;22)(q34;q11) and/or BCR-ABL chimeric gene treated with imatinib combined with ALL-regimes (n = 8). Patients with Ph-negative MPAL (n = 1) or unknown molecular biological and cytogenetic MPAL profiles (n = 4) received AML-directed therapy or combined regimes for the treatment of ALL and AML. Complete remission (CR) was obtained in most patients (83.3 %) with low rate of early mortality (8.3 %). 3-year OS was 18.2 % (median 14 months), 3-year RFS was 12.8 % (median 16 months). CRs were induced in all Ph+ MPAL patients.

Conclusion. There are no specific clinical and laboratory predictors of MPAL. Tyrosine kinase inhibitors (TKI) play the key role in the treatment of Ph+ MPAL. TKI combined with low intensity ALL regimes seem more promising. The problem of treatment of Ph-negative MPAL patients remains unsolved.


Keywords: mixed-phenotype acute leukemia, acute leukemia of ambiguous lineage, bilineage leukemia, biphenotypic leukemia.

Received: January 10, 2015

Accepted: January 29, 2015

Read in  PDF (RUS)pdficon


REFERENCES

  1. Gale RP, Ben Bassat IB. Hybrid acute leukaemia. Br J Haematol. 1987;65(3):261–4. doi: 10.1111/j.1365-2141.1987.tb06851.x.
  2. Xu XQ, Wang JM, Lu SQ, et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica. 2009;94(7):919–27. doi: 10.3324/haematol.2008.003202.
  3. Mirro J, Zipf TF, Pui CH, et al. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood. 1985;66(5):1115–23.
  4. Серебрякова И.Н., Купрышина Н.А., Матвеева И.И. Острые лейкозы неоднозначной линейности у детей. Детская онкология. 2008;1:65–71.
    [Serebryakova IN, Kupryshina NA, Matveeva II. Acute leukemias of ambigious lineage in children. Detskaya onkologiya. 2008;1:65–71. (In Russ)]
  5. Rubnitz JE, Onciu M, Pounds S, et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood. 2009;113(21):5083–9. doi: 10.1182/blood-2008-10-187351.
  6. Тупицын Н.Н. Острые смешанно-линейные лейкозы человека. Гематология и трансфузиология. 1990;9:18–20.
    [Tupitsyn NN. Acute leaukemias of ambigious lineage. Gematologiya i transfuziologiya. 1990;9:18–20. (In Russ)]
  7. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.
  8. Catovsky D, Matutes E, Buccheri V, et al. A classification of acute leukaemia for the 1990s. Ann Hematol. 1991;62(1):16–21. doi: 10.1007/bf01714978.
  9. Bene MC, Bernier M, Casasnovas RO, et al. The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). Blood. 1998;92(2):596–9.
  10. Brunning RD, Matutes E, Borowitz M, et al. Acute leukemias of ambiguous lineage. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001. pp. 106–7.
  11. Borowitz MJ, Bene MC, Harris NL, et al. Acute leukemias of ambiguous lineage. In: Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 150–5.
  12. Pane F, Frigeri F, Camera A, et al. Complete phenotypic and genotypic lineage switch in a Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 1996;10(4):741–5.
  13. Ye L, Lin D, Mi YC, et al. Comparison of EGIL 1998 and WHO 2008 criteria for the diagnosis of mixed phenotype acute leukemia. Chin J Hematol. (Chin.) 2012;33(4):286–90.
  14. Manola KN. Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview. Br J Haematol. 2013;163(1):24–39. doi: 10.1111/bjh.12484.
  15. Weir EG, Ali Ansari-Lari M, Batista DA, et al. Acute bilineal leukemia: a rare disease with poor outcome. Leukemia. 2007;21(11):2264–70. doi: 10.1038/sj.leu.2404848.
  16. Matutes E, Pickl WF, Van’T VM, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood. 2011;117(11):3163–71. doi: 10.1182/blood-2010-10-314682.
  17. Legrand O, Perrot JY, Simonin G, et al. Adult biphenotypic acute leukaemia: an entity with poor prognosis which is related to unfavourable cytogenetics and p-glycoprotein over-expression. Br J Haematol. 1998;100(1):147–55. doi: 10.1046/j.1365-2141.1998.00523.x.
  18. Atfy M, Al Azizi NM, Elnaggar AM. Incidence of Philadelphia-chromosome in acute myelogenous leukemia and biphenotypic acute leukemia patients: And its role in their outcome. Leuk Res. 2011;35(10):1339–44. doi: 10.1016/j.leukres.2011.04.011.
  19. Park JA, Ghim TT, Bae K, et al. Stem cell transplant in the treatment of childhood biphenotypic acute leukemia. Pediatr Blood Cancer. 2009;53(3):444–52. doi: 10.1002/pbc.22105.
  20. Yan L, Ping N, Zhu M, et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica. 2012;97(11):1708–12. doi: 10.3324/haematol.2012.064485.
  21. Wang SJ, Wang X, Ge CW, et al. Analysis of twelve patients with hybrid acute leukemia. J Leuk Lymphoma. (Chin.) 2005;14:201–4.
  22. Killick S, Matutes E, Powles RL, et al. Outcome of biphenotypic acute leukemia. Hematologica. 1999;84(8):699–706.
  23. Kalashetty M, Dalal BI, Roland KJ, et al. Improved Survival In Adults With Mixed-Phenotype Acute Leukemia Following Stem Cell Transplantation (SCT): A Single Centre Experience. Blood. 2013;122(21):5540.
  24. Aribi A, Bueso-Ramos C, Estey E, et al. Biphenotypic acute leukaemia: a case series. Br J Haematol. 2007;138(2):213–6. doi: 10.1111/j.1365-2141.2007.06634.x.
  25. Deffis-Court M, Alvarado-Ibarra M, Ruiz-Arguelles GJ, et al. Diagnosing and treating mixed phenotype acute leukemia: a multicenter 10-year experience in Mexico. Ann Hematol. 2014;93(4):595–601. doi: 10.1007/s00277-013-1919-6.
  26. Yan LZ, Chen SN, Ping NN, et al. Clinical and laboratorial analysis for 15 adult cases of mixed phenotypic acute leukemia with Ph chromosome and/or positive BCR-ABL. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2013;21(5):1116–20. doi: 10.7534/j.issn.1009-2137.2013.05.006.
  27. Nagasawa F, Nakamura Y, Tokita K, et al. Detection of BCR-ABL1 chimeric gene-positive neutrophils in a patient with mixed phenotype acute leukemia. Rinsho Ketsueki. 2013;54(11):2074–8.
  28. Shimizu H, Yokohama A, Hatsumi N, et al. Philadelphia chromosome-positive mixed phenotype acute leukemia in the imatinib era. Eur J Haematol. 2014;93(4):297–301. doi: 10.1111/ejh.12343.
  29. Matutes E, Catovsky D. The value of scoring systems for the diagnosis of biphenotypic leukemia and mature B-cell disorders. Leuk Lymphoma. 1994;13(Suppl 1):11–4. doi: 10.3109/10428199409052666.
  30. Ying Wang, Min Gu, Yingchang Mi, et al. Clinical characteristics and outcomes of mixed phenotype acute leukemia with Philadelphia chromosome positive and/or bcr-abl positive in adult. Int J Hematol. 2011;94(6):552–5. doi: 10.1007/s12185-011-0953-1.

First Line Treatment Choice for Chronic Myelogenous Leukemia: Modeling of Clinical and Economic Factors

VA Shuvaev, KM Abdulkadyrov, IS Martynkevich, MS Fominykh

Russian Scientific Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Vasilii Anatol’evich Shuvaev, PhD, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel.: +7(921)636-54-72; e-mail: shuvaev77@mail.ru

For citation: Shuvaev VA, Abdulkadyrov KM, Martynkevich IS, Fominykh MS. First Line Treatment Choice for Chronic Myelogenous Leukemia: Modeling of Clinical and Economic Factors.. Clinical oncohematology. 2015;8(1):78–83 (In Russ).


ABSTRACT

Background. Second generation tyrosine kinase inhibitors (nilotinib and dasatinib) have advantages over imatinib in frequency and rate of cytogenetic and molecular responses obtaining in chronic myelogenous leukemia (CML) treatment. At the same time, they produced more severe adverse effects and are more expensive than imatinib. At present, CML patients with stable deep molecular response are considered as candidates for enrollment into clinical trials studying the management of treatment-free remission. Constant growth of expenses for CML diagnosing and treatment require a pharmacoeconomic analysis in order to optimize expenses and provide cost-effectiveness data for introduction of novel highly effective drugs.

Objective. Pharmacoeconomic modeling of the choice of CML treatment using first and second generation tyrosine kinase inhibitors in first-line therapy with an analysis of sensitivity of clinico-economic factors.

Methods. Pharmacoeconomic modeling of CML diagnosing and treatment. Cost-utility analysis of first and second generation tyrosine kinase inhibitors in first-line treatment. Sensitivity analysis with identification of most important clinical and economic factors affecting treatment results. Simulation for feasibility analysis of the nationwide use of first and second generation tyrosine kinase inhibitors in first-line therapy.

Results. Sensitivity analyses of pharmacoeconomic models showed its robustness. The threshold limits for drug costs and frequency of achievement of a complete molecular response affecting economic feasibility of the choice of first and second generation tyrosine kinase inhibitors were determined.

Conclusions. These pharmacoeconomic models may be applied for improvement of diagnostic and therapeutic standards.


Keywords: chronic myeloleukemia, tyrosine kinase inhibitors, imatinib, nilotinib, dasatinib, pharmacoeconomics, cost-effectiveness.

Received: September 11, 2014

Accepted: November 7, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Голенков А.К., Высоцкая Л.Л., Трифонова Е.В. Эффективность программы лечения хронического миелолейкоза гливеком в широкой клинической практике. Альманах клинической медицины МОНИКИ. 2008;18:9–13.
    [Golenkov AK, Vysotskaya LL, Trifonova EV. Effectiveness of treatment regimen for chronic myeloleukemia using Glivec in wide clinical practice. Al’manakh klinicheskoi meditsiny MONIKI. 2008;18:9–13. (In Russ)]
  2. Стахина О.В., Туркина А.Г., Гусарова Г.А. и др. Отдаленные результаты выживаемости больных в поздней хронической фазе Ph+ хронического миелолейкоза при лечении иматиниб мезилатом (Гливек®). Вестник гематологии. 2009;5(2):42.
    [Stakhina OV, Turkina AG, Gusarova GA, et al. Delayed survival outcomes of patients with late chronic phase of Rh+ chronic myeloleukemia treated with imatinib mesylate (Glivec®). Vestnik gematologii. 2009;5(2):42. (In Russ)]
  3. Шуваев В.А., Абдулкадырова А.С., Мартынкевич И.С. и др. Опыт лечения хронического миелолейкоза в Санкт-Петербурге. Вестник гематологии. 2011;7(1):43.
    [Shuvaev VA, Abdulkadyrova AS, Martynkevich IS, et al. Experience of treatment of chronic myeloleukosis in Saint Petersburg. Vestnik gematologii. 2011;7(1):43. (In Russ)]
  4. Deininger M, O’Brien SG, Guilhot F, et al. International Randomized Study of Interferon Vs STI571 (IRIS) 8-Year Follow up: Sustained Survival and Low Risk for Progression or Events in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP) Treated with Imatinib. Blood (ASH Annual Meeting Abstracts). 2009;114(22):1126.
  5. Cortes JE, Hochhaus A, Kim D-W, et al. Four-Year (Yr) Follow-Up Of Patients (Pts) With Newly Diagnosed Chronic Myeloid Leukemia In Chronic Phase (CML-CP) Receiving Dasatinib Or Imatinib: Efficacy Based On Early Response. Blood (ASH Annual Meeting Abstracts). 2013;122:653.
  6. Saglio G, Hochhaus A, Hughes TP, et al. ENESTnd Update: Nilotinib (NIL) Vs Imatinib (IM) In Patients (pts) With Newly Diagnosed Chronic Myeloid Leukemia In Chronic Phase (CML-CP) and The Impact Of Early Molecular Response (EMR) and Sokal Risk At Diagnosis On Long-Term Outcomes. Blood (ASH Annual Meeting Abstracts). 2013;122:92.
  7. National Institute for Health and Care Excellence. Dasatinib, nilotinib and standard-dose imatinib for the first-line treatment of chronic myeloid leukaemia (part review of technology appraisal guidance 70). April 2012.
  8. Emir H, Albrecht-Schgoer K, Huber K, et al. Nilotinib Exerts Direct Pro-Atherogenic and Anti-Angiogenic Effects On Vascular Endothelial Cells: A Potential Explanation For Drug-Induced Vasculopathy In CML. Blood. 2013;122(21):257.
  9. Krauth M-T, Herndlhofer S, Schmook M-T, et al. Extensive pleural and pericardial effusion in chronic myeloid leukemia during treatment with dasatinib at 100 mg or 50 mg daily. Haematologica. 2011;96(1):163–6. doi: 10.3324/haematol.2010.030494.
  10. Montani D, Bergot E, Gunther S, et al. Pulmonary Arterial Hypertension in Patients Treated by Dasatinib. Circulation. 2012;125(17):2128–37. doi: 10.1161/CIRCULATIONAHA.111.079921.
  11. Quintas-Cardama A, Kantarjian H, O’Brien S, et al. Pleural Effusion in Patients With Chronic Myelogenous Leukemia Treated With Dasatinib After Imatinib Failure. J Clin Oncol. 2007;25(25):3908–14. doi: 10.1200/jco.2007.12.0329.
  12. Saglio G, Larson R, Hughes TP, et al. Efficacy and safety of nilotinib in chronic phase (CP) chronic myeloid leukemia (CML) patients (Pts) with type 2 diabetes in the ENESTnd trial. Blood (ASH Annual Meeting Abstracts). 2010;116:3430.
  13. Государственный реестр цен на ЖНВЛП (ЖНВЛС) по состоянию на 23 июня 2014 г. http://farmcom.info/site/reestr.
    [State register of prices for vital and essential medicines as of June 23, 2014. http://farmcom.info/site/reestr.]
  14. Mahon F-X, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. doi: 10.1016/S1470-2045(10)70233-3.
  15. Rea D, Rousselot P, Nicolini FE, et al. Discontinuation of Dasatinib or Nilotinib in Chronic Myeloid Leukemia (CML) Patients (pts) with Stable Undetectable Bcr-Abl Transcripts: Results From the French CML Group (FILMC). Blood (ASH Annual Meeting Abstracts). 2011;118(21):604.
  16. Rousselot P, Charbonnier A, Cony-Makhoul P, et al. Loss of Major Molecular Response As a Trigger for Restarting Tyrosine Kinase Inhibitor Therapy in Patients With Chronic-Phase Chronic Myelogenous Leukemia Who Have Stopped Imatinib After Durable Undetectable Disease. J Clin Oncol. 2014;32(5):424–30. doi: 10.1200/jco.2012.48.5797.
  17. Takahashi N, Kyo T, Maeda Y, et al. Discontinuation of imatinib in Japanese patients with chronic myeloid leukemia. Haematologica. 2012;97(6):903–6. doi: 10.3324/haematol.2011.056853.
  18. Shuvaev VA, Abdulkadyrova AS, Martynkevich IS, et al. Bonus free life’s in CML – pharmacoeconomic modeling first and second generation TKIs in first-line CML treatment with therapy cessation. ELN Inform Letter. October 2013:14.
  19. Воробьев А.П. Клинико-экономический анализ. М.: Ньюдиамед, 2008. 777 с.
    [Vorob’ev AP. Kliniko-ekonomicheskii analiz. (Clinical and economic analysis). Moscow: Newdiamed Publ.; 2008. 777 p. (In Russ)]
  20. Report for Selected Countries and Subjects. World Economic Outlook Database, April 2013. International Monetary Fund; 2013.

Complex Chromosomal Aberrations in Patients with Post-Transplantation Relapses of Acute Leukemias: Clinical and Theoretical Aspects

TL Gindina, NN Mamaev, SN Bondarenko, NV Semenova, EN Nikolaeva, ME Vlasova, NV Stancheva, OA Slesarchuk, VN Vavilov, EV Morozova, AL Alyanskii, BV Afanasev

R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022

For correspondence: Tat’yana Leonidovna Gindina, PhD, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)233-12-43; e-mail: tatgindina@gmail.com

For citation: Gindina TL, Mamaev NN, Bondarenko SN, et al. Complex Chromosomal Aberrations in Patients with Post-Transplantation Relapses of Acute Leukemias: Clinical and Theoretical Aspects. Clinical oncohematology. 2015;8(1):69–77 (In Russ).


ABSTRACT

Objective. To analyze the incidence of a complex karyotype in patients with post-transplantation relapses of acute myeloid leukemias and to evaluate preliminary treatment results before and after bone marrow transplantation in order to elaborate optimal approaches to the treatment of this disease.

Methods. Cytogenetic investigations (including fluorescent in situ hybridization [FISH]) were performed in 100 patients (53 males, 47 females aged from 1 to 60; median — 23 years) with post-transplantation relapses of acute myeloid leukemias (AML) (n = 61) and acute lymphoblastic leukemia (ALL) (n = 39).

Results. Aberrant karyotypes were found in 90 % of AML and 97 % of ALL patients. The incidence of acute leukemias (AL) with complex karyotypes (CK) was significantly higher in ALL patients than that in the AML group (67 % vs 36 %; = 0.002). At that, the percentage of CK with 4 and more chromosome abnormalities per cell in ALL patients aged 1–18 years was also significantly higher than that in AML patients (60 % vs 30 %; = 0.03). Besides, this difference was observed in the CK+ proportion between ALL and AML groups. Transplantation was performed during the active phase of the disease (i.e. after remission) in 75 % vs 55 %, respectively (= 0.003).

Conclusions. Serial cytogenetic investigations showed that CKs before transplantation and in PTR are closely related, thus confirming their clonal nature. Therefore, it may be assumed that karyotype complication achieved by the PTR can be caused by both chemotherapy performed at early stages of acute leukemia and pre-transplant conditioning regimes. In this case, further increase of the chemotherapeutic intensity in order to prevent and treat expected PTRs in patients with CK+ acute leukemias seems to be unreasonable. In this connection, infusion of donor lymphocytes, administration of hypomethylating agents or medicines with target mechanism of action should be used for management of AML patients during the post-transplant period.


Keywords: acute leukemias, post-transplantation relapses, complex karyotype.

Received: September 2, 2014

Accepted: November 13, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Dobbelstein C, Dammann E, Weissinger E, et al. Prognostic impact of a newly defined structurally complex karyotype in patients with AML and MDS after allogeneic stem cell transplantation. Blood (ASH Annual Meeting Abstracts). 2013;122(21):3362–3.
  2. Mohr B, Stolzel F, Kramer M, et al. Karyotypic complexity in acute myeloid leukemia in the context of adverse prognosis. Blood (ASH Annual Meeting Abstracts). 2013;122(21):489.
  3. Rogers HJ, Vardiman JW, Anastasi J, et al. Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica. 2014;99(5):821–9. doi: 10.3324/haematol.2013.096420.
  4. Mrozek K. Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol. 2008;358(4):365–77. doi: 10.1053/j.seminoncol.2008.04.007.
  5. Gohring G, Michalova K, Beverloo HB, et al. Complex karyotype newly defined: the strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood. 2010;116(19):3766–9. doi: 10.1182/blood-2010-04-280313.
  6. Schoch C, Haferlach T, Haase D, et al. Patients with de novo acute myeloid leukemia and complex karyotype aberrations show a pore prognosis despite intensive treatment: a study of 90 patients. Br J Haematol. 2001;112(1):118–26. doi: 10.1046/j.1365-2141.2001.02511.x.
  7. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6.
    [Gindina TL, Mamaev NN, Barkhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6. (In Russ)]
  8. Schmid C, Schleuning M, Tischer J, et al. Early allo-SCT for AML with a complex aberrant karyotype – results from a prospective pilot study. Bone Marrow Transplant. 2012;47(1):46–53. doi: 10.1038/bmt.2011.15.
  9. Zaccaria A, Rosti G, Testoni N, et al. Chromosome studies in patients with nonlymphoсytic or acute lymphocytic leukemia submitted to bone marrow transplantation – results of European cooperative study. Cancer Genet Cytogenet. 1987;26(1):51–8.
  10. Schmidt-Hieber M, Blau IW, Richter G, et al. Cytogenetic studies in acute leukemia patients relapsing after allogeneic stem cell transplantation. Cancer Genet Cytogenet. 2010;198(2):135–43. doi: 10.1016/j.cancergencyto.2010.01.005.
  11. Chi HS, Cho YU, Park SH, et al. Comparative analysis of cytogenetic evolution patterns during relapse in the hematopoietic stem cell transplantation and chemotherapy settings of patients with acute leukemia. Blood (ASH Annual Meeting Abstracts). 2013;122(21):1320.
  12. Yuasa M, Uchida M, Kaji D, et al. Prognostic significance of the cytogenetic evolution after the hematopoietic stem cell transplantation in adult acute myeloid leukemia. Blood (ASH Annual Meeting Abstracts). 2013;122(21):1391–2.
  13. Гиндина Т.Л., Мамаев Н.Н., Кондакова Е.В. и др. Острые лимфобластные лейкозы с высокогиперплоидными кариотипами. Вестник гематологии. 2007;4:18–23.
    [Gindina TL, Mamaev NN, Kondakova EV, et al. Acute lymphoblastic leukemias with highly hyperploid karyotypes. Vestnik gematologii. 2007;4:18–23. (In Russ)]
  14. Schaffer LG, McGowan-Jordan J, Schmid M. ISCN. An International System for Human Cytogenetic Nomenclature. Basel: Karger; 2013.
  15. Schmid C, Labopin M, Nagler A, et al. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT acute leukemia working party. J Clin Oncol. 2007;25(31):4938–45. doi: 10.1200/jco.2007.11.6053.
  16. Schroeder T, Czibere A, Platzbecker U, et al. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013;27(6):1229–35. doi: 10.1038/leu.2013.7.
  17. Porter DL, Alyea EP, Antin JH, et al. NCI First International Workshop on the biology, prevention and treatment of relapse after allogeneic hematopoietic stem cell transplantation: Report from the Committee on treatment of relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2010;16(11):1467–503. doi: 10.1016/j.bbmt.2010.08.001.
  18. Alyea EP, DeAngelo DJ, Moldrem J, et al. NCI First International Workshop on the Biology, Prevention and Treatment of Relapse after Allogeneic Hematopoietic Cell Transplantation: Report from the Committee on Prevention of Relapse Following Allogeneic Cell Transplantation for Hematologic Malignancies. Biol Blood Marrow Transplant. 2010;16(8):1037–69. doi: 10.1016/j.bbmt.2010.05.005.
  19. de Lima M, Giralt S, Thall PF. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome. Cancer. 2010;116(23):5420–31. doi: 10.1002/cncr.25500.
  20. de Lima M, Porter DL, Battiwalla M, et al. Proceedings from the National Cancer Institute’s Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation: Part III. Prevention and treatment of relapse after allogeneic transplantation. Biol Blood Marrow Transplant. 2014;20(1):4–13. doi: 10.1016/j.bbmt.2013.08.012.
  21. Duque-Afonso J, Lubbert M, Cleary ML. Epigenetic modifications mediated by the AML1/ETO and MLL leukemia fusion proteins. In: Lubbert M, Jones PA, eds. Epigenetic Therapy of Cancer. Berlin Heidelberg: Springer-Verlag; 2014. pp. 121–44. doi: 10.1007/978-3-642-38404-2_6.
  22. Buron F, Malvezzi P, Villar E. Profiling sirolimus-induced inflammatory syndrome a prospective tricentric observational study. PloS One. 2013;8(1):e53078. doi: 10.1371/journal.pone.0053078.
  23. Kondo T, Tasaka T, Matsumoto K, et al. Philadelphia chromosome-positive acute lymphoblastic leukemia with extramedullary and meningeal relapse after allogeneic hematopoietic stem cell transplantation that was successfully treated with dasatinib. Springerplus. 2014;3:177. doi: 10.1186/2193-1801-3-177.
  24. Maziarz RT, Slater S. Post-transplant relapse. In: Maziarz RT, Slater S, eds. Blood and Marrow Transplant Handbook. Springer Science+Business Media, LLC; 2011. pp. 271–6. doi: 10.1007/978-1-4419-7506-5_24.

Principles of Pathomorphological Differential Diagnosis of Myelodysplastic Syndromes

AM Kovrigina1, SA Glinkina1, VV Baikov2

1 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022

For correspondence: Alla Mikhailovna Kovrigina, PhD, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM, Glinkina SA, Baikov VV. Principles of Pathomorphological Differential Diagnosis of Myelodysplastic Syndromes. Clinical oncohematology. 2015;8(1):62–8 (In Russ).


ABSTRACT

The article dwells on the diagnosis of myelodysplastic syndromes (MDS) in bone marrow trephine biopsies. The paper describes problems of a complex approach to differential diagnostics of MDS and non-clonal/reactive changes in hematopoiesis. It is emphasized that clinical and laboratory data, as well as data on patient’s medical history should be submitted to a pathologist. The authors substantiate the algorithm for the morphological investigation of a bone marrow trephine bioptate, including evaluation of cellularity, stromal patterns, and morphological signs of dysplasia. The diagnostic value of histochemistry and immunohistochemistry is discussed.


Keywords: myelodysplastic syndrome, bone marrow trephine biopsy, pathomorphology, differential diagnostics.

Received: October 22, 2014

Accepted: November 10, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  2. Boultwood J, Wainscoat JS. Gene silencing by DNA methylation in haematological malignancies. Br J Haematol. 2007;138(1):3–11. doi: 10.1111/j.1365-2141.2007.06604.x.
  3. Cazzola M, Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122(25):4021–34. doi: 10.1182/blood-2013-09-381665.
  4. Lindsley RC, Elbert BL. Molecular pathophysiology of myelodysplastic syndromes. Annu Rev Pathol. 2013;8(1):21–47. doi: 10.1146/annurev-pathol-011811-132436.
  5. Maciejewski JP, Mufti GJ. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood. 2008;112(4):965–74. doi: 10.1182/blood-2008-02-130435.
  6. Mohamedali A, Gаken J, Twine NA, et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood. 2007;110(9):3365–73. doi: 10.1182/blood-2007-03-079673.
  7. Raza A, Galili N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Cancer. 2012;12(12):849–59. doi: 10.1038/nrc3321.
  8. Smith AE, Mohamedali AM, Kulasekararaj A, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116(19):3923–32. doi: 10.1182/blood-2010-03-274704.
  9. Thol F, Friesen I, Damm F, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011;29(18):2499–506. doi: 10.1200/jco.2010.33.4938.
  10. Thol F, Kade S, Schlarmann C, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84. doi: 10.1182/blood-2011-12-399337.
  11. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9. doi: 10.1038/nature10496.
  12. Koca E, Buyukasik Y, Cetiner D, et al. Copper deficiency with increased hematogones mimicking refractory anemia with excess blasts. Leuk Res. 2008;32(3):495–9. doi: 10.1016/j.leukres.2007.06.023.
  13. Steensma DP. Dysplasia has a differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep. 2012;7(4):310–20. doi: 10.1016/j.leukres.2007.06.023.
  14. Tanaka N, Kim JS, Newell JD, et al. Rheumatoid arthritis-related lung diseases: CT findings. Radiology. 2004;232(1):81–91. doi: 10.1148/radiol.2321030174.
  15. Song Y, Du X, Hao F, et al. Immunosuppressive therapy of cyclosporin A for severe benzene-induced haematopoetic disorders and a 6-month follow-up. Chem Biol Interact. 2010;186(1):96–102. doi: 10.1016/j.cbi.2010.03.049.
  16. Komrokji RS, Moffitt HL, Padron E. Deletion 5q MDS: Molecular and therapeutic implications. Best Pract Res Clin Haematol. 2013;26(4):365–75. doi: 10.1016/j.beha.2013.10.013.
  17. Ковригина А.М., Байков В.В. Принципы патоморфологической дифференциальной диагностики первичного миелофиброза. Москва, Санкт-Петербург, 2014. 63 с.
    [Kovrigina AM, Baikov VV. Printsipy patomorfologicheskoi differentsial’noi diagnostiki pervichnogo mielofibroza. (Principles of pathomorphological differential diagnosis of primary myelofibrosis.) Moscow, Saint Petersburg; 2014. 63 p. (In Russ)]
  18. Foucar K. Myelodysplastic/Myeloproliferative Neoplasms. Am J Clin Pathol. 2009;132(2):281–9. doi: 10.1309/AJCPJ71PTVIKGEVT.
  19. Wang SA. Diagnosis of myelodysplastic syndromes in cytopenic patients. Hematol Oncol Clin North Am. 2011;25(5):1085–110. doi: 10.1016/j.hoc.2011.09.009.
  20. Thiele J, Kvasnicka H-M, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  21. Baur AS, Meuge-Moraw C, Schmidt PM, et al. CD34/QBEND10 immunostaining in bone marrow biopsies: an additional parameter for the diagnosis and classification of myelodysplastic syndromes. Eur J Haematol. 2000;64(2):71–9.
  22. Horny HP, Sotlar K, Valent P. Diagnostic value of histology and immunohistochemistry in myelodysplastic syndromes. Leuk Res. 2007;31(12):1609–16. doi: 10.1016/j.leukres.2007.05.010.
  23. Valent P, Horny HP. Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions. Eur J Clin Invest. 2009;39(7):548–53. doi: 10.1111/j.1365-2362.2009.02151.x.
  24. Valent P, Jager E, Mitterbauer-Hohendanner G, et al. Idiopathic bone marrow dysplasia of unknown significance (IDUS): definition, pathogenesis, follow up, and prognosis. Am J Cancer Res. 2011;1:531–41.
  25. Wimazal F, Fonatsch C, Thalhammer R. Idiopathic cytopenia of undetermined significance (ICUS) versus low risk MDS: The diagnostic interface. Leuk Res. 2007;31(11):1461–8. doi: 10.1016/j.leukres.2007.03.015.

Second Generation Tyrosine Kinase Inhibitors and Their Toxicity in Treatment of Patients in Chronic Phase of Chronic Myeloid Leukemia

N.S. Lazorko1, E.G. Lomaia1, E.G. Romanova1, E.I. Sbityakova1, E.R. Machyulaitene2, P.A. Butylin1,3, A.Yu. Zaritskii1,2

1 Federal North-West Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russia, 197341

2 Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russia, 197022

3 Saint Petersburg State University of Information Technologies, Mechanics and Optics, Institute of Translational Medicine, 49 Kronverkskii pr-t, Saint Petersburg, Russia, 197101

For correspondence: Elza Galaktionovna Lomaia, PhD, 2 Akkuratova str., Saint Petersburg, Russia, 197341; Tel.: +7(812)702-37-65; e-mail: lomelza@gmail.com

For citation: Lazorko N.S., Lomaia E.G., Romanova E.G., Sbityakova E.I., Machyulaitene E.R., Butylin P.A., Zaritskii A.Yu. Second Generation Tyrosine Kinase Inhibitors and Their Toxicity in Treatment of Patients in Chronic Phase of Chronic Myeloid Leukemia. Klin. Onkogematol. 2015;8(3):302–8. (In Russ.)


ABSTRACT

Background & Aims. Certain experience in the use of new tyrosine kinase inhibitors (TKIs) in treatment of patients with chronic myeloid leukemia has been obtained over the last years. The article summarizes literature data on toxicity obtained in international clinical trials. The aim of the study is to evaluate adverse effects of second generation TKIs in the routine clinical practice and to assess their effect on patient future life.

Methods. We analyzed our own data obtained during routine clinical practice. 76 patients (36 men and 40 women) over 18 years of age (median age was 49 years, range 26–75) with chronic myeloid leukemia were enrolled in the retrospective trial. 48 patients were treated with nilotinib, 28 patients received dazatinib during the chronic phase of the disease as a second line therapy after withdrawal of imatinib mesylate. The toxicity degree was determined according to CTCAE 4.0 criteria.

Results. III–IV degree hematologic toxicity was registered in 36.8 % of patients. No significant difference in the incidence of complications between nilotinib and dazatinib groups was observed: 39.6 % and 32.1 %, respectively. II–IV degree non-hematologic toxicity was found in 35.4 % patients on nilotinib and in 25 % of patients on dazatinib. The incidence of individual types of toxicity did not exceed 15 %. A combination of different types of non-hematologic toxicity was observed in 9.2 % of patients. No TKI2 toxicity-related lethal outcomes were registered.

Conclusion. Hematologic and/or non-hematologic toxicity related to TKI2 was registered in more than 50 % of patients. In most cases, the complications were transient and eliminated after discontinuation of TKI2 or after dose reduction. TKI2-associated complications did not affect the possibility to achieve a complete cytogenetic response and its stability.


Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, toxicity.

Received: January 29, 2015

Accepted: June 1, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Kantarjian H, Pasquini R, Hamerschlak N, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: a randomized phase 2 trial. Blood. 2007;109(12):5143–50. doi: 10.1182/blood-2006-11-056028.
  2. Kantarjian H, Giles F, Bhalla K, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results. Blood. 2011;117(4):1141–5. doi: 10.1182/blood-2010-03-277152.
  3. Лазорко Н.С., Ломаиа Е.Г., Сбитякова Е.И., Зарицкий А.Ю. Нилотиниб и дазатиниб в первой линии терапии больных хроническим миелолейкозом в хронической фазе. Современная онкология. 2011;13(1):38–40. [Lazorko NS, Lomaia EG, Sbityakova EI, Zaritskii AYu. Nilotinib and dazatinib as first line therapy of patients in chronic phase of chronic myeloid leukemia. Sovremennaya onkologiya. 2011;13(1):38–40. (In Russ)]
  4. Ломаиа Е.Г., Романова Е.Г., Сбитякова Е.И., Зарицкий А.Ю. Эффективность и безопасность ингибиторов тирозинкиназ 2-го поколения (дазатиниб, нилотиниб) в терапии хронической фазы хронического миелолейкоза. Онкогематология. 2013;2:22–33. [Lomaia EG, Romanova EG, Sbityakova EI, Zaritskii AYu. Efficacy and safety of 2nd generation tyrosine kinase inhibitors (dasatinib, nilotinib) in teatment of chronic phase of chronic myeloid leukemia. Onkogematologiya. 2013;2:22–33. (In Russ)]
  5. Туркина А.Г., Хорошко Н.Д., Гусарова Г.А. и др. Российский опыт применения нилотиниба во второй линии терапии больных хроническим миелолейкозом с резистентностью или непереносимостью иматиниба: оценка безопасности и эффективности в исследовании ENACT (расширенный доступ к нилотинибу в клинических исследованиях). Вестник гематологии. 2010;1(2):92–3. [Turkina AG, Khoroshko ND, Gusarova GA, et al. Russian experience in use of nilotinib in second line therapy of patients with chronic myeloid leukemia and imatinib resistance or intolerance: evaluation of safety and efficacy in ENACT trial (Expanding Nilotinib Access in Clinical Trials). Vestnik gematologii. 2010;1(2):92–3. (In Russ)]
  6. http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm.
  7. Kantarjian H, Giles F, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110(10):3540–6. doi: 10.1182/blood-2007-03-080689.
  8. Saglio G, Kim D, Issaragrisil S, et al. Nilotinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9. doi: 10.1517/14656566.2011.534780.
  9. Hochhaus A, Kantarjian H, Baccarani M, et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic phase chronic myeloid leukemia after failure of imatinib therapy. Blood. 2007;109(6):2303–9. doi: 10.1182/blood-2006-09-047266.
  10. Kantarjian H, Shah N, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70. doi: 10.1056/nejmoa1002315.
  11. Shah R. Drug-induced hepatotoxicity: pharmacokinetic perspectives and strategies for risk reduction. Adv Drug React Toxicol Rev. 1999;18:181–233.
  12. Russmann S, Kullak-Ublick G, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. 2009;16(23):3041–53.
  13. Teo YL, Ho HK, Chan A. Risk of tyrosine kinase inhibitors-induced hepatotoxicity in cancer patients: A meta-analysis. Cancer Treat Rev. 2013;39(2):199–206. doi: 10.1016/j.ctrv.2012.09.004.
  14. Saglio G, Pinilla-Ibarz J, Cortes J, et al. Intolerance to tyrosine kinase inhibitors in chronic myeloid leukemia. Blood. 2011;117(4):688−697. doi: 10.1002/cncr.25648.
  15. Rosti G, Castagnetti F, Gugliotta G, et al. Dasatinib and nilotinib in imatinib resistant Philadelphia-positive chronic myelogenous leukemia: a ‘head-to-head’ comparison. Leuk Lymphoma 2010;51(4):583–91. doi: 10.3109/10428191003637282.
  16. Shah R, Morganroth J, Shah D. Hepatotoxicity of Tyrosine Kinase Inhibitors: Clinical and Regulatory Perspectives. Drug Saf. 2013;36(7):491–503. doi: 10.1007/s40264-013-0048-4.
  17. Lammie A, Drobnjak M, Gerald W, et al. Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem. 1994;42(11):1417–25. doi: 10.1177/42.11.7523489.
  18. Grichnik J, Burch J, Burchette J, Shea C. The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol. 1998;111(2):233–8.
  19. Kantarjian H, Pasquini R, Levy V, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia resistant to imatinib at a dose of 400 to 600 milligrams daily: two-year follow-up of a randomized phase 2 study (START-R). Cancer. 2009;115(18):4136–47. doi: 10.1002/cncr.24504.
  20. Irvine E, Williams C. Treatment-, Patient-, and Disease-Related Factors and the Emergence of Adverse Events with Tyrosine Kinase Inhibitors for the Treatment of Chronic Myeloid Leukemia. Pharmacotherapy. 2013;33(8):868–81. doi: 10.1002/phar.1266.
  21. Van Etten RA. Cycling, stressed-out and nervous: cellular functions of cAbl. Trends Cell Biol. 1999;9(5):179–86. doi: 10.1016/s0962-8924(99)01549-4.
  22. Wasle B, Edwardson J. The regulation of exocytosis in the pancreatic acinar cell. Cell Signal. 2002;14(3):191–7. doi: 10.1016/s0898-6568(01)00257-1.
  23. Mooren F, Hlouschek V, Finkes T, et al. Early changes in pancreatic acinar cell calcium signalling after pancreatic duct obstruction. J Biol Chem. 2003;278(11):9361–9. doi: 10.1074/jbc.m207454200.
  24. Fitter S, Vandyke K, Gronthos S, Zannettino AC. Suppression of PDGF-induced PI3 kinase activity by imatinib promotes adipogsis and adiponectin secretion. J Mol Endocrinol. 2012;48(3):229–40. doi: 10.1530/jme-12-0003.
  25. Racil Z, Razga F, Drapalova J, et al. Mechanism of impaired glucose metabolism during nilotinib therapy in patients with chronic myelogenous leukemia. Haematologica. 2013;98(10):e124–6. doi: 10.3324/haematol.2013.086355.
  26. le Coutre P, Giles F, Hochhaus A, et al. Analysis of glucose profiles in imatinib resistant or intolerant chronic myelogenous leukemia (CML) patients treated with nilotinib: lack of correlation between glucose levels and nilotinib efficacy. Blood. 2007;110: Abstract 4588.
  27. Breccia M, Alimena G. Pleural/pericardic effusions during dasatinib treatment: incidence, management and risk factors associated to their development. Exp Opin Drug Saf. 2010;9(5):713–21. doi: 10.1517/14740331003742935.
  28. de Lavallade H, Punnialingam S, Milojkovic D, et al. Pleural effusions in patients with chronic myeloid leukaemia treated with dasatinib may have an immune-mediated pathogenesis. Br J Haematol. 2008;141(5):745–7. doi: 10.1111/j.1365-2141.2008.07108.x.
  29. Porkka K, Khoury H, Paquette R, et al. Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer. 2010;116(2):377–86. doi: 10.1002/cncr.24734.
  30. Shah N, Kantarjian H, Kim D, et al. Six-year (yr) follow-up of patients (pts) with imatinib-resistant or -intolerant chronic-phase chronic myeloid leukemia (CML-CP) receiving dasatinib. J Clin Oncol. 2012;30:6506.
  31. Hasinoff BB. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol Appl Pharmacol. 2010;244(2):190–5. doi: 10.1016/j.taap.2009.12.032.
  32. Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25. doi: 10.1093/jnci/djp440.
  33. Strevel E, Ing D, Siu L. Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol. 2007;25(22):3362–71. doi: 10.1200/jco.2006.09.6925.
  34. Haverkamp W, Breithardt G, Camm A, et al. The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. Report on a policy conference of the European Society of Cardiology. Eur Heart J. 2000;21(15):1216–31. doi: 10.1053/euhj.2000.2249.
  35. Priori S, Schwartz P, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866–74. doi: 10.1056/nejmoa022147.
  36. Sauer A, Moss A, McNitt S, et al. Long QT syndrome in adults. J Am Coll Cardiol. 2007;49(3):329–37. doi: 10.1016/j.jacc.2006.08.057.
  37. Center for Drug Evaluation and Research: Nilotinib Pharmacology/Toxicology Review and Evaluation; 2007.
  38. Le Coutre P, Ottmann O, Giles F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood. 2008;111(4):1834–9. doi: 10.1182/blood-2007-04-083196.
  39. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51. doi: 10.1056/nejmoa055104.
  40. Kim T, Rea D, Schwarz M, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013;27(6):1316–21. doi: 10.1038/leu.2013.70.
  41. Larson R, Hochhaus A, Hughes T, et al. Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia. 2012;26(10):2197–203. doi: 10.1038/leu.2012.134.
  42. Aichberger K, Herndlhofer S, Schernthaner G, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol. 2011;86(7):533–9. doi: 10.1002/ajh.22037.
  43. Verma D, Verstovsek S, Kantarjian H, et al. Malignancies occurring during therapy with tyrosine kinase inhibitors (TKIs) for chronic myeloid leukemia (CML) and other hematologic malignancies. Blood. 2011;118(16):4353–8. doi: 10.1182/blood-2011-06-362889.
  44. Hoffmann V, Baccarani M, Hasford J. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European Countries. Leukemia. 2015;29(6):1336–43. doi: 10.1038/leu.2015.73 [Epub 2015 Mar 18]

Acute Myeloid Leukemias: 10-Year Therapy Experience

О.Yu. Baranova1, A.S. Antipova1, O.D. Zakharov2, N.A. Falaleeva1, G.I. Kaletin1, A.D. Shirin1, G.R. Arakelyan1, N.N. Tupitsyn1, M.A. Frenkel’1, N.A. Kupryshina1, T.N. Obukhova3, E.V. Domracheva3, V.B. Larionova1, E.V. Ogorodnikova1, E.A. Osmanov1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Municipal Outpatient’s Hospital No. 11 under the Department of Healthcare of Moscow, 14 Kravchenko str., Moscow, Russian Federation, 119331

3 Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Ol’ga Yur’evna Baranova, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-28-64; e-mail: baranova-crc@mail.ru

For citation: Baranova OYu, Antipova AC, Zakharov OD, et al. Acute Myeloid Leukemias: 10-Year Therapy Experience. Clinical oncohematology. 2015;8(3):287–301 (In Russ).


ABSTRACT

Objective. To assess treatment outcomes of 132 patients with acute myeloid leukemia (AML) treated in hematology department of the N.N. Blokhin Russian Cancer Research Center over the period from January, 2003, till November, 2014.

Methods. 106 patients with primary AML and 26 patients with secondary AML and AML arising from MDS were enrolled in this study. Median age was 43.5 years (varied from 15 to 82). The study design provided 1 cycle of remission induction according to the 3+7+7 scheme (idarubicin 12 mg/m2 on days 1–3, cytarabine 100 mg/m2 every 12 h on days 1–7, etoposide 75 mg/m2 on days 1–7), 2 cycles of consolidation according to the HAI scheme (cytarabine 3 g/m2 on days 1, 3, 5; idarubicin 10 mg/m2 on days 2, 4), and 6 cycles of maintenance treatment according the 1+5+5 scheme for patients younger than 60 years (cytarabine 100 mg/m2 every 12 h on days 1–5, idarubicin 15 mg/m2 on day 1, etoposide 75 mg/m2 on days 1–5). The treatment protocol for patients aged 60–65 did not include etoposide, and the cytarabine dose was reduced to 1 g/m2 at the remission consolidation stage.

Results. The analysis of treatment efficacy in 71 patients younger than 60 years with primary AML demonstrated that the percentage of complete remissions (CR) was 77.5 %. In 41 (74.5 %) patients the CR was achieved after the 1st induction cycle. The 5-year overall survival (OS) and relapse-free survival (RFS) rates were 43 % and 52 %, respectively. In the favorable cytogenetic risk group, the CR rate was 90 %, 5-year ОS and RFS were 65 % and 100 %, respectively; in the intermediate cytogenetic risk group these parameters were 90.5 %, 45 %, and 48 %, respectively. In the high risk group, CR was achieved in 36.4 % patients achieved; the resistant disease was observed in 63.6 % of cases, 2-years ОS and DFS rates were 16 % and 0 %, respectively. Among patients aged 60–65 years receiving intensified consolidation therapy, the CR rate was 61.5 %, the resistant disease was observed in 23.1 % of cases. The early mortality rate was 15.4 %, and the 3-year ОS and DFS rates were 14 % and 50 %, respectively.

Conclusion. The treatment program with intensified consolidation demonstrated high long-term survival rates in patients with primary AML younger than 60 years. The best results were obtained in the favorable cytogenetic risk group. Management of patients over 60 years of age and patients with AML in high-risk cytogenetic group is still a challenge.


Keywords: acute myeloid leukemia, high doses cytarabine.

Received: April 2, 2015

Accepted: May 31, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Henderson E. Acute myelogenous leukemia. In: Hematology. 3rd edition. McGraw-Hill Book Company; 1983. pp. 239–53.
  2. Кассирский И.А., Алексеев Г.А. Клиническая гематология. М.: Государственное издательство медицинской литературы, 1962.
    [Kassirskii IA, Alekseev GA. Klinicheskaya gematologiya. (Clinical hematology.) Moscow: Gosudarstvennoe izdatel’stvo meditsinskoi literatury Publ.; 1962. (In Russ)]
  3. Bennet J, Catovsky D, Daniel M, et al. Proposals for the classification of the Acute Leukaemias. French-American-British (FAB) Co-operative Group. Br J Haematol. 1976;33(4):451–8. doi: 10.1111/j.1365-2141.1976.tb03563.x.
  4. Паровичникова Е.Н., Троицкая В.В., Клясова Г.А. и др. Лечение больных острыми миелоидными лейкозами по протоколу российского многоцентрового рандомизированного исследования OMЛ-01.10: результаты координационного центра. Терапевтический архив. 2014;86(7):14–23.
    [Parovichnikova EN, Troitskaya VV, Klyasova GA, et al. Treatment of patients with acute myeloid leukemias according to the protocol of Russian multicenter randomized trial AML-01.10: coordination center results. Terapevticheskii arkhiv. 2014;86(7):14–23. (In Russ)]
  5. Burnett AK, Russell NH, Hills RK, et al. A randomised comparison of daunorubicin 90mg/m2 vs 60mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. 56th ASH Annual Meeting and Exposition; 2014. Oral and Poster Abstracts.
  6. Cornelissen JJ, Versluis J, Passweg JR, et al. Comparative therapeutic value of post-remission approaches in patients with acute myeloid leukemia aged 40–60 years. Leukemia. 2015;29(5):1041–50. doi: 10.1038/leu.2014.332.
  7. Breems DA, Lowenberg B. Acute myeloid leukemia and the position of autologous stem cell transplantation. Semin Hematol. 2007;44(4):259–66. doi: 10.1053/j.seminhematol.2007.08.002.
  8. Byrd JC, Dodge RK, Carroll A, et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol. 1999;17(12):3767–75.
  9. Schlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2004;22(18):3741–50. doi: 10.1200/jco.2004.03.012.
  10. Marcucci G, Mrozek K, Ruppert AS, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol. 2005;23(24):5705–17. doi: 10.1200/jco.2005.15.610.
  11. Bennett J, Catovsky D, Daniel M, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Group. Ann Intern Med. 1985;103(4):620–5. doi: 10.7326/0003-4819-103-4-620.
  12. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9:1783–6.
  13. Brunning RD, Matutes E, Borowitz V, et al. Acute leukemias of ambiguous lineage. In: Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001. pp. 106–7.
  14. Borowitz MJ, Bene MC, Harris NL, et al. Acute leukemias of ambiguous lineage. In: Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 150–5.
  15. Маркина И.Г. Клиническое значение иммунофенотипирования острых нелимфобластных лейкозов: Дис. ¼ канд. мед. наук. М., 2000.
    [Markina IG. Klinicheskoe znachenie immunofenotipirovaniya ostrykh nelimfoblastnykh leikozov. (Clinical significance of immunophenotyping of acute non-lymphoblastic leukaemia.) [dissertation] Moscow; 2000. (In Russ)]
  16. Баранова О.Ю., Волкова М.А., Френкель М.А. и др. Анализ результатов различных программ терапии острых нелимфобластных лейкозов М0-М2, М4-М7 ФАБ-вариантами (по данным Российского онкологического научного центра имени Н.Н. Блохина, РАМН). Гематология и трансфузиология. 2003;2:3–10.
    [Baranova OYu, Volkova MA, Frenkel’ MA, et al. Analysis of results of different therapy programs for acute non-lymphoblastic leukemias of M0-M2, M4-M7 FAB types (based on data of NN. Blokhin Russian Cancer Research Center under the Russian Academy of Medical Sciences). Gematologiya i transfuziologiya. 2003;2:3–10. (In Russ)]
  17. Herzig RH, Lazarus HM, Wolf SN, et al. High-dose cytosine arabinoside therapy with and without anthracycline antibiotics for remission reinduction of acute nonlymphoblastic leukemia. J Clin Oncol. 1985;3(7):992–7.
  18. Mayer RJ, Davis RB, Schiffer CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med. 1994;331(14):896–903. doi: 10.1056/nejm199410063311402.
  19. Bishop JF, Matthews JP, Young GA, et al. A randomized study of high-dose cytarabine in induction in acute myeloid leukemia. Blood. 1996;87:1710–7.
  20. Weick JK, Kopecky KJ, Appelbaum FR, et al. A randomized investigation of high-dose versus standard-dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia: a Southwest Oncology Group study. Blood. 1996;88(8):2841–51.
  21. Bloomfield CD, Lawrence D, Byrd JC, et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res. 1998;58(18):4173–9.
  22. Bishop JF, Lowenthal RM, Joshua D, et al. Australian Leukemia Study Group: Etoposide in acute nonlymphocytic leukemia. Blood. 1990:75:27–32.
  23. Vogler WR, Velez-Garcia E, et al. A phase III trial comparing idarubicin and daunorubicin in combination with cytarabine in acute myelogenous leukemia: a Southeastern Cancer Study Group study. J Clin Oncol. 1992;10(7):1103–11.
  24. Arlin Z, Case DC Jr, Moore J, et al. Randomized multicenter trial of cytosine arabinoside with mitoxantrone or daunorubicin in previously untreated adult patients with acute nonlymphocytic leukemia (ANLL). Leukemia. 1990;4(3):177–83.
  25. Wheatley K, Burnett A, Goldstone A, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukemia derived from the MRC AML 10 trial. Br J Haematol. 1999;107(1):69–79. doi: 10.1046/j.1365-2141.1999.01684.x.
  26. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341(14):1051–62. doi: 10.1056/nejm199909303411407.
  27. Wolff SN, Marion J, Stein RS, et al. High-dose cytosine arabinoside and daunorubicin as consolidation therapy for acute nonlymphocytic leukemia in first remission: a pilot study. Blood. 1985;65(6):1407–11.
  28. Phillips GL, Reece DE, Shpherd MJ, et al. High-dose cytarabine and daunorubicin induction and postremission chemotherapy for the treatment of acute myelogenous leukemia in adults. Blood. 1991;77(7):1429–35.
  29. Савченко В.Г., Паровичникова Е.Н., Афанасьев Б.В. и др. Клинические рекомендации российских экспертов по лечению больных острыми миелоидными лейкозами в возрасте моложе 60 лет. Терапевтический архив. 2014;7:4–13.
    [Savchenko VG, Parovichnikova EN, Afanas’ev BV, et al. Clinical recommendations by Russian experts for treatment of patients younger the 60 years with acute myeloid leukemias. Terapevticheskii arkhiv. 2014;7:4–13. (In Russ)]
  30. National Comprehensive Cancer Network (NCCN) Guidelines for AML Treatment Version 2; 2014. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#aml.
  31. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.
  32. Калетин Г.И. Оценка некоторых новых схем терапии острых лейкозов взрослых: Дис. ¼ канд. мед. наук. М., 1994.
    [Kaletin GI. Otsenka nekotorykh novykh skhem terapii ostrykh leikozov vzroslykh. (Evaluation of some new treatment regimens for acute leukemias in adults.) [dissertation] Moscow; 1994. (In Russ)]
  33. Ustun C, Marcucci G. Emerging diagnostic and therapeutic approaches in core binding factor acute myeloid leukaemia. Curr Opin Hematol. 2015;22(2):85–91. doi: 10.1097/moh.0000000000000124.
  34. Marcucci G, Geyer S, Zhao W, et al. Adding KIT Inhibitor Dasatinib (DAS) to Chemotherapy Overcomes the Negative Impact of KIT Mutation/over-Expression in Core Binding Factor (CBF) Acute Myeloid Leukemia (AML): Results from CALGB 10801 (Alliance). 56th ASH Annual Meeting and Exposition; 2014. Oral and Poster Abstracts.
  35. Flurcken A, Schneider T, Singh A, et al. Flow Cytometry-Based Maturity Score As a Novel Prognostic Parameter in AML. 56th ASH Annual Meeting and Exposition; 2014: Abstract 1006.
  36. Lowenberg B. Sense and nonsense of High-dose cytarabine for acute myeloid leukemia. Blood. 2013;121(1):26–8. doi: 10.1182/blood-2012-07-444851.
  37. Lowenberg B, Pabst T, Vellenga E, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364(11):1027–36. doi: 10.1056/nejmoa1010222.
  38. Schaich M, Rollig C, Soucek S, et al. Cytarabine dose of 36 g/m2 compared with 12 g/m2 within first consolidation in acute myeloid leukemia: results of patients enrolled onto the prospective randomized AML96 study. J Clin Oncol. 2011;29(19):2696–702. doi: 10.1200/jco.2010.33.7303.
  39. Miyawaki S, Ohtake S, Fujisawa S, et al. A randomized comparison of 4 courses of standard-dose multiagent chemotherapy versus 3 courses of high-dose cytarabine alone in postremission therapy for acute myeloid leukemia in adults: the JALSG AML201 Study. Blood. 2011;117(8):2366–72. doi: 10.1182/blood-2010-07-295279.
  40. Juliusson G, Antunovic P, Derolf A, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009;113(18):4179–87. doi: 10.1182/blood-2008-07-172007.
  41. Lopez A, de la Rubia J, Martin G, et al. Recent improvements in outcome for elderly patients with de novo acute myeloblastic leukemia. Leuk Res. 2001;25(8):685–92. doi: 10.1016/s0145-2126(01)00006-6.
  42. Appelbaum FR, Gundacker H, Head DR. Age and acute myeloid leukemia. Blood. 2006;107(9):3481–5. doi: 10.1182/blood-2005-09-3724.
  43. Kantarjian H, O’Brien S, Cortes J, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006:106(5):1090. doi: 10.1002/cncr.21723.
  44. Lowenberg B, Zittoun R, Kerkhofs H, et al. On the value of intensive remission-induction chemotherapy in elderly patients of 65+ years with acute myeloid leukemia: a randomized phase III study of the European Organization for Research and Treatment of Cancer Leukemia Group. J Clin Oncol. 1989;7(9):1268–74.
  45. Burnett AK, Milligan D, Prentice AG, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007;109(6):1114–24. doi: 10.1002/cncr.22496.

Rationale for Maintenance Treatment of Patients with Acute Myeloid Leukemia below 65 Years of Age, According to Data of a Retrospective Analysis of Protocols AML-2000 and AML-2007

S.V. Semochkin1,2, T.N. Tolstykh1, V.V. Lunin3, N.K. Khuazheva3, A.I. Kostin3, S.A. Chernysh3, M.E. Pochtar’3, V.L. Ivanova3

1 Dmitrii Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology under the Ministry of Health of the Russian Federation, 1 Samory Mashela str., Moscow, Russian Federation, 117997

2 N.I. Pirogov Russian National Research Medical University under the Ministry of Health of the Russian Federation, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

3 S.P. Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-zd, Moscow, Russian Federation, 125284

For correspondence: S.V. Semochkin, DSci, Professor, 1 Samory Mashela str., Moscow, Russian Federation, 117997; Tel: +7(495)653-14-78; e-mail: semochkin_sv@rsmu.ru

For citation: Semochkin S.V., Tolstykh T.N., Lunin V.V., Khuazheva N.K., Kostin A.I., Chernysh S.A., Pochtar’ M.E., Ivanova V.L. Rationale for Maintenance Treatment of Patients with Acute Myeloid Leukemia below 65 Years of Age According to Data of a Retrospective Analysis of Protocols AML-2000 and AML-200. Klin. Onkogematol. 2014; 7(4): 564–572 (In Russ.).


ABSTRACT

Objective. To evaluate the efficacy of prolonged maintenance therapy versus intensified consolidation for patients with acute myeloid leukemia (AML).

Patients and methods. 198 patients with median age 43.9 years (ranging from 15 to 64) with newly diagnosed AML were enrolled in this retrospective study. Over the period from 2000 to 2009, 97 patients were assigned to receive treatment in accordance with Protocol AML-2000 which provided 2 cycles of induction according to the «7+3» scheme (the dose of daunorubicin is 45 mg/m2), 3 cycles of consolidation according to the «5+1» scheme, and 2-year maintenance treatment consisting of the same cycles. 101 patients were enrolled in the subsequent study according to Protocol AML-2007; over the period from 2007 to 2012, they received 2 cycles of induction «7+3» or «7+3» plus HAM, if the complete remission (CR) was not achieved after the first cycle. Then there were 4 cycles of treatment with high-dose cytarabine without subsequent maintenance treatment.

Results. In total, 57.1 % of patients achieved CR. 2-year overall survival (OS) was higher for Protocol AML-2000 (39.2 ± 5.0 vs 28.5 ± 4.8 %; = 0.052). The maintenance treatment prolonged the median cumulative relapse risk from 1.2 to 2.1 years (= 0.008). However no statistically significant difference was observed for the 5-year relapse-free survival and OS between the two trials with the median follow-up for surviving patients equal to 3.3 and 9.9 years, respectively. Age ³ 46 years (= 0.004), baseline leukocytosis ³ 50 000/ml (= 0.035) and secondary AML (= 0.020) had a negative prognostic effect on the 5-year OS. Intensive consolidation according to Protocol AML-2007 was associated with higher incidence of III/IV degree adverse events, including neutropenia (100 vs 68.9 %; < 0.001), thrombocytopenia (100 vs 55.2 %; = 0.012), and enteropathy (29.4 vs 0 %; = 0.001).


Conclusion. The maintenance treatment is an effective therapeutic option for AML, since it prolongs the median cumulative relapse risk.

Keywords: acute myeloid leukemia, maintenance treatment.

Accepted: September 19, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Савченко В.Г., Паровичникова Е.Н., Афанасьев Б.В. и др. Нацио- нальные клинические рекомендации по диагностике и лечению острых миелоидных лейкозов у взрослых. Гематология и трансфузиология. 2014; 59(1, прил. 2): 1–29. [Savchenko V.G., Parovichnikova E.N., Afanas’ev B.V. et al. National clinical recommendations for diagnosing and treatment of acute myeloid leukemia in adults. Gematologiya i transfuziologiya. 2014; 59(1, suppl. 2): 1–29. (In Russ.)]
  2. Recher C., Bene M.C., Lioure B. et al. Long-term results of a randomized phase 3 trial comparing idarubicin and daunorubicin in younger patients with acute myeloid leukaemia. Leukemia. 2014; 28(2): 440–3.
  3. Teuffel O., Leibundgut K., Lehrnbecher T. et al. Anthracyclines during induction therapy in acute myeloid leukaemia: a systematic review and metaanalysis. Br. J. Haematol. 2013; 161(2): 192–203.
  4. Willemze R., Suciu S., Meloni G. et al. High-dose cytarabine in induction treatment improves the outcome of adult patients younger than age 46 years with acute myeloid leukemia: results of the EORTC-GIMEMA AML-12 trial. J. Clin. Oncol. 2014; 32(3): 219–28.
  5. Milligan D.W., Grimwade D., Cullis J.O. et al. Guidelines on the management of acute myeloid leukaemia in adults. Br. J. Haematol. 2006; 135(4): 450–74.
  6. Bloomfield C.D., Lawrence D., Byrd J.C. et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res. 1998; 58(18): 4173–9.
  7. Бондаренко С.Н., Семенова Е.В., Вавилов В.Н. и др. Аллогенная транс- плантация гемопоэтических стволовых клеток при остром миелобластном лейкозе в первой ремиссии. Терапевтический архив. 2013; 85(7): 18–25. [Bondarenko S.N., Semenova E.V., Vavilov V.N. et al. Allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia in the first remission. Terapevticheskii arkhiv. 2013; 85(7): 18–25. (In Russ.)]
  8. Baer M.R. Is there a role for maintenance therapy in acute myeloid leukaemia? Best Pract. Res. Clin. Haematol. 2009; 22(4): 517–21.
  9. Dohner H., Estey E.H., Amadori S. et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010; 115(3): 453–74.
  10. Buchner T., Krug U., Berdel W.E. et al. Maintenance for acute myeloid leukemia revisited. Curr. Treat. Options Oncol. 2007; 8(4): 296–304.
  11. Bennett J.M., Catovsky D., Daniel M.T. et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-AmericanBritish Cooperative Group. Ann. Intern. Med. 1985; 103(4): 620–5.
  12. Swerdlow S.H., Campo E., Harris N.L. et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Fourth edition. Lyon: IARC Press, 2008.
  13. U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE). Version 4.0. Published May 28, 2009.
  14. Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations. J. Am. Statis. Assn. 1958; 53(282): 457–81.
  15. Prentice R.L., Kalbfleisch J.D. Mixed discrete and continuous Cox regression model. Lifetime Data Anal. 2003; 9(2): 195–210.
  16. Berty H.P., Shi H., Lyons-Weiler J. Determining the statistical significance of survivorship prediction models. J. Eval. Clin. Pract. 2010; 16(1): 155–65.
  17. Kantarjian H., O’Brien S. Questions regarding frontline therapy of acute myeloid leukemia. Cancer. 2010; 116(21): 4896–901.
  18. Reese N.D., Schiller G.J. High-dose cytarabine (HD araC) in the treatment of leukemias: a review. Curr. Hematol. Malig. Rep. 2013; 8(2): 141–8.
  19. Баранова О.Ю., Волкова М.А., Френкель М.А. и др. Анализ резуль- татов различных программ терапии острых нелимфобластных лейкозов МО-М2, М4-М7 ФАБ-вариантами (по данным РОНЦ им. Н.Н. Блохина РАМН). Гематология и трансфузиология. 2003; 48(2): 3–10. [Baranova O.Yu., Volkova M.A., Frenkel’ M.A. et al. Analysis of results of different treatment programs for acute nonlymphoblastic leukemias with MOM2, M4-M7 FAB variants (According to data of N.N. Blokhin Cancer Research Center of RAMS). Gematologiya i transfuziologiya. 2003; 48(2): 3–10. (In Russ.)]
  20. Buchner T., Urbanitz D., Hiddemann W. et al. Intensified induction and consolidation with or without maintenance chemotherapy for acute myeloid leukemia (AML): two multicenter studies of the German AML Cooperative Group. J. Clin. Oncol. 1985; 3(12): 1583–9.
  21. Buchner T., Hiddemann W., Berdel W.E. et al. 6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML Cooperative Group. J. Clin. Oncol. 2003; 21(24): 4496–504.
  22. Грицаев С.В., Мартынкевич И.С., Запреева И.М. и др. Эффектив- ность первого и повторного курсов индукционной терапии больных de novo острым миелоидным лейкозом. Бюллетень Сибирского отделения Российской академии медицинских наук. 2013; 33(1): 67–75. [Gritsaev S.V., Martynkevich I.S., Zapreeva I.M. et al. Effectiveness of the first and repeated courses of induction therapy of patients with de novo diagnosed acute myeloid leukemia. Byulleten’ Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk. 2013; 33(1): 67–75. (In Russ.)]
  23. Zhu H.H., Liu Y.R., Jiang H. et al. CD34 expression on bone marrow blasts is a novel predictor of poor prognosis independent of FLT3-ITD in acute myeloid leukemia with the NPM1-mutation. Leuk. Res. 2013; 37(6): 624–30.
  24. Repp R., Schaekel U., Helm G. et al. Immunophenotyping is an independent factor for risk stratification in AML. Cytometry B Clin. Cytom. 2003; 53(1): 11–9.
  25. Паровичникова Е.Н., Клясова Г.А., Соколов А.Н. и др. Первые ре- зультаты лечения острых миелоидных лейкозов взрослых по протоколу ОМЛ-01.10 научно-исследовательской группы гематологических центров России. Терапевтический архив. 2012; 84(7): 10–15. [Parovichnikova E.N., Klyasova G.A., Sokolov A.N. et al. First results of treatement of adults with acute myeloid leukemia according to protocol OML-01.10 of the scientific research group of hematological centers of Russia. Terapevticheskii arkhiv. 2012; 84(7): 10–15. (In Russ.)]

Allogeneic Hematopoietic Stem Cell Transplantation in Myelodysplastic Syndromes and Clinical Significance of WT1 Gene Overexpression

N.N. Mamaev1, A.V. Gorbunova1, T.L. Gindina1, E.V. Morozova1, Ya.V. Gudozhnikova1, O.A. Slesarchuk1, V.N. Ovechkina1, A.A. Rats1, E.G. Boichenko2, E.A. Ukrainchenko3, V.M. Kravtsova1, A.V. Evdokimov1, I.M. Barkhatov1, S.N. Bondarenko1, B.V. Afanasev1

1 R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022

2 Municipal Children’s Hospital No. 1, 14 Avangardnaya str., Saint Petersburg, Russian Federation, 198205

3 Alexandrovskaya Municipal Hospital No. 17, 4 pr-t Solidarnosti, Saint Petersburg, Russian Federation, 193312

For correspondence: N.N. Mamaev, DSci, Professor, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022; Tel: +7(812)233-12-43; e-mail: nikmamaev524@gmail.com

For citation: Mamaev N.N., Gorbunova A.V., Gindina T.L., Morozova E.V., Gudozhnikova Ya.V., Slesarchuk O.A., Ovechkina V.N., Rats A.A., Boichenko E.G., Ukrainchenko E.A., Kravtsova V.M., Evdokimov A.V., Barkhatov I.M., Bondarenko S.N., Afanas’ev B.V. Allogeneic Hematopoietic Stem Cell Transplantation in Myelodysplastic Syndromes and Clinical Significance of WT1 Gene Overexpression. Klin. Onkogematol. 2014; 7(4): 551–563 (In Russ.).


ABSTRACT

The results of allogeneic hematopoietic stem cell transplantation (HSCT) in 17 patients (pts, 11 male, 6 female) with myelodysplastic syndromes (3 RA/RARS/RCMD, 5 RAEB-1, 7 RAEB-2, 2 JMML) are presented. The median age was 26 years with a range between 1 and 55 years. Serial cytogenetic investigations were carried out in all of them. Seven pts demonstrated monosomy 7, which was associated with other chromosome abnormalities in 4 cases. In addition, deletion at 11q23 (n = 3), trisomy 8 (n = 2) and 21 (n = 2), involvement into rearrangement at 3q (n = 2), t(6;9) translocation, and others more rare abnormalities were found. Prior to aHSCT, 11 of 7 received hypomethylating agents (HA) which proved to be effective in a half of them. In order to prepare for aHSCT, ablative (busulfan, cyclophosphamide) or non-ablative (fludarabine, cyclophosphamide) conditioning regimes were applied (4 and 13 respectively). Repeated aHSCT was carried out in 6 pts because of transplant rejection or post-transplant relapses. Molecular monitoring of minimal residual disease as well as early diagnosis of these relapses was performed by means of serial tests of the WT1 gene level expression and donor chimerism. Maximum WT1 values varied between 15 and 43133 copies/104 copies of ABL gene; and molecular relapses were registered in a half of them, including 5 patients with transformation into acute leukemia (AL). HA were used for prevention and treatment of relapses in 4 (24 %) patients; and HA were combined with donor lymphocyte infusions. Standard chemotherapy was applied for these purposes relatively rarely. This study demonstrated WT1 gene overexpression to be not only an important marker for diagnosis of post-transplant MDS/AL relapses, but it also can be used for evaluation of the treatment efficacy.


Keywords: myelodysplastic syndromes, allogeneic HSCT, post-transplant relapses, minimal residual disease, molecular monitoring, serial WT1 gene expression.

Accepted: September 30, 2014

Read in PDF (RUS) pdficon


REFERENCES 

  1. Barrett A.J., Battiwala M. Relapse after allogeneic stem cell transplantation. Exp. Rev. Hematol. 2012; 3(4): 429–41.
  2. Tamura K., Kanazawa T., Suzuki M. et al. Successful rapid discontinuation of immunosuppressive therapy at molecular relapse after allogeneic bone marrow transplantation in a pediatric patient with myelodysplastic syndrome. Am. J. Hematol. 2006; 81: 139–41.
  3. Wertheim G.B., Bagg A. Minimal residual disease testing to predict relapse following transplant for AML and high-grade myelodysplastic syndromes. Exp. Rev. Mol. Diagn. 2011; 11(4): 361–6.
  4. Brieger J., Weidmann E., Fenchel K. et al. The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia. 1994; 8: 2138–43.
  5. Inoue K., Sugiyama H., Ogawa H. et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994; 84: 3071–9.
  6. Inoue K., Ogawa H., Yamagami T. et al. Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood. 1996; 88: 2267–78.
  7. Tamaki H., Ogawa H., Inoue K. et al. Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia. Blood. 1996; 88: 4396–8.
  8. Patmasirivat P., Fraizer G., Kantarjian H. et al. WT1 and GATA1 expression in myelodysplastic syndrome and acute leukemia. Leukemia. 1999; 13: 891–900.
  9. Ogawa H., Ikegame K., Kawakami M., Tamaki H. WT1 gene transcript assay for relapse in acute leukemia after transplantation. Leuk. Lymphoma. 2004; 45: 1747–53.
  10. Cilloni D., Gottardi E., De Micheli D. et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002; 16: 2115–21.
  11. Cilloni D., Messa F., Arruga F. et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008; 93: 921–4.
  12. Candoni A., Tribelli M., Cilloni D. et al. Quantitative assessment of WT1 gene expression after allogeneic stem cell transplantation is a useful tool for monitoring minimal residual disease in acute myeloid leukemia. Eur. J. Haematol. 2009; 82: 61–8.
  13. Miyawaki S., Hatsumi N., Tamaki T. et al. Prognostic potential of detection of WT1 mRNA level in peripheral blood in adult acute myeloid leukemia. Leuk. Lymphoma 2010; 51: 1855–61.
  14. Zhao X.-S., Jin S., Zhu H.-H. et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2012; 47: 499–507.
  15. Nomdedeu J.F., Hoyos M., Carricondo M. et al. Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia. 2013; 27: 2157–64.
  16. Pozzi S., Geroldi S., Tedone E. et al. Leukaemia relapse after allogeneic transplants for acute myeloid leukaemia: predictive role of WT1 expression. Br. J. Haematol. 2013, 160: 503–9.
  17. Frairia Ch., Aydin S., Riera L. et al. WT1 expression in acute myeloid leukemia: a useful marker for improving therapy response evaluation. Blood. 2013; 123(21): 2588.
  18. Tamaki H., Ogawa H., Ohyashiki K. et al. The Wilm’s tumor gene is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia. 1999; 13: 393–9.
  19. Patmasiriwat P., Fraizer G., Kantarjian H. et al. WT1 and GATA1 expression in myelodysplastic syndrome and acute leukemia. Leukemia. 1999; 13: 891–900.
  20. Cilloni D., Gottardi E., Messa F. et al. Significant correlation between the degree of WT1 expression and the international prognostic scoring system score in patients with myelodysplastic syndromes. J. Clin. Oncol. 2003; 21: 1988–95.
  21. Cilloni D., Saglio G. WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Haematologica. 2004; 112: 79–84.
  22. Абдулкадыров К.М., Грицаев С.В., Капустин С.И. и др. Экспрессия гена опухоли Вилмса (WT1) в клетках крови больных миелодиcпластическим синдромом. Вопросы онкологии 2004; 50(6): 668–71. [Abdulkadyrov K.M., Gritsaev S.V., Kapustin S.I. et al. Wilms tumor gene (WT1) expression in blood cells of patients with myelodysplastic syndrome. Voprosy Onkologii. 2004; 50(6): 668–71. (In Russ.)]
  23. Bader P., Niemeyer C., Weber G. et al. WT1 gene expression: useful marker for minimal residual disease in childhood myelodysplastic syndromes and juvenile myelomonocytic leukemia? Eur. J. Haematol. 2004; 73: 25–8.
  24. Iwasaki T., Sugisaki C., Nagata K. et al. Wilms’ tumor 1 message and protein expression in bone marrow failure syndrome and acute leukemia. Pathol. Int. 2007; 57: 645–51.
  25. Qin Y.-Z., Zhu H.-H., Liu Y.-R. et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk. Lymphoma. 2012; DOI: 10.3109/10428194.2012.743656.
  26. Ueda Y., Mizutani C., Nannya Y. et al. Clinical evaluation of WT1 mRNA expression levels in peripheral blood and bone marrow in patients with myelodysplastic syndromes. Leuk. Lymphoma. 2013; 54(7): 1450–8.
  27. Lange T., Hubmann M., Burkhardt R. et al. Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia. 2011; 25: 498–505.
  28. Maurer U., Brieger J., Weidmann E. et al. The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp. Hematol. 1997; 25: 945–50.
  29. Kwon M., Marti nez-Laperche C., Infante M. et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ Tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell transplantation: correlation with flow cytometry and chimerism. Biol. Blood Marrow Transplant. 2012; 18: 1235–42.
  30. Jacobsohn D.A., Tse W.T., Chaleff S. et al. High WT1 gene expression before haematopoietic stem cell transplant in children with acute myeloid leukaemia predicts poor event-free survival. Br. J. Haematol. 2009; 146: 669–74.
  31. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миело- диспластические синдромы с высокой экспрессией гена EVI1: теоретиче- ские и клинические аспекты. Клин. онкогематол. 2012; 5(4): 361–4. [Mamaev N.N., Gorbunova A.V., Gindina T.L. et al. Leukemias and myelodysplastic syndromes with high EVI1 gene expression: theoretical and clinical aspects. Klin. Onkogematol. 2012; 5(4): 361–4. (In Russ.)]
  32. Alonso-Dominguez J.M., Tenorio M., Velasco D. et al. Correlation of WT1 expression with the burden of total and residual leukemic blasts in bone marrow samples of acute myeloid leukemia patients. Cancer Gen. 2012; 205: 190–1.
  33. Gerds A.T., Deeg H.J. Transplantation for myelodysplastic syndrome in the era of hypomethylating agents. Curr. Opin. Hematol. 2012; 19: 71–5.
  34. Nishihori T., Perkins J., Mishra A. et al. Pretransplantation 5-Azacitidine in high-risk myelodysplastic syndrome. Biol. Blood Marrow Transplant. 2014; 20: 776–80.
  35. Raza A., Gezer S., Mundle S. et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood. 1995; 86(1): 268–76.