Peripherally inserted central catheter: literature review

L.V. Tsepenshchikov and V.K. Lyadov

Therapeutic-and-rehabilitation Center, Moscow, Russian Federation


ABSTRACT

A peripherally inserted central catheter is the minimally invasive device used for the long-term central venous access. It is placed on the inner surface of the arm, reduces the risk of complications, and facilitates an outpatient management. This article presents the literature review on the catheter types used in practical oncology, but, unfortunately, quite rarely in the Russian Federation. We describe all available PICC designs, their characteristics, indications and contraindications to implantation, as well as prevention and management of complications.


Keywords: PICC, PIC-catheter, PIC-line, peripherally inserted central catheter, central venous catheter

Read in PDF (RUS)pdficon


REFERENCES

  1. Bishop L., Dougherty L., Bodenham A. et al. Guidelines on the insertion and management of central venous access devices in adults. Int. J. Lab. Hematol. 2007; 29: 261–78.
  2. Goossens G.A., Vrebos M., Stas M. et al. Central vascular access devices in oncology and hematology considered from a different point of view: how do patients experience their vascular access ports? J. Infus. Nurs. 2005; 28: 61–7.
  3. Galloway S., Bodenham A. Long-term central venous access. Br. J. Anaesth. 2004; 92: 722–34.
  4. Horattas M.C., Trupiano J., Hopkins S. et al. Changing concepts in longterm central venous access: catheter selection and cost savings. Am. J. Infect. Control 2001; 29: 32–40.
  5. Bow E.J., Kilpatrick M.G., Clinch J.J. Totally implantable venous access ports systems for patients receiving chemotherapy for solid tissue malignancies: A randomized controlled clinical trial examining the safety, efficacy, costs, and impact on quality of life. J. Clin. Oncol. 1999; 17(4): 1267.
  6. Chernecky C. Satisfaction versus dissatisfaction with venous access devices in outpatient oncology: a pilot study. Oncol. Nurs. Forum 2001; 28(10): 1613–6.
  7. Maki D.G., Kluger D.M., Crnich C.J. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin. Proc. 2006; 81: 1159–71.
  8. O’Grady N.P., Alexander M., Dellinger E.P. et al. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Morb. Mortal. Wkly Rep. 2002; 51: 1–36.
  9. Periard D., Monney P., Waeber G. et al. Randomized controlled trial of peripherally inserted central catheters vs peripheral catheters for middle duration in hospital intravenous therapy. J. Thromb. Haemost. 2008; 6: 1281–8.
  10. Registered Nurses’ Association of Ontario. Nursing Best Practice Guidelines. Project: Assessment and Device Selection for Vascular Access. Available at: www.rnao.org/bestpractices. Accessed July 14, 2008.
  11. Royal College of Nursing IV Therapy Forum. Standards for Infusion Therapy. London, UK: Royal College of Nursing; 2005. Available at: http://www. rcn.org.uk/_data/assets/pdf_file/0005/78593/002179.pdf. Accessed August 15, 2008.
  12. Poole S.M. Quality Issues in Access Device Management. J. Intraven. Nurs. 1999; 22(6 Suppl.): S26–31.
  13. Hsieh C.C., Weng H.H., Huang W.S. et al. Analysis of risk factors for central venous port failure in cancer patients. World J. Gastroenterol. 2009; 15(37): 4709–14.
  14. Pittiruti M., Malerba M., Carriero C. et al. Which is the easiest and safest technique for central venous access? A retrospective survey of more than 5,400 cases. J. Vasc. Access 2000; 1(3): 100–7.
  15. Puntis J.W. Percutaneous insertion of central venous feeding catheters. Arch. Dis. Child. 1986; 61(11): 1138–40. 16. Ryder M.A. Peripherally inserted central venous catheters. Nurs. Clin. N. Am. 1993; 28(4): 937–71.
  16. Sofocleous C.T., Schur I., Cooper S.G. et al. Sonographically guided placement of peripherally inserted central venous catheters: review of 355 procedures. Am. J. Roentgenol. 1998; 170(6): 1613–6.
  17. Biffi R., De Braud F., Orsi F. et al. A randomized, prospective trial of central venous ports connected to standard open-ended or Groshong catheters in adult oncology patients. Cancer 2001; 92: 1204–12.
  18. Farkas J.C., Liu N., Bleriot J.P. et al. Single- versus triple-lumen central catheter-related sepsis: a prospective randomized study in a critically ill population. Am. J. Med. 1992; 93: 277–82.
  19. Gallieni M., Pittiruti M., Biffi R. Vascular access in oncology patients. CA Cancer J. Clin. 2008; 58(6): 323–46. doi: 10.3322/CA.2008.0015. Epub 2008 Oct 29.
  20. Crnich C.J., Halfmann J.A., Crone W.C. et al. The effects of prolonged ethanol exposure on the mechanical properties of polyurethane and silicone catheters used for intravascular access. Infect. Control Hosp. Epidemiol. 2005; 26(8): 708–14.
  21. Curelaru I., Gustavsson B., Hansson A.H. et al. Material thrombogenicity in central venous catheterization II. A comparison between plain silicone elastomer, and plain polyethylene, long, antebrachial catheters. Acta Anaesthesiol. Scand. 1983; 27(2): 158–64.
  22. Linder L.E., Curelaru I., Gustavsson B. et al. Material thrombogenicity in central venous catheterization: a comparison between soft, antebrachial catheters of silicone elastomer and polyurethane. J. Parenter. Enteral. Nutr. 1984; 8(4): 399–406.
  23. Johnston A.J., Streater C.T., Noorani R. et al. The effect of peripherally inserted central catheter (PICC) valve technology on catheter occlusion rates — The ‘ELeCTRiC’ study. J. Vasc. Access 2012; 13(4): 421–5. doi: 10.5301/ jva.5000071.
  24. Ong C.K., Venkatesh S.K., Lau G.B. et al. Prospective randomized comparative evaluation of proximal valve polyurethane and distal valve silicone peripherally inserted central catheters. J. Vasc. Interv. Radiol. 2010; 21(8): 1191–6. doi: 10.1016/j.jvir.2010.04.020. Epub 2010 Jul 3.
  25. Dezfulian C., Lavelle J., Nallamothu B.K. et al. Rates of infection for single-lumen versus multilumen central venous catheters: a meta-analysis. Crit. Care Med. 2003; 31: 2385–90.
  26. Zurcher M., Tramer M.R., Walder B. Colonization and bloodstream infection with single- versus multi-lumen central venous catheters: a quantitative systematic review. Anesth. Analg. 2004; 99(1): 177–82.
  27. Safdar N., Maki D.G. Risk of catheter-related bloodstream infection with peripherally inserted central venous catheters used in hospitalized patients. Chest 2005; 128(2): 489–95.
  28. Elsharkawy H., Lewis B.S., Steiger E. et al. Post placement positional atrial fibrillation and peripherally inserted central catheters. Minerva Anestesiol. 2009; 75(7–8): 471–4. Epub 2008 Jan 24.
  29. Yamamoto A.J., Solomon J.A., Soulen M.C. et al. Sutureless securement device reduces complications of peripherally inserted central venous catheters. J. Vasc. Interv. Radiol. 2002; 13(1): 77–81.
  30. Vescia S., Baumgartner A.K., Jacobs V.R. et al. Management of venous port systems in oncology: a review of current evidence. Ann. Oncol. 2008; 19(1): 9–15. Epub 2007 Sep 9.
  31. Schiffer C.A., Mangu P.B., Wade J.C. et al. Central venous catheter care for the patient with cancer: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2013; 31(10): 1357–70. doi: 10.1200/ JCO.2012.45.5733. Epub 2013 Mar 4.
  32. Assessment and device selection for vascular access, RNAO, 2004. (Project/Initiative: Nursing Best Practice Research Centre (NBPRC), Type of Guideline: Clinical, Status: Published, Publish Date: 2004). http://rnao.ca/
  33. Alport B., Burbridge B., Lim H. Bard PowerPICC Solo2 vs Cook TurboJect: A Tale of Two PICCs. Can. Assoc. Radiol. J. 2012; 63(4): 323–8. doi: 10.1016/j.carj.2011.05.002. Epub 2012 Jan 30.
  34. Schwengel D.A., McGready J., Berenholtz S.M. et al. Peripherally inserted central catheters: a randomized, controlled, prospective trial in pediatric surgical patients. Anesth. Analg. 2004; 99(4): 1038–43.
  35. Sansivero G.E. Features and selection of vascular access devices. Semin. Oncol. Nurs. 2010; 26(2): 88–101. doi: 10.1016/j.soncn.2010.02.006.
  36. Taylor R.W., Palagiri A.V. Central venous catheterization. Crit. Care Med. 2007; 35(5): 1390–6.
  37. Ryder M.A. Peripherally inserted central venous catheters. Nurs. Clin. N. Am. 1993; 28(4): 937–71.
  38. Pratt R.J., Pellowe C.M., Wilson J.A. et al. Epic2: National evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. J. Hosp. Infect. 2007; 65(Suppl. 1): S1–64.
  39. Miller D.L., O’Grady N.P. Guidelines for the prevention of intravascular catheter-related infections: recommendations relevant to interventional radiology for venous catheter placement and maintenance. J. Vasc. Interv. Radiol. 2012; 23(8): 997–1007. doi: 10.1016/j.jvir.2012.04.023.
  40. Leroyer C., Lasheras A., Marie V. et al. Prospective follow-up of complications related to peripherally inserted central catheters. Med. Mal. Infect. 2013; 43(8): 350–5. doi: 10.1016/j.medmal.2013.06.013. Epub 2013 Jul 19.
  41. Grove J.R., Pevec W.C. Venous thrombosis related to peripherally inserted central catheters. J. Vasc. Interv. Radiol. 2000; 11: 837–40.
  42. Forauer A.R., Alonzo M. Change in peripherally inserted central catheter tip position with abduction and adduction of the upper extremity. J. Vasc. Interv. Radiol. 2000; 11(10): 1315–8.
  43. Motta Leal Filho J.M., Carnevale F.C., Nasser F. et al. Endovascular techniques and procedures, methods for removal of intravascular foreign bodies. Rev. Bras. Cir. Cardiovasc. 2010; 25(2): 202–8.
  44. Chow L.M., Friedman J.N., Macarthur C. et al. Peripherally inserted central catheter (PICC) fracture and embolization in the pediatric population. J. Pediatr. 2003; 142(2): 141–4.
  45. Li J., Fan Y.Y., Xin M.Z. et al. A randomised, controlled trial comparing the long-term effects of peripherally inserted central catheter placement in chemotherapy patients using B-mode ultrasound with modified Seldinger technique versus blind puncture. Eur. J. Oncol. Nurs. 2013; pii: S1462-3889(13)00084-7. doi: 10.1016/j.ejon.2013.08.003.
  46. Gong P., Huang X.E., Chen C.Y. et al. Comparison of complications of peripherally inserted central catheters with ultrasound guidance or conventional methods in cancer patients. Asian Pac. J. Cancer. Prev. 2012; 13(5): 1873–5.
  47. Mermel L.A., Farr B.M., Sherertz R.J. et al. Guidelines for the management of intravascular catheter-related infections. Clin. Infect. Dis. 2001; 32(9): 1249–72. Epub 2001 Apr 3.
  48. Raad I., Hanna H., Maki D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect. Dis. 2007; 7(10): 645–57.
  49. Yap Y.S., Karapetis C., Lerose S. et al. Reducing the risk of peripherally inserted central catheter line complications in the oncology setting. Eur. J. Cancer Care (Engl.) 2006; 15: 342–7.
  50. Cheong K., Perry D., Karapetis C. et al. High rate of complications associated with peripherally inserted central venous catheters in patients with solid tumours. Intern. Med. J. 2004; 34: 234–8.
  51. Gallieni M. Transparent film for intravascular catheter exit-site dressings. J. Vasc. Access 2004; 5(2): 69–75.
  52. Ho K.M., Litton E. Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. Antimicrob. Chemother. 2006; 58(2): 281–7. Epub 2006 Jun 6.
  53. Kuter D.J. Thrombotic complications of central venous catheters in cancer patients. Oncologist 2004; 9(2): 207–16.
  54. Verso M., Agnelli G. Venous thromboembolism associated with long-term use of central venous catheters in cancer patients. J. Clin. Oncol. 2003; 21(19): 3665–75.
  55. Campisi C., Biffi R., Pittiruti M. Catheter-related central venous thrombosis: the development of a nationwide consensus paper in Italy. J. Assoc. Vasc. Access 2007; 12: 38–46. DOI: 10.2309/java.12-1-10.
  56. Zuha R., Price T., Powles R. et al. Paradoxical emboli after central venous catheter removal. Ann. Oncol. 2000; 11(7): 885–6.
  57. Karthaus M., Kretzschmar A., Kroning H. et al. Dalteparin for prevention of catheter-related complications in cancer patients with central venous catheters: final results of a double-blind, placebo-controlled phase III trial. Ann. Oncol. 2006; 17: 289–96.
  58. Chan A., Iannucci A., Dager W.E. Systemic anticoagulant prophylaxis for central catheter- associated venous thrombosis in cancer patients. Ann. Pharmacother. 2007; 41: 635–41.
  59. Agnelli G., Verso M. Therapy Insight: venous-catheter-related thrombosis in cancer patients. Nat. Clin. Pract. Oncol. 2006; 3: 214–22.
  60. Fagnani D., Franchi R., Porta C. et al. Thrombosis-related complications and mortality in cancer patients with central venous devices: an observational study on the effect of antithrombotic prophylaxis. Ann. Oncol. 2007; 18: 551–5.
  61. Liem T.K., Yanit K.E., Moseley S.E. et al. Peripherally inserted central catheter usage patterns and associated symptomatic upper extremity venous thrombosis. J. Vasc. Surg. 2012; 55(3): 761–7. doi: 10.1016/j.jvs.2011.10.005.
  62. Petersen J., Delaney J.H., Brakstad M.T. et al. Silicone venous access devices positioned with their tips high in the superior vena cava are more likely to malfunction. Am. J. Surg. 1999; 178(1): 38–41.
  63. van Rooden C.J., Schippers E.F., Barge R.M. et al. Infectious complications of central venous catheters increase the risk of catheter-related thrombosis in hematology patients: a prospective study. J. Clin. Oncol. 2005; 23: 2655–60.
  64. Kabsy Y., Baudin G., Vinti H. et al. Peripherally inserted central catheters (PICC) in oncohematology. Bull. Cancer 2010; 97(9): 1067–71. doi: 10.1684/ bdc.2010.1167.
  65. Abedin S., Kapoor G. Peripherally Inserted central venous catheters are a good option for prolonged venous access in children with cancer. Pediatr. Blood Cancer 2008; 51: 251–5.
  66. Vidal V., Jacquier A., Monnet O. et al. Peripherally inserted central catheters (PICC): a promising technique. J. Radiol. 2008; 89: 907–9.
  67. Amerasekera S.S., Jones C.M., Patel R. et al. Imaging of the complications of peripherally inserted central venous catheters. Clin. Radiol. 2009; 64: 832–40.
  68. Walshe L.J., Malak S.F., Eagan J. et al. Complication rates among cancer patients with peripherally inserted central catheters. J. Clin. Oncol. 2002; 20: 3276–81.
  69. http://www.bardaccess.com/nurse-powergroshong.php
  70. http://www.medicalexpo.fr/prod/bard-access-systems/catheterscentraux-insertion-peripherique-78824-487750.html#product-item_549075
  71. http://www.ufrgs.br/imunovet/molecular_immunology/invivo_surgical. html
  72. http://crosmed.com/lang-en/gastro-oncologia/75-valvula-groshong.html
  73. http://richardwarrendesign.com/Workpages/Med%206.html
  74. http://www.medicalexpo.fr/prod/bard-access-systems/catheterscentraux-insertion-peripherique-78824-487750.html#product-item_549075
  75. http://www.bardaccess.com/ultra-siterite-6.php?section=Overview
  76. http://www.bluephantom.com/details.aspx?cid=&pid=68
  77. http://bardaccess.com/acc-guardiva.php?section=Overview
  78. http://www.wolfmed.com/statlock-picc-plus-sp-50-bx.html.

Efficacy of platelet transfusions during standard induction chemotherapy in patients with acute myeloid leukemia

Davaasambuu1, S.V. Gritsayev2, T.V. Glazanova2, S.A. Tiranova2, N.A. Potikhonova2, I.S. Martynkevtch2, and A.V. Chechetkin2

1 I.I. Mechnikov Northwest State Medical University, RF Ministry of Health, Saint Petersburg, Russian Federation

2 Russian Research Institute of Hematology and Transfusiology, RF FMBA, Saint Petersburg, Russian Federation


ABSTRACT

The efficacy of platelet transfusions that is mainly determined by the immunological mechanisms still depends on the non-immunological factors causing the low platelet count increment after transfusions. The objective of the study was to identify clinical and hematological parameters that were associated with the efficacy of the platelet transfusions during induction chemotherapy according to “7+3” regimen in the patients with acute myeloid leukemias (AML) The data on 41 patients (median age: 42) were analyzed. The platelet transfusion was considered efficacious when the 24-corrected platelet count increment was ³ 4.5 ´ 109/L. The patients were divided into 2 groups according to the efficacy ³ 50 % or < 50 %, respectively. The groups showed no significant difference with respect to the age, AML variants according to the WHO classification and ELN prognostic scale, the response to chemotherapy, or the median of overall survival (OS). At the same time, the portion of the patients with the bone marrow (BM) blasts of myeloid origin (M1 and M2 variants of AML according to FAB classification) was greater in the group with the platelet transfusion efficacy of ³ 50 %. In the group of < 50 % platelet transfusion efficacy, there was the greater portion of patients with BM blasts of monocytic origin (M4 and M5 variants according to FAB classification (=.001). Also, the trend towards the decreased median of OS was noted in the patients with the pre-transfusion platelet count below 10 ´ 109/L (=0.049).


Keywords: acute myeloid leukemia, “7+3” induction chemotherapy, platelet transfusion.

Read in PDF (RUS)pdficon


REFERENCES

  1. Волкова М.А. (ред.) Клиническая онкогематология. М.: Медицина, 2007. [Volkova M.A. (red.) Klinicheskaya onkogematologiya (Volkova M.A. (ed.). Clinical oncohematology). M.: Meditsina, 2007.]
  2. Pulte D., Gondos A., Brenner H. Improvements in survival of adults diagnosed with acute myeloblastic leukemia in the early 21st century. Haematologica 2008; 93(4): 594–600.
  3. Derolf A.R., Kristinsson S.Y., Andersson T.M. et al. Improved patient survival for acute myeloid leukemia: a population-based study of 9729 patients diagnosed I Sweden between 1973 and 2005. Blood 2009; 113(16): 3666–73.
  4. Schiffer C.A., Anderson K.A., Bennett C.L. et al. Platelet transfusion for patients with cancer: clinical practice guidelines of the American Society of Clinical Oncology. J. Clin. Oncol. 2001; 19(5): 1519–38.
  5. Lim Y.A., Lee W.G., Cho S.R. et al. A study of blood usage by diagnoses in a Korean university hospital. Vox. Sang. 2004; 86(1): 54–61.
  6. Wells A.W., Llewelyn C.A., Casbard A. et al. The EASTR study: indications for transfusion and estimates of transfusion recipient numbers in hospitals supplied by the National Blood Service. Transfus. Med. 2009; 19(6): 315–28.
  7. Wandt H., Schaefer-Eckart K., Wendelin K. et al. Therapeutic platelet transfusion versus routine prophylactic transfusion in patients with haematological malignancies: an open-label, multicentre, randomised study. Lancet 2012; 380(9850): 1309–16.
  8. Stanworth S.J., Estcourt L.J., Powter G. et al. A no-prophylaxis platelettransfusion strategy for hematologic cancers. N. Engl. J. Med. 2013; 368(19): 1771–80.
  9. Hod E., Schwartz J. Platelet transfusion refractoriness. Br. J. Haematol. 2008; 142(3): 348–60.
  10. Slichter S.J., Davis K., Enright H. et al. Factors affecting posttransfusion platelet increments, platelet refractoriness, and platelet transfusion intervals in thrombocytopenic patients. Blood 2005; 105(10): 4106–14.
  11. Leal-Noval S.R., Arellano-Orden V., Maestre-Romero A. et al. Impact of national transfusion indicators on appropriate blood usage in critically ill patients. Transfusion 2011; 51(9): 1957–65.
  12. Cognasse F., Payrat J.M., Corash L., Osselaer J.C., Garraud O. Platelet components associated with acute transfusion reactions: the role of platelet derived soluble CD40 ligand. Blood 2008; 112(12): 4779–80.
  13. Semple J.W., Italiano J.E. Jr., Freedman J. Platelets and the immune continuum. Nat. Rev. Immunol. 2011; 11(4): 264–74.
  14. Murphy M.F., Metcalfe P., Ord J., Lister T.A., Waters A.H. Disappearance of HLA and platelet-specific antibodies in acute leukaemia patients alloimmunized by multiple transfusions. Br. J. Haematol. 1987; 67(3): 255–60.
  15. Ishida A., Handa M., Wakui M. et al. Clinical factors influencing posttransfusion platelet increment in patients undergoing hematopoietic progenitor cell transplantation — a prospective analysis. Transfusion 1998; 38(9): 839–47.
  16. Li G., Liu F., Mao X., Hu L. The investigation of platelet transfusion refractory in 69 malignant patients undergoing hematopoietic stem cell transplantation. Transfus. Apher. Sci. 2011; 45(1): 21–4.
  17. Slichter S.J., Bolgiano D., Kao K.J. et al. Persistence of lymphocytotoxic antibodies in patients in the trial to reduce alloimmunization to platelets: implications for using modified blood products. Transfus. Med. Rev. 2011; 25(2): 102–10.
  18. Sintnicolaas K., van Marwijk Kooij M., van Prooijen H.C. et al. Leukocyte depletion of random single-donor platelet transfusions does not prevent secondary human leukocyte antigen-alloimmunization and refractoriness: a randomized prospective study. Blood 1995; 85(3): 82482–8.
  19. Seftel M.D., Growe G.H., Petraszko T. et al. Universal prestorage leukoreduction in Canada decreases platelet alloimmunization and refractoriness. Blood 2004; 103(1): 333–9.
  20. Brand A., Claas F.H., Voogt P.J., Wasser M.N., Eernisse J.G. Alloimmunization after leukocyte-depleted multiple random donor platelet transfusions. Vox. Sang. 1988; 54(3): 160–6.
  21. Murphy M.F., Waters A.H. Platelet transfusions: The problem of refractoriness. Blood Rev. 1990; 4(1): 16–24.
  22. Jackman R.P., Deng X., Bolgiano D. et al. Low-level HLA antibodies do not predict platelet transfusion failure in TRAP study participants. Blood 2013; 121(16): 3261–6.
  23. Doughty H.A., Murphy M.F., Metcalfe P. et al. Relative importance of immune and non-immune causes of platelet refractoriness. Vox. Sang. 1994; 66(3): 200–5.
  24. Vardiman J.W., Thiele J., Arber D.A. et al. The 2008 revision of the World Health Organisation (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2008; 114(5): 937–51.
  25. Bennett J.M., Catovsky D., Daniel M.T. et al. Proposals for the classification of the acute leukaemias. French–American–British (FAB) Cooperative Group. Br. J. Haematol. 1976; 33(4): 451–8.
  26. Dohner H., Estey E.H., Amadori S. et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115(3): 453–74.
  27. Cheson B.D., Bennett J.M., Kopecky K.J. et al. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J. Clin. Oncol. 2003; 21(24): 4642–9.
  28. Lowenberg B., Ossenkoppele G.J., van Putten W. et al. High-dose daunorubicin in older patients with acute myeloid leukemia. N. Engl. J. Med. 2009; 361(13): 1235–48.
  29. Juliusson G. Older patients with acute myeloid leukemia benefit from intensive chemotherapy: an update from the Swedish acute leukemia registry. Clin. Lymph. Myeloma Leuk. 2011; 11(Suppl. 1): S54–9.
  30. Arellano M., Winton E., Pan L. et al. High-dose cytarabine induction is well tolerated and active in patients with de novo acute myeloid leukemia older than 60 years. Cancer 2012; 118(2): 428–33.
  31. Грицаев С.В., Мартынкевич И.С., Мартыненко Л.С. и др. Возраст и кариотип — факторы риска у больных первичным острым миелоидным лейкозом. Клин. онкогематол. 2010; 3(4): 359–64. [Gritsayev S.V., Martynkevich I.S., Martynenko L.S., et al. Age and karyotype — risk factors in patients with primary acute myeloid leukemia. Klin. onkogematol. 2010; 3(4): 359–64. (In Russ.)].
  32. Бондаренко С.Н., Семенова Е.В., Вавилов В.Н. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при остром миело- бластном лейкозе в первой ремиссии. Тер. арх. 2013; 7: 18–25. [Bondarenko S.N., Semenova Ye.V., Vavilov V.N., et al. Allogeneic hematopoietic stem cell transplantation in acute myelogeneous leukemia in first remission. Ter. arkh. 2013; 7: 18–25. (In Russ.)].
  33. Burnett A.K., Milligan D., Prentice A.G. et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer 2007; 109(6): 1114–24.
  34. Грицаев С.В., Мартынкевич И.С., Кострома И.И. Азацитидин и миело- диспластический синдром. Гематол. и трансфузиол. 2012; 1: 23–9. [Gritsayev S.V., Martynkevich I.S., Kostroma I.I. Azacitidine and myelodisplastic syndrome. Gematol. i transfuziol. 2012; 1: 23–9. (In Russ.)].
  35. Zumberg M.S., Del Rosario M.L., Nejame C.F. et al. A prospective randomized trial of prophylactic platelet transfusion and bleeding incidence in hematopoietic stem cell transplant recipients. Biol. Blood Marrow Transplant. 2002; 8(10): 569–76.
  36. Levin M.D., de Veld J.C., van der Holt B., van’t Veer M.B. Immune and nonimmune causes of low recovery from leukodepleted platelet transfusions: a prospective study. Ann. Hematol. 2003; 82(6): 357–62.
  37. Murphy M.F., Waters A.H. Immunological aspects of platelet transfusions. Br. J. Haematol. 1985; 60(3): 409–14.
  38. Oksanen K. Leukocyte-depleted blood components prevent platelet refractoriness in patients with acute myeloid leukemia. Eur. J. Haematol. 1994; 53(2): 100–7.
  39. Klumpp T.R., Herman J.H., Innis S. et al. Factors associated with response to platelet transfusion following hematopoietic stem cell transplantation. Bone Marrow Transplant. 1996; 17(6): 1035–41.
  40. Balduini C.L., Salvaneschi L., Klersy C. et al. Factors influencing posttransfusional platelet increment in pediatric patients given hematopoietic stem cell transplantation. Leukemia 2001; 15(12): 1885–91.
  41. Saito S., Ota S., Seshimo H. et al. Platelet transfusion refractoriness caused by a mismatch in HLA-C antigens. Transfusion 2002; 42(3): 302–8.
  42. Gordon B., Tarantolo S., Ruby E. et al. Increased platelet transfusion requirement is associated with multiple organ dysfunctions in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant. 1998; 22(10): 999–1003.
  43. Hall P.D., Benko H., Hogan K.R., Stuart R.K. The influence of serum tumor necrosis factor-alpha and interleukin-6 concentrations on nonhematologic toxicity and hematologic recovery in patients with acute myelogenous leukemia. Exp. Hematol. 1995; 23(12): 1256–60.
  44. Eljaafari A., van Snick J., Voisin A. et al. Alloreaction increases or restores CD40, CD54, and/or HLA molecule expression in acute myelogenous leukemia blasts, through secretion of inflammatory cytokines: dominant role for TNFbeta, in concert with IFNgamma. Leukemia 2006; 20(11): 1992–2001.
  45. Cimino G., Amadori S., Cava M.C. et al. Serum interleukin-2 (IL-2), soluble IL-2 receptors and tumor necrosis factor-alfa levels are significantly increased in acute myeloid leukemia patients. Leukemia 1991; 5(1): 32–5.
  46. Tsimberidou A.M., Estey E., Wen S. et al. The prognostic significance of cytokine levels in newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndromes. Cancer 2008; 113(7): 1605–13.
  47. Guarini A., Sanavio F., Novarino A. et al. Thrombocytopenia in acute leukaemia patients treated with IL2: cytolytic effect of LAK cells on megakaryocytic progenitors. Br. J. Haematol. 1991; 79(3): 451–6.
  48. Sekeres M.A., Elson P., Kalaycio M.E. et al. Time from diagnosis to treatment initiation predicts survival in younger, but not older, acute myeloid leukemia patients. Blood 2009; 113(1): 28–36.
  49. Bertoli S., Berard E., Huguet F. et al. Time from diagnosis to intensive chemotherapy initiation does not adversely impact the outcome of patients with acute myeloid leukemia. Blood 2013; 121(14): 2618–26.
  50. Kurzrock R., Kantarjian H., Wetzler M. et al. Ubiquitous expression of cytokines in diverse leukemias of lymphoid and myeloid lineage. Exp. Hematol. 1993; 21(1): 80–5.