Current Aspects in Early Diagnosis of Cardiotoxic Complications of Drug Therapy in Oncology: A Literature Review

GR Gimatdinova, OE Danilova, IL Davydkin, RK Khairetdinov, LA Rogozina

Samara State Medical University, 89 Chapaevskaya str., Samara, Russian Federation, 443099

For correspondence: Geliya Rifkatovna Gimatdinova, 89 Chapaevskaya str., Samara, Russian Federation, 443099; Tel.: +7(919)809-68-56; e-mail: gimatdinova1995@icloud.com

For citation: Gimatdinova GR, Danilova OE, Davydkin IL, et al. Current Aspects in Early Diagnosis of Cardiotoxic Complications of Drug Therapy in Oncology: A Literature Review. Clinical oncohematology. 2022;15(1):107–13. (In Russ).

DOI: 10.21320/2500-2139-2022-15-1-107-113


ABSTRACT

This analysis presents literature data, derived from open authoritative medical sources, dealing with current methods for earliest diagnosis of cardiotoxic complications, especially in the period of their subclinical manifestations. Opportunities and difficulties of diagnosing these complications are studied using the methods suggested, at the stage of subclinical myocardial dysfunction. The analysis results are presented in the form of a comparison chart covering positive aspects as well as the challenges occurring in real clinical practice. The current imaging methods showing the heart tissue condition and myocardial competence, characterize the relevant parameters more accurately. In addition to that, they enable to detect minimal changes as compared with standard 3D-echocardiography with the analysis of left ventricular ejection fraction. Therefore, many more new methods for studying cardiotoxicity should be implemented in real clinical practice.

Keywords: cardiotoxicity, PET/CT, EchoCG, myocardium, markers of cardiotoxicity, heart failure.

Received: August 5, 2021

Accepted: November 22, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Bhagat A, Kleinerman ES. Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. Adv Exp Med Biol. 2020;1257:181–92. doi: 10.1007/978-3-030-43032-0_15.
  2. Ganatra S, Nohria A, Shah S, et al. Upfront dexrazoxane for the reduction of anthracycline-induced cardiotoxicity in adults with preexisting cardiomyopathy and cancer: a consecutive case series. Cardiooncology. 2019;5(1):1–12. doi: 10.1186/s40959-019-0036-7.
  3. Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol. 2020;17(8):474–502. doi: 10.1038/s41569-020-0348-1.
  4. Asnani A. Cardiotoxicity of Immunotherapy: Incidence, Diagnosis, and Management. J Curr Oncol Rep. 2018;20(6):44. doi: 10.1007/s11912-018-0690-1.
  5. Graffagnino J, Kondapalli L, Arora G, et al. Strategies to Prevent Cardiotoxicity. J Curr Treat Options Oncol. 2020;21(4):32. doi: 10.1007/s11864-020-0722-6.
  6. Давыдкин И.Л., Наумова К.В., Осадчук А.М. и др. Кардиоваскулярная токсичность ингибиторов тирозинкиназы у пациентов с хроническим миелолейкозом. Клиническая онкогематология. 2018;11(4):378–87. doi: 10.21320/2500-2139-2018-11-4-378-387.
    [Davydkin IL, Naumova KV, Osadchuk AM, et al. Cardiovascular Toxicity of Tyrosine Kinase Inhibitors in Patients with Chronic Myeloid Leukemia. Clinical oncohematology. 2018;11(4):378–87. doi: 10.21320/2500-2139-2018-11-4-378-387. (In Russ)]
  7. ФГБОУ ВО «СамГМУ» Минздрава России. Протокол клинической апробации «Метод раннего выявления кардиотоксичности у больных с индолентными неходжкинскими лимфомами» от 04.2021 г. (электронный документ). Доступно по: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/055/517/original/2021-1-3_%D0%A1%D0%B0%D0%BC%D0%B0%D1%80%D1%81%D0%BA%D0%B8%D0%B9_%D0%93%D0%9C%D0%A3.pdf?1618911910. Ссылка активна на 15.09.2021.
    [Samara State Medical University. Clinical testing report “Method of early detection of cardiotoxicity in patients with indolent non-Hodgkin’s lymphomas” (Internet). Available from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/055/517/original/2021-1-3_%D0%A1%D0%B0%D0%BC%D0%B0%D1%80%D1%81%D0%BA%D0%B8%D0%B9_%D0%93%D0%9C%D0%A3.pdf?1618911910. (accessed 09.2021) (In Russ)]
  8. Totzeck M, Mincu RI, Heusch G, Rassaf T. Heart failure from cancer therapy: can we prevent it? ESC Heart Fail. 2019;6(4):856–62. doi: 10.1002/ehf2.12493.
  9. Li X, Li Y, Zhangd T, et al. Role of cardioprotective agents on chemotherapy-induced heart failure: A systematic review and network meta-analysis of randomized controlled trials. Pharmacol Res. 2020;151:104577. doi: 10.1016/j.phrs.2019.104577.
  10. Oikonomou EK, Kokkinidis DG, Kampaktsis PN, et al. Assessment of Prognostic Value of Left Ventricular Global Longitudinal Strain for Early Prediction of Chemotherapy-Induced Cardiotoxicity. JAMA Cardiol. 2019;4(10):1007–18. doi: 10.1001/jamacardio.2019.2952.
  11. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8. doi: 1161/CIRCULATIONAHA.114.013777.
  12. Кузьмина Т.П., Давыдкин И.Л., Терешина О.В. и др. Кардиотоксичность и методы ее диагностики у пациентов гематологического профиля (обзор литературы). Сибирский научный медицинский журнал. 2019;39(1):34–42. doi: 10.15372/SSMJ
    [Kuzmina TP, Davydkin IL, Tereshina OV, et al. Cardiotoxicity and methods of its diagnosis in hematology patients (review). Siberian scientific medical journal. 2019;39(1):34–42. doi: 10.15372/SSMJ20190105. (In Russ)]
  13. Awadalla M, Hassan Z, Alvi R, Neilan T. Advanced imaging modalities to detect cardiotoxicity. J Curr Probl Cancer. 2018;42(4):386–96. doi: 10.1016/j.currproblcancer.2018.05.005.
  14. Cardinale D, Sandri MТ, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54. doi: 10.1161/01.CIR.0000130926.51766.CC.
  15. Berliner D, Beutel G, Bauersachs J. Echocardiography and biomarkers for the diagnosis of cardiotoxicity. HERZ. 2020;45(7):637–44. doi: 10.1007/s00059-020-04957-5.
  16. Cardinale D, Iacopo F, Cipolla CM. Cardiotoxicity of Anthracyclines. Front Cardiovasc Med. 2020;7:26. doi: 10.3389/fcvm.2020.00026.
  17. Caspi O, Aronson D. Surviving Cancer without a Broken Heart. Rambam Maimonides Med J. 2019;10(2):e0012. doi: 10.5041/RMMJ.10366.
  18. Bouhlel I, Chabchoub I, Hajri E, et al. Early screening of cardiotoxicity of chemotherapy by echocardiography and myocardial biomarkers. Tunis Med. 2020;98(12):1017–23.
  19. Dessalvi CC, Pepe A, Penna C, et al. Sex differences in anthracycline-induced cardiotoxicity: the benefits of estrogens. Heart Fail Rev. 2019;24(6):915–25. doi: 10.1007/s10741-019-09820-2.
  20. Seraphim A, Westwood M, Bhuva AN, et al. Advanced imaging modalities to monitor for cardiotoxicity. Curr Treat Options Oncol. 2019;20(9):73. doi: 1007/s11864-019-0672-z.
  21. Galan-Arriola C, Lobo M, Vilchez-Tschischke JP, et al. Serial Magnetic Resonance Imaging to Identify Early Stages of Anthracycline-Induced Cardiotoxicity. J Am Coll Cardiol. 2019;73(7):779–91. doi: 10.1016/j.jacc.2018.11.046.
  22. Benameur N, Arous Y, Ben Abdallah N, Kraiem T. Comparison Between 3D Echocardiography and Cardiac Magnetic Resonance Imaging (CMRI) in the Measurement of Left Ventricular Volumes and Ejection Fraction. Curr Med Imaging Rev. 2019;15(7):654–60. doi: 10.2174/1573405614666180815115756.
  23. Pellegrini L, Sileno S, D’Agostino M, et al. MicroRNAs in cancer treatment-induced cardiotoxicity. Cancers. 2020;12(3):704. doi: 3390/cancers12030704.
  24. Комиссарова С.М., Чакова Н.Н., Ринейская Н.М. и др. Генетические причины аритмического фенотипа некомпактной кардиомиопатии. Евразийский кардиологический журнал. 2021;2:62–9. doi: 38109/2225-1685-2021-2-62-69.
    [Komissarova SM, Chaikova NN, Rineyskaya NM, et al. Arrhythmic phenotype of non-compact cardiomyopathy. Eurasian heart journal. 2021;2:62–9. doi: 10.38109/2225-1685-2021-2-62-69. (In Russ)]
  25. Upshaw JN. The Role of Biomarkers to Evaluate Cardiotoxicity. Curr Treat Options Oncol. 2020;21(10):79. doi: 10.1007/s11864-020-00777-1.
  26. Gramatyka М, Sokol Radiation metabolomics in the quest of cardiotoxicity biomarkers: the review. Int J Radiat Biol. 2020;96(3):349–59. doi: 10.1080/09553002.2020.1704299.
  27. Plana J, Thavendiranathan P, Bucciarelli-Ducci C, Lancellotti Multi-Modality Imaging in the Assessment of Cardiovascular Toxicity in the Cancer Patient. JACC Cardiovasc Imaging. 2018;11(8):1173–86. doi: 10.1016/j.jcmg.2018.06.003.
  28. Kim J, Feller ED, Chen W, et al. FDG PET/CT for early detection and localization of left ventricular assist device infection: impact on patient management and outcome. JACC Cardiovasc Imaging. 2019;12(4):722–9. doi: 10.1016/j.jcmg.2018.01.024.
  29. Chen W, Jeudy Assessment of Myocarditis: Cardiac MR, PET/CT, or PET/MR? Curr Cardiol Rep. 2019;21(8):76. doi: 10.1007/s11886-019-1158-0.
  30. Tam M, Patel V, Weinberg R, et al. Diagnostic Accuracy of FDG PET/CT in Suspected LVAD Infections: A Case Series, Systematic Review, and Meta-Analysis. JACC Cardiovasc Imaging. 2020;13(5):1191– doi: 10.1016/j.jcmg.2019.04.024.
  31. Cuellar SLB, Palacio D, Benveniste M, et al. Pitfalls and Misinterpretations of Cardiac Findings on PET/CT Imaging: A Careful Look at the Heart in Oncology Patients. Curr Probl Diagn Radiol. 2019;48(2):172–83. doi: 10.1067/j.cpradiol.2018.02.002.
  32. Valenta I, Pacher P, Dilsizian V, Schindler Novel Myocardial PET/CT Receptor Imaging and Potential Therapeutic Targets. Curr Cardiol Rep. 2019;21(7):55. doi: 10.1007/s11886-019-1148-2.