Dynamics of SARS-CoV-2 RNA Detection in Patients and Employees of the National Research Center for Hematology During the First Two Years of the Novel COVID-19 Pandemic

OG Starkova, DS Tikhomirov, AYu Krylova, IO Snezhko, EN Ovchinnikova, OA Aleshina, TA Tupoleva, TV Gaponova

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Oksana Gazimagomedovna Starkova, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(966)189-57-12; e-mail: oksanastar2006@rambler.ru

For citation: Starkova OG, Tikhomirov DS, Krylova AYu, et al. Dynamics of SARS-CoV-2 RNA Detection in Patients and Employees of the National Research Center for Hematology During the First Two Years of the Novel COVID-19 Pandemic. Clinical oncohematology. 2023;16(2):186–91. (In Russ).

DOI: 10.21320/2500-2139-2023-16-2-186-191


ABSTRACT

Background. COVID-19 required fundamental changes in healthcare management, also in medical care for oncological and hematological patients. Visits to healthcare organizations were minimized, 75 % of doctor appointments were converted to telemedicine consultations. The solutions aimed at preventing further spread of COVID-19 included establishing of observational units, distinguishing between patient and employee flows, regular SARS-CoV-2 RNA testing, reducing hospital stays and transferring patients with positive COVID-19 tests to the remodeled hospitals specializing in the novel coronavirus infection, as well as providing only emergency medical treatment and, as far as feasible, converting systemic chemotherapy to per os treatment, etc.

Aim. To assess SARS-CoV-2 RNA detection dynamics at the National Research Center for Hematology from April 2020 to January 2022 during the implementation of epidemic control measures.

Materials & Methods. The study was based on SARS-CoV-2 RNA testing of naso- and oropharyngeal samples obtained from patients and employees of the National Research Center for Hematology (hereafter referred to as Center). Besides, bronchoalveolar lavage fluid, lung tissue biopsies, and sputum were examined for SARS-CoV-2 RNA. The study was performed at the Center’s Virusology Department with the use of Sintol reagent kit “ПЦР-РВ-2019-nCov”.

Results. The study was based on 107,470 tests: 58,141 (54 %) of employees and 45,126 (46 %) of patients; 35,508 (33 %) of men and 71,962 (67 %) of women. In 1318 cases SARS-CoV-2 RNA was detected which accounted for 1.15 % of total test number. In the groups of employees/patients, virus detection rate was 1.42 %/1.09 % (< 0.001), and in male/female groups it was 1.3 %/1.2 %, respectively (= 0.154). The rate of infection in the groups of tumor and non-tumor hematological patients, as proved by SARS-CoV-2 RNA testing, was 1.24 % and 0.92 %, respectively (= 0.147). In employees and patients of the Center, a wave-like virus detection rate was observed. The largest number of infections was registered in April-June 2020 (79 patients and 170 employees), October-December 2020 (126 patients and 190 employees), and January 2022 (59 patients and 203 employees), which corresponded to the first, second, and fifth COVID-19 waves in Russia.

Conclusion. The analysis of data obtained at the National Research Center for Hematology demonstrated a wave-like SARS-CoV-2 RNA detection rate in employees and patients of the Center, which corresponded to the general trend in Russia. The SARS-CoV-2 RNA detection rate did not depend on sex of subjects under study and was not significantly different in the groups of tumor and non-tumor hematological patients. Although the patients in hematological hospital are more exposed to the risk of severe infectious complications, they showed laboratory markers for COVID-19 less frequently than the Center employees.

Keywords: COVID-19, SARS-CoV-2 RNA, novel coronavirus infection, hematological patients, tumor and non-tumor hematological diseases.

Received: September 5, 2022

Accepted: March 7, 2023

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Yang P, Wang X. COVID-19: a new challenge for human beings. Cell Mol Immunol. 2020;17(5):555–7. doi: 10.1038/s41423-020-0407-x.
  2. Bhagat S, Yadav N, Shah J, et al. Novel corona virus (COVID-19) pandemic: current status and possible strategies for detection and treatment of the disease. Expert Rev Anti Infect Ther. 2022;20(10):1275–98. doi: 10.1080/14787210.2021.1835469.
  3. Львов Д.К. Альховский С.В. Истоки пандемии COVID-19: экология и генетика коронавирусов (Betacoronavirus: Coronaviridae) SARS-COV, SARS-COV-2 (подрод Sarbecovirus), MERS-COV (подрод Merbecovirus). Вопросы вирусологии. 2020;65(2):62–70. doi: 10.36233/0507-4088-2020-65-2-62-70.
    [Lvov DK, Alkhovsky SV. Source of the COVID-19 pandemic: ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus). Problems of Virology. 2020;65(2):62–70. doi: 10.36233/0507-4088-2020-65-2-62-70. (In Russ)]
  4. Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–76. doi: 10.1056/NEJMoa030747/
  5. Львов Д.К., Альховский С.В., Колобухина Л.В., Бурцева Е.И. Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV. Вопросы вирусологии. 2020;65(1):6–16. doi: 10.36233/0507-4088-2020-65-1-6-15.
    [Lvov DK, Alkhovsky SV, Kolobukhina LV, Burtseva EI. Etiology of epidemic outbreaks COVID-19 in Wuhan, Hubei province, Chinese People Republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, Subgenus Sarbecovirus): lessons of SARS-CoV outbreak. Problems of Virology. 2020;65(1):6–16. doi: 10.36233/0507-4088-2020-65-1-6-15. (In Russ)]
  6. Гарафутдинов Р.Р., Мавзютов А.Р., Никоноров Ю.М. и др. Бетакоронавирус SARS-CoV-2, его геном, разнообразие генотипов и молекулярно-биологические меры борьбы с ним. Биомика. 2020;12(2):242–71. doi: 10.31301/2221-6197.bmcs.2020-15.
    [Garafutdinov RR, Mavzyutov AR, Nikonorov YuM, et al. Betacoronavirus SARS-CoV-2, its genome, variety of genotypes and molecular-biological approaches to combat it. Biomics. 2020;12(2):242–71. doi: 10.31301/2221-6197.bmcs.2020-15. (In Russ)]
  7. Isidori A, de Level L, Gergis U, et al. Management of patients with hematologic malignancies during the COVID-19 pandemic: Practical considerations and lessons to be learned. Front Oncol. 2020;10:1439. doi: 10.3389/fonc.2020.01439.
  8. Salako O, Okunade K, Allsop M, et al. Upheaval in cancer care during the COVID-19 outbreak. Ecancermedicalscience. 2020;14:ed97. doi: 10.3332/ecancer.2020.ed9.
  9. Gupta M, Ahuja R, Gupta S, et al. Running of high patient volume radiation oncology department during COVID-19 crisis in India: Our institutional strategy. Radiat Oncol J. 2020;38(2):93–8. doi: 10.3857/roj.2020.0019
  10. Dalu D, Rota S, Cona MS, et al. A proposal of a “ready to use” COVID-19 control strategy in an Oncology ward: Utopia or reality? Crit Rev Oncol Hematol. 2021;157:103168. doi: 10.1016/j.critrevonc.2020.103168.
  11. Leung MST, Lin SG, Chow J, Harky A. COVID-19 and Oncology: Service transformation during pandemic. Cancer Med. 2020;9(19):7161–71. doi: 10.1002/cam4.3384.
  12. He Y, Lin Z, Tang D, et al. Strategic plan for management of COVID-19 in paediatric haematology and oncology departments. Lancet Haematol. 2020;7(5):e359–е doi: 10.1016/S2352-3026(20)30104-6.
  13. Гаврилина О.А., Васильева А.Н., Галстян Г.М. и др. Опыт работы обсервационного отделения для больных с патологией системы крови во время пандемии COVID-19. Гематология и трансфузиология. 2021;66(1):8–19. doi: 10.35754/0234-5730-2021-66-1-8-19.
    [Gavrilina OA, Vasileva AN, Galstyan GM, et al. Experience of haematological observatory ward during COVID-10 pandemic. Russian journal of hematology and transfusiology. 2021;66(1):8–19. doi: 10.35754/0234-5730-2021-66-1-8-19. (In Russ)]
  14. Годков М.А., Шустов В.В., Кашолкина Е.А. Динамика и гендерно-возрастные особенности эпидемического процесса COVID-19 в городе Москве (итоги скринингового обследования за 1,5 года). Лабораторная служба. 2021;10(4):30–7. doi: 10.17116/labs20211004130.
    [Godkov MA, Shustov VV, Kasholkina EA. Dynamics and gender and age features of the COVID-19 EPIDEMIC process in Moscow (results of screening survey for 1.5 years). Laboratornaya sluzhba. 2021;10(4):30–7. doi: 10.17116/labs20211004130. (In Russ)]
  15. Официальная статистика COVID-19 в России. [Интернет] Доступно по: https://coronavirusstat.ru/?ysclid=lc6d Ссылка активна на 27.12.2022. [Official COVID-19 morbidity statistics in Russia. (Internet) Available from: https://coronavirusstat.ru/?ysclid=lc6dwvg036948485677. Accessed 27.12.2022. (In Russ)]
  16. Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 2020;21(3):335–7. doi: 10.1016/S1470-2045(20)30096-6