NI Enukashvili1,2,3, LA Belik1,2,3, II Kostroma1, NYu Semenova1, VA Balashova1, DV Baram1, SV Gritsaev1, SS Bessmeltsev1, SV Sidorkevich1, IS Martynkevich1
1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024
2 Institute of Cytology, 4 Tikhoretskii pr-t, Saint Petersburg, Russian Federation, 194064
3 Pokrovskii Cell Technology Center, 85 Bolshoi pr-t V.O., Saint Petersburg, Russian Federation, 1949106
For correspondence: Natella Iosifovna Enukashvili, PhD in Biology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024; Tel.: +7(965)085-93-25; e-mail: natellae@gmail.com
For citation: Enukashvili NI, Belik LA, Kostroma II, et al. Expression of the WNT Family Genes in Multiple Myeloma Patients with Different Chemotherapy Response. Clinical oncohematology. 2023;16(3):294–302. (In Russ).
DOI: 10.21320/2500-2139-2023-16-3-294-302
ABSTRACT
Aim. To compare the expression levels of the WNT family genes in mesenchymal stromal cells (MSC) of the bone marrow (BM) hematopoietic niche in multiple myeloma (MM) patients vs. healthy donors.
Materials & Methods. The study enrolled 12 MM patients aged 49–71 years (the median age 61 years) after standard induction bortezomib therapy. The treatment efficacy was assessed in accordance with the criteria of International Myeloma Working Group (IMWG). Patients were stratified in groups with complete and partial response (CPR; group 1, n = 9) and no response (group 2, n = 3). Besides, a group of primary untreated patients was formed (n = 2). The control group included healthy donors of BM (n = 3). The levels of the WNT and CTNNB1 gene expression were assessed by real-time PCR on cDNA isolated from MSC.
Results. In the group of 2 primary patients, two genes (WNT2B and WNT9B) considerably differed in the degree of expression. In non-responders (n = 3), the WNT2B expression could not be determined, whereas the WNT15 expression appeared to be increased. In group CPR (n = 9), mRNA level of the WNT5A gene increased after therapy, whereas the WNT3A gene expression returned to the normal level. The WNT7B gene transcription level did not differ in the control and comparison groups. In group CPR, a significant expression increase in the β-catenin-coding CTNNB1 gene was detected.
Conclusion. The differences identified in the expression of the WNT2B, WNT9B, and CTNNB1 genes suggest the possibility of their use as prognostic molecular markers in MM.
Keywords: multiple myeloma, WNT signaling pathway, hematopoietic niche, mesenchymal stromal cells, prognostic markers.
Received: January 5, 2023
Accepted: May 27, 2023
Статистика Plumx английскийREFERENCES
- Ругаль В.И., Бессмельцев С.С., Семенова Н.Ю. и др. Характеристика микроокружения костного мозга при множественной миеломе до и после терапии. Сибирский научный медицинский журнал. 2019;39(1):112–8.
[Rugal VI, Bessmeltsev SS, Semenova NYu, et al. Characteristics of bone marrow environment in multiple myeloma before and after treatment. Sibirskii nauchnyi meditsinskii zhurnal. 2019;39(1):112–8. (In Russ)] - Чубарь А.В., Енукашвили Н.И. Мезенхимные стромальные клетки: роль в формировании гематоонкологической ниши. Цитология. 2020;62(11):763–72. doi: 10.31857/S0041377120110024.
[Chubar AV, Enukashvili NI. Mesenchymal stem cells: role in the formation of hematooncological niche. Tsitologiya. 2020;62(11):763–72. doi: 10.31857/S0041377120110024. (In Russ)] - Семенова Н.Ю., Бессмельцев С.С., Ругаль В.И. Биология ниши гемопоэтических стволовых клеток. Клиническая онкогематология. 2014;7(4):501–11.
[Semenova NYu, Bessmeltsev SS, Rugal VI. Biology of Hematopoietic Stem Cell Niche. Klinicheskaya onkogematologiya. 2014;7(4):501–11. (In Russ)] - Dazzi F, Ramasamy R, Glennie S, et al. The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 2006;20(3):161–71. doi: 10.1016/j.blre.2005.11.002.
- Enukashvily NI, Semenova N, Chubar AV, et al. Pericentromeric non-coding DNA transcription is associated with niche impairment in patients with ineffective or partially effective multiple myeloma treatment. Int J Mol Sci. 2022;23(6):3359. doi: 10.3390/ijms23063359.
- Бессмельцев С.С. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть Клиническая онкогематология. 2013;6(3):237–57.
[Bessmeltsev SS. Multiple myeloma (pathogenesis, clinical features, diagnosis, differential diagnosis). Part I. Klinicheskaya onkogematologiya. 2013;6(3):237–57. (In Russ)] - Albers J, Keller J, Baranowsky A, et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J Cell Biol. 2013;200(4):537–49. doi: 10.1083/jcb.201207142.
- Glass DA 2nd, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64. doi: 10.1016/j.devcel.2005.02.017.
- Spencer GJ, Utting JC, Etheridge SL, et al. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFκB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci. 2006;119(7):1283–96. doi: 10.1242/jcs.02883.
- Edwards CM, Zhuang J, Mundy GR. The pathogenesis of the bone disease of multiple myeloma. Bone. 2008;42(6):1007–13. doi: 10.1016/j.bone.2008.01.027.
- Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009;433(1–2):1–7. doi: 10.1016/j.gene.2008.12.008.
- Maeda K, Kobayashi Y, Udagawa N, et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med. 2012;18(3):405–12. doi: 10.1038/nm.2653.
- Pederson L, Ruan M, Westendorf JJ, et al. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA. 2008;105(52):20764–9. doi: 10.1073/pnas.0805133106.
- Семенова Н.Ю., Чубарь А.В., Енукашвили Н.И. и др. Перестройка ключевых элементов стромального микроокружения костного мозга при множественной миеломе. Вестник гематологии. 2020;16(1):15–21.
[Semenova NYu, Chubar AV, Enukashvili NI, et al. Reconstruction of key elements of the stromal microenvironment of the bone marrow in multiple myeloma. Vestnik gematologii. 2020;16(1):15–21. (In Russ)] - Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9(9):665–74. doi: 10.1038/nrc2714.
- Ivanovic Z. Hypoxia or in situ normoxia: The stem cell paradigm. J Cell Physiol. 2009;219(2):271–5. doi: 10.1002/jcp.21690.
- Nakamura Y, Nawata M, Wakitani S. Expression profiles and functional analyses of wnt-related genes in human joint disorders. Am J Pathol. 2005;167(1):97–105. doi: 10.1016/s0002-9440(10)62957-4.
- Kobune M, Chiba H, Kato J, et al. Wnt3/RhoA/ROCK signaling pathway is involved in adhesion-mediated drug resistance of multiple myeloma in an autocrine mechanism. Mol Cancer Ther. 2007;6(6):1774–84. doi: 10.1158/1535-7163.mct-06-0684.
- Qiang Y-W, Shaughnessy JD Jr, Yaccoby S. Wnt3a signaling within bone inhibits multiple myeloma bone disease and tumor growth. Blood. 2008;112(2):374–82. doi: 10.1182/blood-2007-10-120253.
- Mahtouk K, Moreaux J, Hose D, et al. Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays. BMC Cancer. 2010;10:198. doi: 10.1186/1471-2407-10-198.
- Bolzoni M, Donofrio G, Storti P, et al. Myeloma cells inhibit non-canonical wnt co-receptor ror2 expression in human bone marrow osteoprogenitor cells: effect of wnt5a/ror2 pathway activation on the osteogenic differentiation impairment induced by myeloma cells. Leukemia. 2013;27(2):451–63. doi: 10.1038/leu.2012.190.
- Qiang Y-W, Chen Y, Stephens O, et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood. 2008;112(1):196–207. doi: 10.1182/blood-2008-01-132134.
- Suthon S, Perkins RS, Bryja V, et al. WNT5B in Physiology and Disease. Front Cell Dev Biol. 2021;9:667581. doi: 10.3389/fcell.2021.667581.
- Song S, Fan G, Li Q, et al. IDH2 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in multiple myeloma. Oncogene. 2021;40(35):5393–402. doi: 10.1038/s41388-021-01939-7.
- Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev. 2007;3(1):30–8. doi: 10.1007/s12015-007-0006-6.
- Shi C, Chen X, Yin W, et al. Wnt8b regulates myofibroblast differentiation of lung-resident mesenchymal stem cells via the activation of Wnt/β-catenin signaling in pulmonary fibrogenesis. Differentiation. 2022;125:35–44. doi: 10.1016/j.diff.2022.03.004.
- Zmuda JM, Yerges LM, Kammerer CM, et al. Association analysis of WNT10B with bone mass and structure among individuals of African ancestry. J Bone Miner Res. 2009;24(3):437–47. doi: 10.1359/jbmr.081106.
- Wend P, Wend K, Krum SA, Miranda-Carboni GA. The role of WNT10B in physiology and disease. Acta Physiol (Oxf). 2012;204(1):34–51. doi: 10.1111/j.1748-1716.2011.02296.x.
- Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 2019;20(7):1694. doi: 10.3390/ijms20071694.
- Reya T, O’Riordan M, Okamura R, et al. Wnt Signaling Regulates B Lymphocyte Proliferation through a LEF-1 Dependent Mechanism. Immunity. 2000;13(1):15–24. doi: 10.1016/s1074-7613(00)00004-2.
- Bunaciu RP, Tang T, Mao CD. Differential expression of Wnt13 isoforms during leukemic cell differentiation. Oncol Rep. 2008;20(1):195–201. doi: 10.3892/or.20.1.195.
- Richter J, Stanley EG, Ng ES, et al. WNT9A Is a Conserved Regulator of Hematopoietic Stem and Progenitor Cell Development. Genes (Basel). 2018;9(2):66. doi: 10.3390/genes9020066.
- Kirikoshi H, Sekihara H, Katoh M. Expression of WNT14 and WNT14B mRNAs in human cancer, up-regulation of WNT14 by IFNγ and up-regulation of WNT14B by β-estradiol. Int J Oncol. 2001;19(6):1221–5. doi: 10.3892/ijo.19.6.1221.
- Lu S, Yakirevich E, Yang D, et al. Wnt Family Member 9b (Wnt9b) Is a New Sensitive and Specific Marker for Breast Cancer. Am J Surg Pathol. 2021;45(12):1633–40. doi: 10.1097/pas.0000000000001784.
- Spaan I, Raymakers RA, van de Stolpe A, Peperzak V. Wnt signaling in multiple myeloma: A central player in disease with therapeutic potential. J Hematol Oncol. 2018;11(1):1–18. doi: 10.1186/s13045-018-0615-3.
- Van Andel H, Kocemba KA, Spaargaren M, Pals ST. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia. 2019;33(5):1063–75. doi: 10.1038/s41375-019-0404-1.
- Frenquelli M, Caridi N, Antonini E, et al. The WNT receptor ROR2 drives the interaction of multiple myeloma cells with the microenvironment through AKT activation. Leukemia. 2020;34(1):257–70. doi: 10.1038/s41375-019-0486-9.
- Chen X, Shi C, Cao H, et al. The hedgehog and Wnt/β-catenin system machinery mediate myofibroblast differentiation of LR-MSCs in pulmonary fibrogenesis. Cell Death Dis. 2018;9(6):639. doi: 10.1038/s41419-018-0692-9.
- Subramanian R, Basu D, Dutta TK. Significance of bone marrow fibrosis in multiple myeloma. Pathology. 2007;39(5):512–5. doi: 10.1080/00313020701570038.