Pharmacoeconomic Analysis of CAR-T Cell Therapy in Diffuse Large B-Cell Lymphoma and B-Lineage Acute Lymphoblastic Leukemias

IV Gribkova, AA Zavyalov

Research Institute of Healthcare and Medical Management, 9 Sharikopodshipnikovskaya ul., Moscow, Russian Federation, 115088

For correspondence: Irina Vladimirovna Gribkova, PhD in Biology, 9 Sharikopodshipnikovskaya ul., Moscow, Russian Federation, 115088; Tel.: +7(916)078-73-90; e-mail: igribkova@yandex.ru

For citation: Gribkova IV, Zavyalov AA. Pharmacoeconomic Analysis of CAR-T Cell Therapy in Diffuse Large B-Cell Lymphoma and B-Lineage Acute Lymphoblastic Leukemias. Clinical oncohematology. 2022;15(2):205–12. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-205-212


ABSTRACT

Genetically modified Т-lymphocytes with chimeric antigen receptors (CAR-T cells) represent a new treatment strategy in relapsed/refractory B-cell malignant neoplasms. In 2017–2018 two CAR-T cell drugs, tisagenlecleucel and axicabtagene ciloleucel, were approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) for clinical use in patients with refractory acute lymphoblastic leukemia and relapsed/refractory B-cell lymphomas. Due to its high efficacy, CAR-T cell therapy is increasingly becoming an integral part of clinical practice. However, this method of chemotherapy is very expensive. The mean cost of tisagenlecleucel is $475,000 and that of axicabtagene ciloleucel is $373,000. It is worth noting that these are only the drug prices which exclude other therapy-related costs. In the studies of 2018–2020 groups of researchers attempted to estimate the CAR-T cell therapy-associated costs. The aim of the present review is to analyze these studies and to assess the total treatment cost and expense structure, as well as to discuss the factors underlying the increasing costs and to explore opportunities to improve availability of the CAR-T technology, on the whole. The results showed that the mean cost of tisagenlecleucel therapy in B-cell lymphoma was $515,150 and that of axicabtagene ciloleucel therapy was $503,955. The treatment cost in acute lymphoblastic leukemia was $580,459. The major factors affecting the total therapy cost were CAR-T cell drug prices, severity of adverse events, and high tumor load prior to CAR-T cell drug infusion. It is agreed that the main opportunities to rise affordability of the CAR-T cell therapy lie in reducing the drug prices (for example, by means of medical facility-based production at its own expense), further therapy improvement aimed at less toxicity, and its implementation at earlier stages of tumor disease.

Keywords: B-cell lymphoma, acute lymphoblastic leukemia, CAR-T cell therapy, chimeric antigen receptor, tisagenlecleucel, axicabtagene ciloleucel, costs, review.

Received: October 29, 2021

Accepted: February 15, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.
  2. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/S1470-2045(14)71170-2.
  3. Roex G, Feys T, Beguin Y, et al. Chimeric Antigen Receptor-T-Cell Therapy for B-Cell Hematological Malignancies: An Update of the Pivotal Clinical Trial Data. Pharmaceutics. 2020;12(2):194. doi: 10.3390/pharmaceutics12020194.
  4. Zheng XH, Zhang XY, Dong QQ, et al. Efficacy and safety of chimeric antigen receptor-T cells in the treatment of B cell lymphoma: a systematic review and meta-analysis. Chin Med J (Engl). 2020;133(1):74–85. doi: 10.1097/CM9.0000000000000568.
  5. Ершов А.В., Демьянов Г.В., Насруллаева Д.А. и др. Новейшие тенденции в совершенствовании CAR-T-клеточной терапии: от лейкозов к солидным злокачественным новообразованиям. Российский журнал детской гематологии и онкологии. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95.
    [Ershov AV, Demyanov GV, Nasrullaeva DA, et al. The latest trends in improving CAR-T cell therapy: from leukemias to solid malignant neoplasms. Russian Journal of Pediatric Hematology and Oncology. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95. (In Russ)]
  6. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза: обзор литературы. Клиническая онкогематология. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230.
    [Gribkova IV, Zavyalov CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review. Clinical oncohematology. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230. (In Russ)]
  7. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360.
    [Gribkova IV, Zavyalov AA. Chimeric Antigen Receptor T-Cell Therapy for B-Cell Non-Hodgkin Lymphoma: Opportunities And Challenges. Voprosy onkologii. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360. (In Russ)]
  8. Orlowski RJ, Porter DL, Frey NV. The promise of chimeric antigen receptor T cells (CARTs) in leukaemia. Br J Haematol. 2017;177(1):13–26. doi: 10.1111/bjh.14475.
  9. Park JH, Riviere I, Gonen M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):449–59. doi: 10.1056/NEJMoa1709919.
  10. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48. doi: 10.1056/NEJMoa1709866.
  11. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017;377(26):2531–44. doi: 10.1056/NEJMoa1707447.
  12. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980.
  13. Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:31–42. doi: 10.1016/S1470-2045(18)30864-7.
  14. Bach PB, Giralt SA, Saltz LB. FDA Approval of Tisagenlecleucel: Promise and Complexities of a $475 000 Cancer Drug. JAMA. 2017;318(19):1861–2. doi: 10.1001/jama.2017.15218.
  15. Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119–28. doi: 10.1200/JCO.19.02104.
  16. de Lima Lopes G, Nahas GR. Chimeric antigen receptor T cells, a savior with a high price. Chin Clin Oncol. 2018;7(2):21. doi: 10.21037/cco.2018.04.02.
  17. Makita S, Imaizumi K, Kurosawa S, Tobinai K. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs Context. 2019;8:212567. doi: 10.7573/dic.212567.
  18. Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. doi: 10.3324/haematol.2019.229781.
  19. Lyman GH, Nguyen A, Snyder S, et al. Economic Evaluation of Chimeric Antigen Receptor T-Cell Therapy by Site of Care Among Patients With Relapsed or Refractory Large B-Cell Lymphoma. JAMA Netw Open. 2020;3(4):e202072. doi: 10.1001/jamanetworkopen.2020.2072.
  20. Lin JK, Muffly LS, Spinner MA, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Multiply Relapsed or Refractory Adult Large B-Cell Lymphoma. J Clin Oncol. 2019;37(24):2105–19. doi: 10.1200/JCO.18.02079.
  21. Harris AH, Hohmann S, Dolan C. Real-World Quality and Cost Burden of Cytokine Release Syndrome Requiring Tocilizumab or Steroids during CAR-T Infusion Encounter. Biol Blood Marrow Transplant. 2020;26(3):S312. doi: 10.1016/j.bbmt.2019.12.389.
  22. Hernandez I, Prasad V, Gellad WF. Total Costs of Chimeric Antigen Receptor T-Cell Immunotherapy. JAMA Oncol. 2018;4(7):994–6. doi: 10.1001/jamaoncol.2018.0977.
  23. Roth JA, Sullivan SD, Lin VW, et al. Cost-effectiveness of axicabtagene ciloleucel for adult patients with relapsed or refractory large B-cell lymphoma in the United States. J Med Econ. 2018;21(12):1238–45. doi: 10.1080/13696998.2018.1529674.
  24. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Cost-effectiveness Associated With Axicabtagene Ciloleucel vs Chemotherapy for Treatment of B-Cell Lymphoma. JAMA Netw Open. 2019;2(2):e190035. doi: 10.1001/jamanetworkopen.2019.0035.
  25. Sarkar RR, Gloude NJ, Schiff D, Murphy JD. Cost-Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Pediatric Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia. J Natl Cancer Inst. 2019;111(7):719–26. doi: 10.1093/jnci/djy193.
  26. Thielen FW, van Dongen-Leunis A, Arons AMM, et al. Cost-effectiveness of anti-CD19 chimeric antigen receptor T-cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. A societal view. Eur J Haematol. 2020;105(2):203–15. doi: 10.1111/ejh.13427.
  27. Yang H, Hao Y, Qi CZ, et al. Estimation of Total Costs in Pediatric and Young Adult Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia Receiving Tisagenlecleucel from a U.S. Hospital’s Perspective. J Manag Care Spec Pharm. 2020;26(8):971–80. doi: 10.18553/jmcp.2020.20052.
  28. Lin JK, Lerman BJ, Barnes JI, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Relapsed or Refractory Pediatric B-Cell Acute Lymphoblastic Leukemia. J Clin Oncol. 2018;36(32):3192–202. doi: 10.1200/JCO.2018.79.0642.
  29. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Value of Chimeric Antigen Receptor T-Cell Therapy for Pediatric Patients With Relapsed or Refractory Leukemia. JAMA Pediatr. 2018;172(12):1161–8. doi: 10.1001/jamapediatrics.2018.2530.
  30. Furzer J, Gupta S, Nathan PC, et al. Cost-effectiveness of Tisagenlecleucel vs Standard Care in High-risk Relapsed Pediatric Acute Lymphoblastic Leukemia in Canada. JAMA Oncol. 2020;6(3):393–401. doi: 10.1001/jamaoncol.2019.5909.
  31. Zhu F, Wei G, Zhang M, et al. Factors Associated with Costs in Chimeric Antigen Receptor T-Cell Therapy for Patients with Relapsed/Refractory B-Cell Malignancies. Cell Transplant. 2020;29:963689720919434. doi: 10.1177/0963689720919434.
  32. Heine R, Thielen FW, Koopmanschap M, et al. Health Economic Aspects of Chimeric Antigen Receptor T-cell Therapies for Hematological Cancers: Present and Future. Hemasphere. 2021;5(2):e524. doi: 10.1097/HS9.0000000000000524.
  33. Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11(1):41. doi: 10.1186/s13045-018-0593-5.
  34. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30. doi: 10.1182/blood-2016-04-703751.
  35. Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017;35(16):1803–13. doi: 10.1200/JCO.2016.71.3024.
  36. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95. doi: 10.1182/blood-2014-05-552729.
  37. Ran T, Eichmuller SB, Schmidt P, Schlander M. Cost of decentralized CAR T-cell production in an academic nonprofit setting. Int J Cancer. 2020;147(12):3438–45. doi: 10.1002/ijc.33156.
  38. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. doi: 10.1016/S0140-6736(20)31366-0.
  39. Benjamin R, Graham C, Yallop D, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet. 2020;396(10266):1885–94. doi: 10.1016/S0140-6736(20)32334-5.
  40. Pfeiffer A, Thalheimer FB, Hartmann S, et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol Med. 2018;10(11):e9158. doi: 10.15252/emmm.201809158.
  41. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5:254. doi: 10.3389/fphar.2014.00254.
  42. Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350(6258):aab4077. doi: 10.1126/science.aab4077.
  43. Mikkilineni L, Kochenderfer JN. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol. 2021;18(2):71–84. doi: 10.1038/s41571-020-0427-6.
  44. Strati P, Ahmed S, Furqan F, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–6. doi: 10.1182/blood.2020008865.
  45. Gauthier J, Hirayama AV, Hay KA, et al. Comparison of efficacy and toxicity of CD19-specific chimeric antigen receptor T-cells alone or in combination with ibrutinib for relapsed and/or refractory CLL. Blood. 2018;132(Suppl 1):299. doi: 10.1182/blood-2018-99-111061.
  46. Gill SI, Vides V, Frey NV, et al. Prospective clinical trial of anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia shows a high response rate. Blood. 2018;132(Suppl 1):298. doi: 10.1182/blood-2018-99-115418.